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orosity inference and classification of
iliciclastic rocks from multiple data sets
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ABSTRACT

We develop a Bayesian formulation for joint inference of po-
rosity and clay volume, incorporating multiple data sets, prior in-
formation, and rock physics models. The derivation is carried out
considering the full uncertainty involved in calculations from un-
known hyperparameters required by either rock physics equa-
tions �model coefficients� or statistical models �data variances�.
Eventually, data variances are marginalized in closed form, and
the model coefficients are fixed using a calibration procedure. To
avoid working with a high-dimension probability density func-
tion in the parameter space, our formulation is derived and imple-
mented using a moving window along the data domain. In this-
way, we compute a collection of 2D posterior distributions for
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nterval porosity and clay volume, corresponding to each posi-
ionalong the window’s path. We test the methodology on both
ynthetic and real well logs consisting of gamma-ray, neutron,
ompressional and shear sonic velocity, and density. Tests dem-
nstrate that integrating the relevant pieces of information about
orosity and clay volume reduces the uncertainties associated
ith the estimates. Error analysis of a synthetic data example

hows that neutron and density logs provide more information
bout porosity, whereas gamma-ray logs and velocities provide
ore information about clay volume. Additionally, we investi-

ate a change in fluid saturation as a source of systematic error in
orosity prediction. A real data example, incorporating porosity
easurements on core samples, further demonstrates the consis-

ency of our methodology in reducing the uncertainties associat-
d with our final estimates.
INTRODUCTION

Determination of porosity distribution in a reservoir is usually
ased on seismic attributes and well information. In that procedure,
he interpreter may rely on well-log data and core measurements to
etermine the relationship between each seismic attribute and poros-
ty, in addition to other reservoir parameters. Most frequently, poros-
ty is derived from selected well-log data, such as neutron, sonic, and
ensity logs or a combination of these, after suitable data correc-
ions. Neutron logs are already presented in terms of porosity, but
ther types of logs require some kind of transformation to obtain po-
osity. For example, porosity can be calculated easily from bulk den-
ity in clean zones of known matrix and fluid densities. Velocity-to-
orosity conversions are made mainly using formulas from rock
hysics, such as given by Wyllie et al. �1956� �see also Raymer et al.
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Basically, data correction and transformation form the basis of the
ost commonly used methods for porosity determination from well

ogs and sometimes seismic attributes. The main problem with this
pproach is that it fails to treat the associated uncertainties properly,
specially data errors inherent in each type of well log. When a well
og is transformed, both signal and noise are converted into porosity.
he noise term has contributions from instrument and ambient noise

n addition to other formation and well effects.
Data corrections minimize the effects of error propagation in the

orosity determination process. For example, in porosity determina-
ion from density logs, knowledge of matrix and fluid densities also
mplies knowing matrix and fluid compositions. But the fluid in the
one of investigation covered by density logging is mud filtrate
ixed with residual formation fluid. The presence of residual light
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O66 Loures and Moraes
il and gas in the invaded zone may affect the bulk density strongly.
tandard procedures are used to compensate for these effects, usual-

y using information from other available logs, such as resistivity
ogs. Mud cake is also an issue in determinating porosity from densi-
y logs. Calibrations are made to compensate for this effect in a pro-
ess that becomes less reliable with increasing variations in mud-
ake thickness.

In the case of porosity calculation from sonic logs based on Wyl-
ie’s equation, the situation can be more complicated because matrix
nd fluid velocity determination is much less reliable than density.
ere again, pore, matrix, and fluid heterogeneities; mud cake; and
ud-filtrate composition are sources of uncertainty in porosity de-

ermination. When the mud invasion is low in a hydrocarbon-bear-
ng formation, the estimated porosity will be greater than the actual
orosity. In an uncompacted, light-hydrocarbon-bearing formation,
stimated porosity will remain high even after corrections for lack of
ompaction are applied.

In this paper, we develop a methodology that addresses the issue
f uncertainty in the data and is applicable throughout the reservoir
haracterization process, beginning with the interpretation of well
ata. We pursue this idea by addressing porosity determination along
he well as an inference problem. The solution is constructed with
he focus on integrating multiple data sets and considering selected
ources of uncertainty, such as the coupled effect of clay �shale� vol-
me and noise in the data. The formulation follows Bayesian meth-
dology as presented in Jeffreys �1939� and Jaynes �2003� �see also
lrych et al. �2001� for a tutorial and geophysical applications and
elman et al. �2004� for a modern treatment�.
The Bayesian approach focuses on obtaining a probability density

unction �PDF� for the parameter under investigation — the posteri-
r distribution — assimilating two kinds of information: from �1�
ata fitting and �2� prior information on models. Both pieces of infor-
ation are represented as PDFs, called the likelihood function �or

ata distribution� and the prior distribution, respectively. Once these
istributions are combined to give the posterior distribution, all in-
erences can be obtained by computing statistics relative to individu-
l parameters �e.g., marginal posterior distributions�.

Our strategy is to avoid the complications that arise in multidi-
ensional Bayesian inverse problems �see, e.g., Moraes and Scales

2000��. The solution is formulated in terms of interval rock proper-
ies using a moving window procedure. The final result is a pair of

arginal posterior distributions for porosity and clay volume for
ach depth point. Not only estimates but also uncertainty measures
an be obtained straightforwardly from the 1D marginal posteriors.
lso, the contribution from each piece of information toward in-

reasing the estimates’reliability can be assessed easily.
Selecting the mathematical models relating well data and reser-

oir parameters is a key step in constructing the likelihood functions.
n fact, existing rock physics models do not depend on porosity and
lay volume alone but also depend on other variables such as matrix
ineral composition, fluid content, saturation, pressure, and temper-

ture. It is impractical, however, to include all variables as un-
nowns in the petrophysical inference problem. We choose to re-
trict our inference to porosity and clay volume as unknown vari-
bles, reflecting some of the uncertainty issues discussed above.As a
exture indicator, clay volume plays an important role in the classifi-
ation of siliciclastic reservoirs and in modeling the seismic re-
ponse �Vernik and Nur 1992; Vernik, 1998�. Other variables are ei-
her kept out of the selected modeling equations or are treated as
xed values, relying heavily on prior knowledge coming from anal-
sis of core samples and additional well-log information. To empha-
ize the importance of these additional variables �hyperparameters�
n full uncertainty modeling, we derive an expression for a joint pos-
erior distribution for porosity, clay volume, and the set of �un-
nown� hyperparameters. Then we propose a calibration procedure
o fix them as given values.

