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new iterative solver for the time-harmonic wave equation
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ABSTRACT

The time-harmonic wave equation, also known as the Helm-
holtz equation, is obtained if the constant-density acoustic wave
equation is transformed from the time domain to the frequency
domain. Its discretization results in a large, sparse, linear system
of equations. In two dimensions, this system can be solved effi-
ciently by a direct method. In three dimensions, direct methods
cannot be used for problems of practical sizes because the com-
putational time and the amount of memory required become too
large. Iterative methods are an alternative. These methods are of-
ten based on a conjugate gradient iterative scheme with a precon-
ditioner that accelerates its convergence. The iterative solution of
the time-harmonic wave equation has long been a notoriously
difficult problem in numerical analysis. Recently, a new precon-
ditioner based on a strongly damped wave equation has herald-
n
2

e
d
t
e
a
c
f
T
m
t
b
r

ript rece
Mekelw

Rijswij

E57
d a breakthrough. The solution of the linear system associated
ith the preconditioner is approximated by another iterative
ethod, the multigrid method. The multigrid method fails for the

riginal wave equation but performs well on the damped version.
he performance of the new iterative solver is investigated on a
umber of 2D test problems. The results suggest that the number
f required iterations increases linearly with frequency, even for
strongly heterogeneous model where earlier iterative schemes

ail to converge. Complexity analysis shows that the new itera-
ive solver is still slower than a time-domain solver to generate a
ull time series. We compare the time-domain numeric results ob-
ained using the new iterative solver with those using the direct
olver and conclude that they agree very well quantitatively. The
ew iterative solver can be applied straightforwardly to 3D
roblems.
INTRODUCTION

For imaging seismic data, the oil and gas industry is gradually
oving from ray-based techniques to finite-difference wave-equa-

ion migration. Ray-based methods are difficult to use or may even
ail in complex earth models. Wave-equation migration can handle
hese situations better. To control computating costs, the wave equa-
ion is usually replaced by a one-way or paraxial approximation
Claerbout, 1985; Bamberger et al., 1988; Collino and Joly, 1995;
iondi and Palacharla, 1996; Jin et al., 1998�. This approximation is

n most cases valid for not-too-large velocity contrasts and not-too-
ide angles of incidence. With increased computer power, it may be-

ome worthwhile to develop finite-difference two-way or full wave-
quation migration techniques without making the approximations
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eeded for ray-based or one-way migration methods �Yoon et al.,
004�.

In 2D space, two-way wave-equation migration can be carried out
fficiently by working in the frequency domain. In that case, the LU
ecomposition of the matrix arising from the discretization of the
wo-way wave equation is computed once with a direct method for
ach frequency. The result can be used to compute all wavefields for
ll shots and also for back-propagated receiver wavefields. The latter
orrespond to the reverse-time wavefields in the time domain �Mar-
urt, 1984; Mulder and Plessix, 2004b; Plessix and Mulder, 2004�.
his makes the method an order of magnitude faster than its time-do-
ain counterpart when many shots must be processed. In 3D space,

his is impossible because the problem’s size soon exceeds the capa-
ilities of direct solvers. Obviously, this situation can be avoided by
everting to the time domain. Present-day hardware allows this only
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n very coarse grids, meaning that only the low frequencies in the
ata can be used. Nevertheless, 3D two-way wave-equation migra-
ion is achievable in the time domain on large computer clusters
Yoon et al., 2003; Yoon et al., 2004�.

Time-domain reverse-time migration requires storing the forward
nd time-reversed wavefields at time intervals that avoid aliasing.
hese wavefields are correlated to obtain a partially migrated image

or each shot. Stacking over shots provides the desired result. In the
requency domain, only one forward- and one back-propagated
avefield need to be stored. These are multiplied to obtain a partial
igration image. The summation over shots and frequencies pro-

uces the final migration image. In this way, storage requirements
re reduced considerably.