Tests on synthetic and real data show that the resulting porosity
ncertainty is reduced strongly by the integration of independent in-
ormation contained in multiple well logs. On the other hand, with-
ut a more directly related data set such as a gamma-ray log, clay
olume is not determined very well. We, however, show that joint in-
erences of porosity and clay volume can be used to help classify
andstones, following a scheme proposed by Vernik and Nur �1992�.
n our examples, empirical models express velocity as a function of
orosity and clay volume variations, as given by Han et al. �1986�. In
he real data example, we select a set of well logs from a sandstone
hannel reservoir of the Blackfoot field, Canada. The rock physics
odel coefficients are calibrated using porosity measurements from

ore samples and clay volume from gamma-ray logs as reference
alues. These values are also used for comparing final estimates of
orosity and clay volume.

BAYESIAN FORMULATION

Consider the subsurface represented by a 1D layered model where
ach layer is homogeneous with constant porosity � and clay vol-
me �. The problem under investigation is to make inferences about
nterval porosity and clay volume from a set of well-log data vectors
ampled on that interval, from formulas from rock physics studies,
nd from prior information I. The last is defined as additional infor-
ation that is independent from the data to be inverted. To derive the

olution, we let the set of multiple well-log data be represented by
= �d1,…,dK�di � RNi, i = 1, . . . ,K�, where di is a data vector rep-

esenting one of K types of data �specified in the next section�, hav-
ng Ni as the number of data points in the selected depth interval and
here R is real numbers. To be able to represent the parameter space

ully, we also consider the set M = ��,�,H��,� � R�, which in-
ludes the subset H of hyperparameters to be defined in the next sec-
ion. Hyperparameters �or nuisance parameters� are parameters nec-
ssary to arrive at a solution but of no direct interest in the inference
roblem. In our case, hyperparameters arise from specifications of
ock physics and statistical models.

In the Bayesian approach, the solution for our main problem is
iven by the posterior distribution for porosity and clay volume

p��,��D,I�. But because of the hyperparameters, the full modeling
f uncertainties, by application of Bayes’theorem, is given by

p��,�,H�D,I� =
s��,�,H�I�r�D��,�,H,I�

h�D�I�
, �1�

here s��,�,H�I� is the joint prior PDF, r�D��,�,H,I� is the joint
DF for the data, and h�D�I� is a normalizing PDF, which ensures

hat the posterior distribution integrates to unity when evaluated at a
articular set of observed data values �i.e., D = Dobs�. The value
�D��,�,H,I� is also known as the likelihood function of parameters
, �, and H to emphasize its inference properties.



o
b

E
o
v
d
u
�
�
i
p
n
fi

R

�
fi
d
b
u

t
d
t
o
a
t
w

a

w
r
r
t
t
i
n

t
s
w
i
s
d

c
t
l
�
f

w
t
m

l
b
p
r
c
p
d
o
e
o

a

w
e
a
p
−
l
s
e

s

w
c
d

w
o

k
a
i

T

p
i
1
d
=

Porosity and clay volume inference O67
Essentially, the joint posterior is the normalized product of the pri-
r distribution and the likelihood function, which can be expressed
y

p��,�,H�D,I� � s��,�,H�I�r�D��,�,H,I� . �2�

xpression 2 imposes some requirements that must be met before
ne can obtain an acceptable posterior PDF as the solution for an in-
erse problem. First, both the prior and the data distributions must be
efined. Then there must be some compatibility between the prior
nderstanding of the model and a data-driven specification of model
i.e., r�D��,�,H,I� � 0 for some set ��,�,H�, where s��,�,H�I�

0�. The specification of a likelihood function also implies the ex-
stence of a known relationship between D and parameters � and �,
ossibly involving additional parameters in H, as discussed in the
ext section. The definition of the data and prior distributions and the
nal form of the posterior distribution are discussed after that.

ock physics models

We follow three standard steps to construct the Bayesian solution:
1� select the data sets, which carry information about � and �; �2�
nd mathematical relations between the data and parameters; and �3�
efine statistical models �PDFs� for prior and likelihood function,
ased, respectively, on prior parameter information and data
ncertainties.

Let d�N
, dVP

, dVS
, d�, and d� be data vectors representing, respec-

ively, neutron porosity �N, P-wave velocity VP, S-wave velocity VS,
ensity �, and gamma-ray � wireline logs. Because these data vec-
ors are contaminated with noise, they can be expressed as a function
f porosity and clay volume plus an error associated with both data
cquisition and data modeling �i.e., neglected physical effects�. With
his in mind and using numbered subscripts for convenience, we can
rite

d�N
→ d1 = f1��,�� + e1, �3�

dVP
→ d2 = f2��,�� + e2, �4�

dVS
→ d3 = f3��,�� + e3, �5�

d� → d4 = f4��,�� + e4, �6�

nd

d� → d5 = f5��� + e5, �7�

here fi, for i = 1, . . . ,5, represent constant-vector valued functions
elating the data to � and �, and where ei, for i = 1, . . . ,5, are the er-
or components in the data. By assuming constant reservoir proper-
ies over selected depth intervals and strict dependence of the data on
he same properties, one can obtain only constant model responses
nside that interval.Avariation in observed data is then interpreted as
oise.