Because direct solvers are computationally prohibitive, a suitable
terative method for the two-way wave equation is needed. A clear
isadvantage of an iterative method is that it must be applied for each
hot and each back-propagated wavefield computation. A direct
ethod allows an LU decomposition of the linear system. Once this

ostly step has been carried out, all shot and receiver wavefields can
e computed at a small cost �Marfurt, 1984�. This attractive feature,
hich makes the frequency-domain approach so efficient in two di-
ensions, is lost with an iterative method. If we ignore storage re-

uirements for a moment and just consider computational time, a
requency-domain formulation can compete with the time-domain
pproach only if the work involved in the iterations times the number
f frequencies is significantly less than the work needed for perform-
ng all of the time steps in the time-domain method.

The iterative solution of the Helmholtz equation has been notori-
usly difficult in numerical analysis for a long time. A number of it-
rative solvers have been proposed, but generally they perform
oorly on geophysics applications where the wavenumbers are rela-
ively large and the velocities are heterogeneous �Elman and
’Leary, 1998; Heikkola et al., 1999; Larsson, 1999; Plessix and
ulder, 2003�. Iterative solvers are usually based on Krylov sub-

pace methods, such as the conjugate-gradient method for nonsym-
etric matrices �Van der Vorst, 1992; Saad, 2003�. They often con-

erge rather slowly �sometimes not at all� and require a precondi-
ioner to accelerate the convergence. This preconditioner should
losely resemble the linear system of the original problem yet be rel-
tively easy to invert, preferably in O�nd� operations with a number
perations O proportion to nd, where n is the number of discretiza-
ion points and d the spatial dimension �two or three�.

The iterative multigrid method �Briggs et al., 2000; Trottenberg et
l., 2000� achieves this O�nd� complexity for a wide class of elliptic
roblems — for instance, Poisson or diffusive problems that have
nly positive eigenvalues. The method also works for the Helmholtz
quation with a complex wavenumber �Kim and Kim, 2002�, which
epresents a wave equation with damping. Unfortunately, it fails
hen applied directly to the undamped wave equation because its
iscrete linear system has both positive and negative eigenvalues.
owever, Erlangga et al. �2004, 2006� propose using the multigrid

olution of the damped wave equation as a preconditioner for the un-
amped one.

The choice of the amount of damping is a trade-off between a pre-
onditioner that leads to fast convergence of the multigrid method
nd a preconditioner that causes the conjugate-gradient iterations to
onverge quickly. The latter requires a small amount of damping.
he multigrid method will converge rapidly if the damping is large.
nalytical and numerical results suggest that the strong damping of
1 − i0.5�k2 with k real and i imaginary units, is a good choice to ob-
ain fast convergence of the multigrid method.

In this paper, we briefly review the iterative scheme based on the
ew preconditioner �Erlangga et al., 2004, 2006�. We investigate the
omplexity of this new iterative solver and compare it with the com-
lexity of the time-domain approach. Before concluding, we present
D numeric results obtained with the new iterative solver. To vali-
ate our results, we compare them with the results obtained using the
irect solver developed by George and Liu �1981�, Marfurt and Shin
1989�, and Plessix and Mulder �2004�.

THEORY

The time-harmonic constant-density acoustic wave equation is
epresented by the Helmholtz equation:

Lp = f , L = − k2 − �, �1�

here L is the wave operator, p is the pressure field, and k = �/c is
he wavenumber, in which � is the angular frequency and c is the ve-
ocity, which varies with position. The source term is denoted by f ,
nd −� is minus the Laplace operator, which is positive, i.e., it is an
perator with positive eigenvalues. If k2 is larger than the smallest ei-
envalue of −�, which is the case in seismic applications, the Helm-
oltz operator is indefinite, meaning it has both positive and negative
igenvalues.

Equation 1 is discretized using the finite-difference scheme pre-
ented in Harari and Turkel �1995�. This scheme is based on the
ourth-order finite difference to improve accuracy, leading to the lin-
ar system

Ax = b . �2�

ere, A is a large but sparse matrix with complex values because of
he absorbing boundary conditions. The vectors x and b are obtained
rom finite-difference discretization of p and f , respectively. If n is
he number of discretization points in each coordinate of the compu-
ational grid and d is the spatial dimension, then A has a size nd � nd.

ith the natural ordering of the grid, A has a bandwidth of nd−1 but
nly O�nd� nonzero elements. In 2D space a direct solver can be ap-
lied after reordering the grid with the nested dissection �George and
iu, 1981�, and the LU decomposition has a complexity of O�n3�

Marfurt and Shin, 1989; Mulder and Plessix, 2004b�. In 3D space,
his approach is not feasible because the complexity of the direct
olver is O�n6� and the storage required for L and U is O�n5�. The al-
ernative is an iterative solver.

Common iterative methods for indefinite systems are based on the
rylov subspace method �Saad, 2003�. These methods are generali-

ations of the conjugate-gradient �CG� method. One of these gener-
lizations is the biconjugated gradient stabilized �BI-CGSTAB� al-
orithm �Van der Vorst, 1992�. In a Krylov method, such as the BI-
GSTAB algorithm, the method updates xi, starting from an initial
uess xo until the residual error �b − Axi� is small enough. Without
he preconditioner, this method converges slowly or not at all
Plessix and Mulder, 2003�. By preconditioning, we solve the equiv-
lent linear system as follows:

�AM−1�v = b, v = Mx, �3�



w
=
A
p
d
b
i
v
t
a
i

i
O
o
2
2
t
a
2

a

w
L
t
e
f
i
a
w

l
n
t
d

i
t
l
s
m
t
t
m
e
c
b
t

p
e
t
t
m
g

r
n
m

a
m
i
e
a
l
t
p
t
a
c
a
r
b

e
m
i

s
c
W
s
b
i
w
T
O
s
h
h
�
O
f
n

F
d
g
s
o
w

New iterative wave-equation solver E59

D
ow

nl
oa

de
d 

12
/0

8/
14

 to
 1

52
.7

.1
7.

12
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

here M is a preconditioning matrix. The solution of system 2 is x
M−1v. The algorithm for preconditioned BI-CGSTAB is found in
ppendix A. The BI-CGSTAB algorithm needs two matrix-vector
roducts per iteration. In our case, AM−1v, with v being an interme-
iate vector, is required. In practice, M−1 is not explicitly computed
ecause it is too expensive. The matrix-vector product is evaluated
n two steps. First, the system Mṽ = v is solved; then, the matrix-
ector product Aṽ is computed. Whereas the second step is trivial,
he first step requires an efficient method to solve the linear system
ssociated with the preconditioner. Therefore, the efficiency of the
terative method depends strongly on the choice of M.

A good preconditioner should closely resemble A and be easy to
nvert, preferably with an O�nd� computational cost because A has
�nd� nonzero elements. Preconditioners based on the separation-
f-variables method �Heikkola et al., 1999; Plessix and Mulder,
003� or on an incomplete LU decomposition of A �Erlangga et al.,
004� do not provide fast convergence and may fail in some cases. In
ypical seismic examples on a 500 � 500 grid with a spacing of
bout 10 m, these iterative methods generally do not converge after
000 iterations for frequencies above 30 Hz.

To build the preconditioner, Erlangga et al. �2004, 2006� propose
n operator of the preconditioner of the following form:

Lp = − �1 − i0.5�k2 − �, �4�

here i is the imaginary unit. The operator Lp is a complex-shifted
aplace operator and corresponds to a strongly damped wave equa-

ion. The preconditioning matrix M is obtained from finite-differ-
nce discretization of Lp using, for example, a five-point finite-dif-
erence stencil. To compute the approximate inverse of M appearing
n the BI-CGSTAB algorithm, we use a multigrid method �Briggs et
l., 2000; Trottenberg et al., 2000�. The multigrid method performs
ell on this class of problems.
The multigrid method is an iterative scheme, useful for solving

arge-scale linear and nonlinear problems. It is widely used to obtain
umeric solutions of Poisson’s equation, and it has been generalized
o parabolic �diffusion� and hyperbolic �flow� problems, although it
oes not always perform optimally for those cases.

The multigrid technique solves large-scale linear systems by us-
ng several grids simultaneously. The rationale is that the error be-
ween numeric approximation and exact solution consists of spatial-
y rapidly varying or oscillatory components and slowly varying or
mooth components. The oscillatory components can often be re-
oved easily by some local relaxation scheme, called a smoother. If

he problem is projected to a coarser grid, which usually has twice
he grid spacing of the finer grid, the smooth components become

ore oscillatory. The projection of the residual v − Mṽ to the coars-
r grid is called restriction. The matrix M must be restricted to the
oarse grid as well. Alternatively, a matrix-free implementation can
e obtained if M is a discretization of the differential operator and
he same discretization is used on all grids.