Next, we specify the functions fi. According to the above descrip-
ion, these can be represented by fi = f iu, where f i = f i��,�� is a
imple function of porosity and clay volume and u = �1, . . . ,1�T,
ith the superscript T standing for a matrix-vector transpose. For
= 1, we have the neutron log derived from a nuclear tool that mea-
ures the amount of hydrogen in the formation. The amount of hy-
rogen is not constrained by pore volume alone. The presence of
lay and the type of fluid strongly influence hydrogen content.Addi-
ionally, neutron data normally are affected by a calibration effect re-
ated to the baseline response of a reference rock, i.e., a matrix effect
see, e.g., Hearst et al., 2000�. Considering these effects, a simple
orm for function f1 can be written as

�N = a�N
+ � + c�N

� , �8�

here a�N
is the coefficient for a constant calibration effect and c�N

is
he coefficient for the shale term, actually corresponding to shale

icroporosity.
The expressions relating compressional-wave and shear-wave ve-

ocities to porosity and clay volume, represented by f2 and f3, are
oth selected from Han et al. �1986�. Their paper presents a rock
hysics study of 75 sandstones samples, with �helium� porosity
anging from 2% to 30% and clay content of 0% to 50% from point
ounts. Wave-velocity measurements are performed as functions of
ressure �up to 50 MPa of confining pressure� and saturation �either
ry or water saturated�. One of their main results agrees with previ-
us authors �e.g., Castagna et al., 1985� in that velocities can be relat-
d linearly to porosity and clay content. This allows us to write, in
ur notation, the seismic velocities VP and VS as given by

VP = aVP
+ bVP

� + cVP
� �9�

nd

VS = aVS
+ bVS

� + cVS
� , �10�

here a, b, and c for VP and VS subscripts are the empirical model co-
fficients given in km/s, considering that porosity and clay volume
re expressed in terms of volume fractions. For water-saturated sam-
les at 39 MPa differential pressure, Han et al. �1986� obtain 5.59,
6.93, and −2.18 km/s for the coefficients of the compressional ve-

ocity model �equation 9� and 3.52, −4.91, and −1.89 km/s for the
hear-wave model �equation 10�. We discuss the validity of these co-
fficient values in connection with the real data example.

The f4 function relating density to porosity and clay volume is de-
cribed by

� = �q + �� fl − �q�� + ��cl − �q�� , �11�

here �q, �cl, and � fl are, respectively, the sand grain �mostly quartz�,
lay �approaching shale�, and fluid densities. Finally, the gamma-ray
ata are described by a function of clay volume alone, given by

� = ��sh − �sd�� + �sd, �12�

here �sh and �sd are reference values for the gamma-ray emissions
f pure shales and clean sands, respectively.

Notice that none of the model coefficients presented above is
nown with absolute certainty. This means that a�N

, c�N
, aVP

, bVP
, cVP

,
VS

, bVS
, cVS

, �q, �cl, � fl, �sh, and �sd are unknown quantities, which we
nclude in the set H of hyperparameters.

he likelihood function

Because each well-log data acquisition can be viewed as an inde-
endent experiment, one may assume that the noise in the data is also
ndependent. In this case, the joint likelihood function �see equation
� can be rewritten as the product of five separate likelihoods,
epending on its own set of hyperparameters, so that H
�H ,H ,H ,H ,H �. Then we write
1 2 3 4 5
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r�D��,�,H,I� = r1�d1��,H1,I�r2�d2��,�,H2,I�r3�d3��,�,H3,I�

� r4�d4��,�,H4,I�r5�d5��,H5,I� , �13�

here the subscripts 1,…, 5 are defined as for equations 3–7.
The functional forms of these likelihood functions are specified

onsidering available information about data errors. An available
riterion for guiding this process is the principle of maximum entro-
y, the standard for assigning probabilities in Bayesian inference
see, e.g., Jaynes, 1982�.According to this principle, if only the first-
nd second-order moments are considered for describing errors in
he data, then the normal distribution is the appropriate choice for a
ikelihood function, i.e., it has maximum associated entropy �uncer-
ainty�. We accept this result by letting the likelihood functions ri,
= 1, . . . ,5, be given by

ri�di��,�,Hi,I� = �2�	i
2�−

Li
2

�exp�−
1

2	i
2 �di − fi��,���T

��di − fi��,���	 , �14�

here 	i
2 is the error variance corresponding to the ith observed data

ector. Realistically, these scaling parameters 	i
2 of data distribu-

ions are also not known a priori. Consequently, they must be treated
s unknown parameters to be included in H. This allows for an ex-
licit definition of each independent set of hyperparameters
1 = �	1,a�N

,c�N
�, H2 = �	2,aVP

,bVP
,cVP

�, H3 = �	3,aVS
,bVS

,cVS
�,

4 = �	4,�q,�cl,� fl�, and H5 = �	5,�sh,�sd�, corresponding to each
ikelihood model in equation 13 in the form of equation 14.

One can argue that borehole effects and the very subsurface rocks
e wish to characterize add correlations to the data, making a full co-
ariance matrix a more adequate description of data errors. In fact,
hen the true covariance of errors is known, it acts as a filter, elimi-
ating any coherent noise and downweighting data points with high-
r noise levels. Depending on the assigned covariance structure, the
ffect can be dramatic.As with the data variance, because covarianc-
s are usually not known a priori, we prefer to assign an identity ma-
rix to limit the number of unknown variables. When a sample of
ery typical noise is available, as described by Gouveia and Scales
1998�, it would be appropriate to incorporate it.

he prior distribution

The prior distribution is used to restrict the parameter space, thus
educing the uncertainty involved in calculations. Following Jef-
reys �1939�, prior distributions may be data based or nondata based.
ondata-based prior distributions are derived from considerations

hat can come from objective arguments based on theoretical consid-
rations, such as invariance under group transformations and physi-
al bounds on parameters �Jaynes, 1968�, or from subjective infor-
ation, such as the investigator’s prior guesses based on back-

round expertise. For a thorough review of issues related to assign-
ng prior probabilities, see Kass and Wasserman �1996�.

According to equation 1, the prior distribution s is defined over the
hole domain of porosity, clay volume, and set H. To represent the
rior distributions, we need a different partition of H than that pre-
ented in the previous section, which is based on data types in the
ikelihood functions �i.e., sets of data variance and model coeffi-
ients�. This time we need a partition based on parameter types, sep-
rating one set for statistical distribution hyperparameters and an-
ther set for model coefficients. Thus, let H = �Hc,H	�, where Hc

nd H	 respectively represent the sets of all rock physics model coef-
cients and error variances, i.e.,

Hc = �a�N
,c�N

,aVP
,bVP

,cVP
,aVS

,bVS
,cVS

,�q,�cl,� fl,�sh,�sd� ,

H	 = �	1,	2,	3,	4,	5� .

t is reasonable to assume that the data variances are independent
rom other parameters �i.e., porosity, clay volume, and model coeffi-
ients�. In this way, we can write the prior distribution as

s��,�,H�I� = s0��,�,Hc�I�

i=1

5

si�	i�I� . �15�

We follow one of the most conservative Bayesian practices in as-
igning prior probabilities, which is to avoid accounting for any un-
ertain information in the prior distribution. This corresponds to Jef-
reys’ strategy for assigning uninformative prior distributions. Data
ariances are nonnegative parameters, varying between 0 and 
,
o the use of the improper �not normalizable� distribution 1/	i is
onsistent with expressing complete unawareness of such parame-
ers �see Ulrych et al., 2001�. Next, we need to specify s0��,�,Hc�I�

w�Hc��,��q��,��.An uninformative prior distribution for porosi-
y and clay volume can be prescribed by letting q be constant over
he region where the likelihood shows any appreciable value. Fol-
owing these considerations, the prior distribution is expressed as

s��,�,Hc�I� =
w�Hc��,��

	1	2	3	4	5
, for 0 � 	i=1,. . .,5 � 
 .

�16�

This approach for specifying q, suggested by Box and Tiao �1973,
heir section 1.5�, corresponds to extending porosity and clay vol-
me to an unbounded domain by allowing them to vary on �−
,

�. This makes it possible to derive an analytical expression for

he posterior distribution �next section�. After that, the posterior dis-
ribution is renormalized over a truncated domain, corresponding to
nown limits for porosity and clay volume. Porosity is set to vary on
0,�crit�, where �crit is the critical porosity �usually 0.4 for sand-
tones�, and clay volume is set to vary on �0, 1�.

he posterior distribution

The posterior distribution can be found by application of Bayes’
heorem �equation 2�, using equations 13, 14, and 16 to obtain

p��,�,H�D,I� � w�Hc��,��

i=1

5

	i
−�Li+1�

�exp�−
1

2�	i
2 �di − fi��,���T

��di − fi��,���	 , �17�

here Li, i = 1, . . . ,5, are the sizes of each data vector di.
To obtain the final form of the posterior distribution, we return to

he discussion of how to treat the hyperparameter set. A standard
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Porosity and clay volume inference O69
reatment for hyperparameters is to eliminate them by integration, a
rocedure known in statistics as marginalization of the joint distribu-
ion. This most often cannot be done analytically, but the standard
eviation in normal distributions is an exception �see Box and Tiao,
973�. Based on this idea, it is possible to represent the marginal pos-
erior PDF for porosity, clay volume, and the set of rock physics

odel coefficients �Hc� by writing

p��,�,Hc�D,I�

� �
	1,	2,	3,	4,	5

p��,�,H�D,I�d	1d	2d	3d	4d	5.

�18�

pon substituting equation 17 for the joint posterior into equation
8, it becomes clear that integration can be performed on separate
airs likelihood prior, containing a single variance variable 	i as de-
ned by the product term on the right-hand side of equation 17. The
arginalization of variance of a normal distribution with Jeffreys’

oninformative prior distribution is a well-known result in statistics,
ielding a Student’s t-distribution when the forward model is linear
nd parameters vary on �−
, + 
�. This is not our case because we
ave the hyperparameters and a bounded domain for porosity and
lay volume. After integration, however, it is possible to write the
osterior distribution in the form

p��,�,Hc�D,I� � w�Hc��,��

�

i=1

5

��di − fi��,���T�di − fi��,����−Li/2.

�19�

etailed analytical derivations for equation 19 can be found in
ox and Tiao �1973, sections 1.3.6 and 2.7.2� and Bretthorst �1990,
. 16�.

The final goal is to find p��,��D,I�. This can be done in connec-
ion with modern Bayesian analysis using Markov-chain Monte
arlo �MCMC� methods, which provide numerical computations of

he marginal posterior distribution over a large number of hyperpa-
ameters. This represents a full treatment of associated uncertainties.
n alternative approach is to perform a calibration procedure, also

elying on prior information and additional data sets �e.g., core mea-
urements�, and then to fix hyperparameters to their calibrated val-
es during inversion. Whereas the MCMC approach introduces ad-
itional computational complexity, the calibration approach may
enerate artificially lower uncertainties or biased results. On the oth-
r hand, model calibration analysis is an essential stage of reservoir
haracterization, generally yielding useful interpretations about the
eservoir properties and adequate estimates of hyperparameters.

To fix hyperparameters prior to inversion is equivalent to assum-
ng that the prior distribution for hyperparameters w�Hc��,�� is con-
entrated strongly around the point of the calibrated set of coeffi-
ients Hc = Hcal. Consequently, we can write

p��,��D,I� = � ��Hc − Hcal�p�D��,�,Hc,I�dHc

= p��,��D,Hc = Hcal,I� , �20�

here � is the Dirac delta distribution. In this case, the marginal pos-
erior distribution p��,��D,I� is identical to the conditional distribu-
ion p��,��D,Hc = Hcal,I�, given by

p��,��D,I� � 

i=1

5

��di − fi��,���T�di − fi��,����−Li/2.

�21�

ollowing the strategy outlined in the previous section, equation 21
s normalized over a bounded domain defined by 0 � � � �crit and

� � � 1 to yield the final joint posterior distribution for porosity
nd clay volume.

PRACTICAL IMPLEMENTATION

Equation 21 is a 2D PDF for interval porosity and clay volume,
iven a set of well-log measurements and prior information, corre-
ponding to a given model discretization unit. Such formulation is
uitable for implementation using a moving window — in this case,
unning along a 1D space as defined by the well trajectory. The goal
s to obtain a collection of posterior PDFs corresponding to each
epth interval defined by the window position. In this way, it be-
omes straightforward to make any desired inference about the pa-
ameters �porosity and clay volume� from the 2D posterior PDFs. In
articular, we compute the marginal distributions to obtain either the
ean, median, or mode as estimates and the lower and upper limits

or the 0.95 probability interval as a measure of the associated
ncertainty.

The whole procedure is summarized in Figure 1. First, we select
he well-log data and the size of the moving window �left�. Then, for
ach depth corresponding to the central position of the window, we
valuate the joint posterior PDF �equation 21� and compute the cor-
esponding pair of marginal distributions for porosity and clay vol-
me �center�. These marginal PDFs are gathered by running the win-
ow over the desired depth range, as in the two plots on the right side
f Figure 1. The grayscale represents probability density �PD� for
orosity or clay volume, as indicated on each plot. Three solid lines
verlay the gray area in both porosity and clay volume plots. The
urve in the center represents the posterior mode, and the other two
ines represent the limits of the 0.95 probability intervals, consisting
f a lower limit �left gray line� and upper limit �right gray line�.

Another inference application implemented in this work is a litho-
ogical classification based on the scheme proposed by Vernik and
ur �1992�. For that, we choose four classes and ranges of parame-

ers: �1� clean arenite — �0.22 
 � 
 0.35� and �� 
 0.04�; �2�
renite — �0.14 
 � 
 0.22� and �0.04 
 � 
 0.15�; �3� wacke

�0.06 
 � 
 0.14� and �0.15 
 � 
 0.35�; and �4� shale —
0.0 
 � 
 0.07� and �� � 0.35�. Class limits are not rigorous and
hould be adjusted to match target lithology at known locations. We
se a naive decision criterion to assign a class for a given depth loca-
ion to compute the total probability, over class ranges, and to select
he class corresponding to the maximum probability. More elaborate
riteria are available in the literature of Bayesian classification and
isk analysis �see, e.g., MacKay, 2003�.

SYNTHETIC DATA EXAMPLES

This section presents the analysis of an application to synthetic
ell-log data, consisting of neutron porosity, sonic velocity �com-
ressional and shear�, density, and gamma-ray logs. We are particu-
arly interested in evaluating our methodology with respect to the
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use of empirical velocity equations 9 and 10, un-
certainty and resolution analysis, and random and
systematic noise sensitivity and its practical ap-
plicability in classifying sandstones. The results
are illustrated in Figures 2–4.

The data are generated based on a three-layer
synthetic model �Figure 4�, including a central
reservoir layer consisting of a 70-m-thick sand-
stone layer �L2�. The sequence is constructed be-
ginning with a sandstone model of 0.15 porosity
and 0.05 clay volume. The original sandstone �fa-
cies A� is gradually replaced by a combination of
shale and dispersed clays until it becomes pure
shale �facies B�. At the top of the reservoir �facies
C�, the clay volume is 0.03, decreasing to 0.015
below �facies D�. The oil-water contact is posi-
tioned at a 110-m depth. The effective porosity,
resulting from the sand-shale combination, is
computed as described by Hearst et al. �2000,
their p. 367�.

The synthetic neutron porosity, density and
gamma-ray data are generated using equations 8,
11, and 12 respectively. To compute velocities,
we apply Gassmann-type petroelastic modeling
at constant pressure for the entire model. Effec-
tive elastic moduli are computed from a hypothet-
ical sand-shale matrix composition and Voigt-
Reuss-Hill averaging. The idea is to contrast
Han’s models with Gassmann’s and to analyze
the sensitivity with respect to changes in satura-

indow �left�. The shaded area indicates the data interval spanned by
stribution for porosity and clay volume �center�. Marginalization of
terior PDFs for porosity and clay volume �right�. The grayscale rep-
mode �center black�, lower �left gray�, and upper �right gray� limits
s.

tions of mar-
set of poros-

ach PDF plot
for a detailed
igure 1. Schematic �not to scale� illustrating the inversion using a moving w
he window, which is used to evaluate equation 21 for the joint posterior di
he joint posterior PDF for all depth locations yields two sets of marginal pos
esents probability density �PD�, and the lines over the images represent the
or a centered 0.95 probability interval of the marginal posterior distribution
igure 2. Synthetic data inversion results using single logs. �a�–�d� Collec
inal posterior PDFs for porosity �, except for �e� showing the mean of each
ty PDFs. �f�–�j� Collections of marginal PDFs for clay volume �. Titles in e
ndicate the input well-log data for inversion. �See main text and Figure 1
escription of image plots.�
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Porosity and clay volume inference O71
ion as a source of systematic error. To test for ran-
om noise sensitivity, we add zero mean pseudo-
andom Gaussian noise to all logs. The standard
eviation is set as either 5%, 10%, or 15% of the
orresponding mean data value. The data spacing
s 30 cm.

Several tests are performed to evaluate the im-
ortance of each type of well-log data in the pres-
nce of different levels of random noise and a
ariation in fluid saturation in the reservoir layer.
irst, we consider each kind of log separately and

hen test the inversion using different combina-
ions of logs. In Figure 2, we present the results
or single log inversions using a seven-point �2.1
m� window, which is appropriate because of the
mooth nature of the model. Figure 2a–d shows
esulting marginal posterior PDFs for porosity,
orresponding to each data set parameterized
ith respect to porosity �VP, VS, density, and neu-

ron porosity �N�. Figure 2e shows porosity pos-
erior mean curves computed from all PDFs in
ach set, in addition to final porosity estimates
solid black curve� from combined data inversion
see Figure 3�. The rms error for porosity esti-
ates from single log inversions are, respective-

y, 0.1203 �VP�, 0.1312 �VS�, 0.0333 �density�,
nd 0.0337 ��N�. At the reservoir layer, VP and
ensity also show noticeable effect from a change
n fluid saturation, degrading porosity rms error
o a maximum of 0.1393 and 0.0443, respective-
y.

The bottom row of Figure 2 presents collec-
ions of marginal posterior distributions for clay
olume, corresponding to inversions of VP, VS,
ensity, �N, and gamma-ray data. Note the ex-
remely large uncertainty associated with inver-
ions for porosity or clay volume, using velocities
r using a single log with all inversions for clay
olume, except in the obvious case of gamma-ray
nversion. Estimates of clay volume from indi-
idual log inversions �not shown� produce rms er-
ors of 0.3836 �VP�, 0.3697 �VS�, 0.4147 �densi-
y�, 0.4181 ��N�, and 0.0497 �gamma ray�. The
ncertainty observed in the porosity marginal
osterior densities is largely the result of coupling
ith clay volume through the linear models. As a

esult of this effect, one can only determine an up-
er boundary for porosity from velocities �i.e.,
ower boundary is obviously � = 0�. Figure 2j re-
ects high uncertainty levels by showing com-
letely different porosity estimates, depending on
he type of data used as input. Best porosity esti-

ates �lower rms errors� are given by the density
nd neutron-log inversions. For clay volume,
ower rms errors are produced from gamma-ray
nversion, followed by VS and VP inversions.

Next, we run the inversion using two different
ombinations of logs. The first combination only
onsiders VP, VS, and density logs. The other
ombination includes all logs, which are related

Figure 3. Infer
data example
data, as indica
or clay volum
higher noise c
bility interval

Figure 4. Data
data. �a�, �b�, �
corresponding
Classification
sents class pro
bility. Horizon
three-layer �L
and fluid satur
ence results for �top� porosity and �bottom� clay volume from the synthetic
. �a�, �b�, �f�, �g� Marginal posterior PDFs for two combinations of input
ted by the titles of each plot. �c�, �d�, �h�, �i� Comparison of the true porosity
e with estimates obtained from the posterior distributions for progressively
ontent �5%, 10%, and 15%�. �e�, �j� Lower and upper limits for 0.95 proba-
, using the same noise variation.
fit and lithological classification resulting from the inversion of synthetic
c�, �f�, �g� Synthetic noisy �gray� and computed data �black�, respectively,
to gamma-ray �GR�, neutron porosity, density, VP, and VS data. �d�, �e�

s with respect to four facies �see text for class description�. Grayscale repre-
babilities, and points indicate the class corresponding to maximum proba-
tal lines and annotations on the left side of the figure show the details of the

1, L2, and L3� synthetic model, with varying clay volume �A, B, C, and D�
ation �water and oil�.
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O72 Loures and Moraes
o porosity and clay volume, as presented in the previous section and
n Figure 2. The motivation behind using a partial combination of VP,

S, and density logs is to draw some correspondence with seismic at-
ributes, which may be available throughout the reservoir.

The results for the combined data inversion are shown in Figure 3,
ith corresponding input data combinations indicated by the plot ti-

les. Following the same layout as Figure 2, the top row presents the
esults for porosity, and the bottom row presents the results for clay
olume. The first two columns of plots show the marginal posterior
istributions for each data combination, with Figure 3a and 3f, corre-
ponding to velocities and density with Figure 3b and 3g corre-
ponding to a combination of all possible logs. The solid lines over-
ying these four images are the same, as described in Figures 1 and 2.

e run multiple tests to evaluate the noise sensitivity, using data
ontaminated with progressively higher-noise content �5%, 10%,
nd 15%�. We only show the posterior PDFs for the 10% noise level
Figure 3a, 3b, 3f, and 3g�, but we also compare resulting estimates
Figure 3c, 3d, 3h, and 3i�, and limits for the 0.95 probability interval
Figure 3e and 3j� for all three noise levels.

Note that estimates are stable with respect to noise in both data
ombinations. Porosity is well determined �low associated uncer-
ainty�, whereas the error associated with clay volume may be large.
he change in saturation within the central layer produces a still no-

iceable effect on porosity estimates, but the effect is greatly reduced
hen all logs are combined. The limits for the 0.95 probability inter-
al show progressively wider spreads as noise is increased but re-
pect well-resolved quantities such as an upper bound for porosity.
his is noted in the asymmetrical nature of the limits at the reservoir

ayer in Figure 3e.
The rms errors for the first data combination �VP, VS, and density�

nd noise levels of 5%, 10%, and 15% are, respectively, 0.0163,
.0181, and 0.0219 for porosity and 0.0493, 0.0564, and 0.0699 for
lay volume. The data combination involving all logs together pro-

igure 5. Well logs used in the real data example, consisting of �a� g
eutron porosity, �c� density, �d� VP, and �e� VS logs. The gray circles
epresent the porosity derived from core analysis. Horizontal line
ain lithological sequences.
uces rms errors of 0.0136 �5% noise�, 0.0147 �10%�, and 0.0151
15%� for porosity estimates and 0.0435 �5%�, 0.0452 �10%�, and
.0477 �15%� for clay volume.

Figure 4 presents the resulting data fit and lithological classifica-
ions, in addition to details of the three-layer �L1, L2, and L3� syn-
hetic model. These details include variations in lithology �porosity
nd clay volume� and water saturation Sw, as represented, respective-
y, by facies A, B, C, and D and by annotations of the fluid content
water or oil�. Figure 4a–c, 4f, and 4g represents the final fit to the
ynthetic data �gray curve� by modeled data �black curve� using the
osterior means. Notice in Figure 4f and 4g that a single set of coeffi-
ients for Han’s equation produces a response very close to the one
y Gassmann modeling �synthetic data�. In the central part of Figure
, one can find two classifications �Figure 4d and 4e� corresponding
o each input data combination. The grayscale represents class prob-
bilities and points indicate the class corresponding to maximum
robabilities. Despite the larger uncertainties associated with esti-
ates from the first data combination �VP, VS, and density� compared
ith the second combination �all logs�, both combinations produce
early the same classification result.

The synthetic tests presented here show that integrating informa-
ion from independent data sets in posterior PDFs can reduce the ef-
ect of noise, as verified by comparing Figures 2 and 3. Analysis of
ms errors indicates porosity errors decrease by 85%, when going
rom a single log inversion of VP to a log combination of VP, VS, and
ensity. For the same tests, clay volume also presents an rms error
ecrease of 85%. If we consider tests combining all logs �VP, VS,
ensity, neutron porosity, and gamma ray�, the rms error decreases
y 88% for porosity and by 96% for clay volume. Alternatively,
hen considering porosity estimation from the density log �best case

or a single log inversion�, we observe an error reduction of 46% for
he VP, VS, and density combination and of 56% for all logs com-
ined. Also notice that whenever saturation is changing �i.e., in Fig-

ure 4, layer L2�, it affects porosity and clay vol-
ume estimates, but the effect is relatively small
after combining of all sources of information.

REAL DATA EXAMPLE

Our methodology is applied to a well-log data
set from a lower Cretaceous sandstone of the
Glauconitic Formation in the Blackfoot field, lo-
cated 15 km southeast of Strathmore, Alberta,
Canada. The target rocks are incised valley-fill
sediments within the Glauconitic Formation. In
the Blackfoot area, the Glauconitic sand thick-
ness varies from 0 to more than 35 m. Three dis-
continuous phases of valley incision have been
identified. The lower and upper members are
made of quartz sandstone with 0.18 average po-
rosity, while the middle member is characterized
by low-porosity, tight lithic sandstone, and high
clay volume. The lithic sandstone sequence is
found from 1681–1689 m, indicated by the two
horizontal lines in Figure 5a. Figure 5 also shows
�from left to right� gamma-ray, neutron and core
�gray points� porosity, density, VP and VS data
from well 08-08, used for this example. The well
logs are available with sample spacing of
0.125 m. Note in the lithic interval that the high

ray �GR�, �b�
porosity plot
ate the three
amma
on the

s separ
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Porosity and clay volume inference O73
lay volume leads to a higher porosity from the neutron log than the
orosity derived from core samples. This shift clearly represents the
ffect of hydrogen in the clays on the neutron-log response.

One key step of this methodology is to define
he rock physics models and the associated hyper-
arameters, which are required to construct the
ikelihood function. We use the same equations as
n the synthetic example, but the problem now is
ow to determine all coefficients. In particular,
he coefficients for velocity equations 9 and 10, as
etermined by Han et al. �1986�, apply only to the
et of rocks studied in their work. Although these
uthors show that the results may be extended to
ther consolidated sandstones, it is always impor-
ant to validate the model by calibration, consid-
ring the specific set of rocks and data under in-
estigation. To calibrate the model for this exam-
le, we use data from core sample analysis, which
s presented in the next section.

yperparameters: Calibration
f model coefficients

In a previous section, we gathered 13 unknown
ock physics model coefficients corresponding to
- and S-wave velocities, and to neutron porosity,
ensity, and gamma-ray logs. Here we estimate
hese hyperparameters using a model calibration
rocedure. The calibration is conducted on water-
aturated intervals, where we assume that fluid
omposition and properties are known. In addi-
ion to well-log data, independent measurements
f porosity from core analysis are used as refer-
nce values for the calibration.

The calibration is conducted in two stages.
irst, we analyze the relationship between clay
olume, porosity, and density by standard cross-
lotting �Figure 6� and interactive modeling.
rom the crossplot we take grain density �q and

he porosity for pure sand and then interactively
djust �sh and �sd for best estimates of a matrix ef-
ect a�N

, shale microporosity c�N
, clay density �cl,

nd fluid density � fl by regression analysis. The
nown fluid density is also used for quality con-
rol. Next, we use resulting clay volume from op-
imal gamma-ray transformation and core porosi-
ies, as reference data, to estimate the velocity-

odel coefficients of equations 9 and 10, i.e., aVP
,

VP
, cVP

, aVS
, bVS

, and cVS
. In this calibration proce-

ure, we employ standard Bayesian regression
nalysis �Zellner, 1971�, using normally distrib-
ted errors with unknown variance.

Following the same steps described for the
ayesian methodology, we obtain the posterior
istributions for the VP and VS coefficients when
orosity and clay volume are given. We then
ompute estimates for the coefficients to update
an’s equations to comply with the lithologies
nder investigation. Figure 7 shows resulting
arginal posterior distributions for �pairs and

Figure 6. The
the relationsh

Figure 7. Mar
of coefficients
ficient �a , b
VP VP
ingle� coefficients, corresponding to the VP model �equation 9�.
igure 7a–c shows the 2D joint marginal posterior PDFs pab�aVP

,

VP
�dVP

,�,��, pac�aVP
,cVP

�dVP
,�,��, and pbc�bVP

,cVP
�dVP

,�,��. The

p in the calibration procedure is the analysis of crossplots depicting
een clay volume �, porosity �, and density �.

osterior distributions for the VP model coefficients. �a�–�c� For pairs
bVP

�, �aVP
,cVP

�, and �bVP
,cVP

�, respectively�. �d�–�f� For a single coef-
, respectively�.Analogous results are obtained for V .
first ste
ginal p
��aVP

,
, and c
VP S
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1D marginal posteriors pa�aVP
�dVP

,�,��,
pb�bVP

�dVP
,�,��, and pc�cVP

�dVP
,�,�� are shown

in Figure 7d–f. Notice the elliptical form in the
joint PDF images, which indicates the existence
of some degree of correlation resulting from the
linear relationship among the velocity coeffi-
cients. The uncertainty associated with each coef-
ficient is best seen on the 1D marginals for the in-
dividual coefficients. Very similar results are ob-
tained for S-wave velocity. The final velocity
models for the sands are given by

VP = 4.40 − 3.32� + 0.33� �22�

and

VS = 2.56 − 1.32� − 0.17� . �23�

As before, porosity and clay volume are ex-
pressed in volume fractions, and model coeffi-
cients are given in kilometers per second.

We evaluate equations 22 and 23 for the data
from well 08-08 using the calibration data, which
are porosity from core measurements and clay
volume from gamma-ray data. To verify the cali-
bration, we plot observed and computed veloci-
ties �Figure 8a and 8d� and velocities against ei-
ther porosity �Figure 8b and 8e� or clay volume
�Figure 8c and 8f�. On the last four plots, ob-
served values are represented by circles and com-
puted values are noted by triangles. The calibra-
tion procedure separates data with clay volume
above a given threshold value, yielding a separate
set of model coefficients for sand and shales. We
use a threshold value of 0.20, for obtaining the
shales �4.78,−5.21,−0.03� km/s for VP and
�2.68,−2.21,0.08� km/s for VS.

Next, we perform the inversion using the cali-
brated rock physics models in the likelihood
functions for the joint inference of porosity and
clay volume.

Porosity and clay volume inferences

In the real data inversion, we follow the same
procedures as in the synthetic example, running
several inversions using different combinations
of �or individual� data sets and moving window
sizes. In Figure 9, the first two plots in each row
show resulting posterior densities obtained from
the inversion of two data combination, which are
velocities and density �Figure 9a is p���dVP

,dVS
,

d�� and Figure 9f is p���dVP
,dVS

,d��� and all data
�Figure 9b is p���d�N

,dVP
,dVS

,d�� and Figure 9g
is p���d�N

,dVP
,dVS

,d�,d���.Additional plots show
the estimates in comparison with the correspond-
ing reference values �gray circles� used in the cal-
ibration procedure, i.e., core porosity and clay
volume from gamma-ray data. The first set of ad-
ditional plots �Figure 9c, 9d, 9h, and 9i� show the
effect of the window size. Inversions are per-

ell 08-08. �a�,
onic� veloci-
— triangle�.
— triangle�.

wo input data
sterior PDFs.
oints, respec-
clay volume
ual and com-
igure 8. Calibrated models for �top� VP and �bottom� VS, using data from w
d� Computed wave velocities �equations 22 and 23� against the observed �s
ies. �b�, �e� Porosity against wave velocities �observed — circle; computed
c�, �f� Clay volume against wave velocities �observed — circle; computed
igure 9. �Top� Porosity and �bottom� clay volume inversion results for the t
ombinations of logs, as indicated by plot titles �a�, �b�, �f�, �g� marginal po
c�, �d�, �h�, �i� The effect of different moving window sizes �3, 5, 7, and 11 p
ively�. Gray circles represent the reference porosity �from core data� or
from gamma-ray log� values. �e�, �j� Comparison of estimates using individ
ined input data sets.
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Porosity and clay volume inference O75
ormed using three �0.375 m�, five �0.625 m�,
even �0.875 m�, and eleven �1.375 m� data
oints per window. Notice the estimated curves
ecome smoother as the window size increases.
e select the seven-point window for computing

he posterior distributions. At the 11-point win-
ow �1.375 m�, resolution starts to decrease con-
iderably. Figure 9e and 9j show estimates using
he mean of the marginal posterior distributions,
onsidering a variety of input data including indi-
idual and multiple logs. These plots show, for
xample, how porosity estimates from different
ata types are affected by their respective sources
f uncertainty. Final estimates are given by the
osterior mean �yellow curve� using all logs for
he inversion.

Figure 10 shows the resulting fit to the well-log
ata �gray� generated by computed data �black�
sing the posterior mean. We also run the litho-
ogical classification �Figure 10d and 10e�, as
resented in the synthetic data example, using the
lass limits similar to those suggested by Vernik
nd Nur �1992�.

We focus our analysis of the results on the in-
erval of interest, ranging from 1675 m to
680 m �reservoir sands�, and the zone of high
lay volume from 1683 m to 1692 m. On the lat-
er, the neutron log shows the effect of high clay
ontent, which leads to overestimation of porosi-
y with respect to core porosity. This effect, which
s clearly noticeable by the blue curve in Figure
e, disappears after combining the various data sets in the inversion.
dditionally, the overall porosity estimates are also good outside

his interval for both data combinations. In contrast, clay volume in-
ersion displays large associated uncertainty in Figure 9f and 9g, es-
ecially when using only velocities and density. The improvements
n inference of clay volume, after incorporating the gamma-ray log,
s somewhat artificial because the clay volume from gamma-ray data
as been used as a reference in the calibration stage, given the lack of
ore information about clay volume. Despite these negative aspects
bserved in the inversion of clay volume, the resulting classification,
erformed using the entire collection of marginal posterior distribu-
ions for porosity and clay volume, closely agrees for both data com-
inations. This can be verified by comparing Figure 10d, which
hows classification from velocities and density, and Figure 10e,
hich is all logs combined.

DISCUSSION

The cornerstone for the development of our methodology is se-
ecting the modeling relations between the data, porosity, and clay
olume. The integration of mathematical models derived from rock
hysics studies, in an inversion context, constitutes an alternative to
he traditional practice of using those models as a simple formula for
ransforming variables. It also offers advantages over conventional
egression methods, given extra inference questions that can be ad-
ressed to the marginal posterior distributions. The examples pre-
ented include the uncertainty analysis and lithological classifica-
ion. However, the choice of the most appropriate modeling equa-
ions from rock physics is still an issue to be investigated. Empirical

Figure 10. Co
�a� gamma ray
classifications
ent well-log c
odels require a data-based calibration procedure for adjusting the
egression coefficients and more complex computational algorithms
or full modeling uncertainties. Our calibration approach can be con-
idered an entry-level solution to the full problem. The next level
ould be to find approximate solutions, such as given by the empiri-

al Bayesian approach of Carlin and Louis �2000� �see also Malinv-
rno and Briggs �2004� and Mitsuhata �2004� for geophysical
pplications�.

There are formation effects that have been neglected in this study
ecause of modeling limitations. Some of these effects are the result
f pressure, fluid saturation, cementation, and borehole effects. Cur-
ently, it is impractical to include in the inference problem a large
umber of physical parameters that contribute to well-log response.
imitations come either from the modeling equations, which may
ot be developed enough to include these additional effects, or from
he strong ambiguity involved in some multiparameter inverse prob-
em. Our methodology, however, exploits the complex combination
f errors from different sources by integrating multiple data sets.
his leads to a great number of cancellations and the enhancement of
ommon information, minimizing the impact of unmodeled effects.

CONCLUSION

Our analysis of overall rms error associated with the estimates in
he synthetic data example substantially improves the quality of esti-

ates because we incorporate more data sets into the inversion.
ources of systematic errors are present in both of our examples, rep-
esented by changes in saturation and lithology. Their corresponding
ffects are reduced greatly by combining information from different
ata sets. Such an ability to reduce the effects of random and system-

on of observed �gray� and final computed �black� well-log curves for
utron porosity, �c� density, �f� VP, and �g� VS. Plots �d� and �e� show
med using marginal distribution resulting from inversion of differ-
tions.
mparis
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perfor



a
o
t
h
t
a
a
a

v
i
a
a
f
t
v
b
b
f

b
t
c
s

P
P
v
s
t
r
C
T
d
A
v

B

B

C

C

D

E

G

G

H

H

J

—

—

J
K

M

M

M

M

R

T

U

V

V

W

Z

O76 Loures and Moraes
tic errors makes our methodology useful for real-time applications
f well-log data interpretation. In addition, examples involving mul-
iple data sets demonstrate that the methodology offers resources for
andling a considerable amount of information. In fact, our formula-
ion can be implemented readily in two or three dimensions with rel-
tive efficiency. Consequently, the methodology can also be used in
reservoir characterization workflow incorporating core, wireline,

nd seismic �attribute� data.
The results presented in the form of marginal posterior PDFs pro-

ide adequate elements for quantitatively and qualitatively evaluat-
ng the information content �or uncertainty� in each well-log data set
nd the improvements resulting from combining different logs. Our
nalyses show that neutron porosity and density data are the most in-
ormative about porosity, whereas gamma-ray and velocity data are
he most informative about clay volume. The marginal PDFs for clay
olume show that the uncertainty associated with clay volume may
e too high. However, resulting information about clay volume can
e used reliably, in combination with porosity information, to classi-
y sandstones.

The size of the moving window is an important parameter; it must
e selected to maintain the balance between noise reduction and ver-
ical resolution. Best moving-window sizes must be selected on a
ase-by-case approach using a similar analysis of different window-
ize results.
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