If we assume for a moment that the solution of the coarse-grid
roblem is computed by a direct solver, the result must be interpolat-
d back to the finer grid and added to the fine-grid solution. This in-
erpolation is called prolongation. The interpolated coarse-grid solu-
ion is called the coarse-grid correction. Instead of a direct solver, the

ultigrid method can be used recursively on increasingly coarser
rids until a level is reached where a direct solver is very cheap. By
ecursive restriction to coarser and coarser grids, any error compo-
ent will become oscillatory on one of these grids and can be re-
oved easily by a smoother.
One must choose the order in which the coarser grids are visited

nd where the smoothing is applied. Usually, a number of pres-
oothing steps by a suitable smoother are performed before restrict-

ng the residual to the coarser grid. This can be repeated on the coars-
r grid until the coarsest is reached. There, a direct solver is applied
nd the solution is prolongated back to the finer grid. This can be fol-
owed by a number of postsmoothing steps before prolongation to
he next finer grid. Once the finest grid has been reached and some
ostsmoothing steps have been carried out, a single multigrid itera-
ion ends. Grids visited in this order are called a V-cycle �Figure 1a
nd b�. A variant is a W-cycle, in which the number of coarse-grid
orrections doubles on subsequently coarser grids.Aless costly vari-
nt is an F-cycle �Figure 1c�, in which the number of coarse-grid cor-
ections increases by one on subsequently coarser grids. Details can
e found in Briggs et al. �2000�.

The iterative solver we propose to solve the undamped wave
quation is a combination of one inner iteration with the multigrid
ethod for solving the �damped� preconditioner system 4 and outer

terations with BI-CGSTAB.

COMPLEXITY ANALYSIS

This section presents a complexity analysis of the new iterative
olver. The performance prediction is compared to the time-domain
omplexity �Mulder and Plessix, 2004b; Plessix and Mulder, 2004�.
ith ns being the number of shots and nt being the number of time

teps, the time-domain complexity is nsntO�nd� �d = 2 or 3�. With nf

eing the number of frequencies, the overall complexity of the new
terative solver is nsnfnitO�nd�, where nit is the number of iterations
ith BI-CGSTAB. The cost of the matrix-vector product is O�nd�.
he cost of approximately solving the preconditioner system is also
�nd�. If we assume ns = nt = O�n�, nf = O�n�, and nit = O�1�, we

ee that the iterative frequency-domain and time-domain solvers
ave an O�nd+2� complexity. The 2D frequency-domain direct solver
as nfO�n3� complexity if we use nested dissection reordering
George and Liu, 1981�. This is independent of the number of shots.
nce the LU decomposition of the reordered linear system is per-

ormed, shot computation requires nsnfO�n2log�n�� operations. If

f = ns = O�n� and log�n� is ignored, then the overall complexity of

igure 1. Three different cycles used in multigrid algorithms. The
ashed lines denote grid levels from the finest �top level of each dia-
ram� to the coarsest �level 1 grid�. The filled circles represent
moothing, with the circle on level 1 representing the direct solution
n the coarsest grid. Each descending line �\� denotes restriction,
hile each ascending line �/� denotes prolongation.
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he 2D frequency-domain direct solver and the 2D time-domain
olver is O�n4�.

For migration problems with n around 1000 and ns around 200,
he frequency-domain method is about one order of magnitude faster
han the time-domain approach in two dimensions. The multiplica-
ive constant for the frequency-domain direct solver is apparently far
maller than the one for the time-domain solver. The reason is that
he number of frequencies needed is smaller than the number of time
teps imposed by the stability condition of the time-domain solver
Mulder and Plessix, 2004a�.Also, coarser grids can be used for low-
r frequencies. Furthermore, ns is close to n in these applications.
his motivates further investigation of the frequency-domain ap-
roach in three dimensions.

To investigate the behavior of the new frequency-domain iterative
olver, we conducted a series of 2D simulations on three different
odels: a constant model, a three-layer wedge model with velocities

arying from 1500 m/s in the first layer to 3000 m/s in the third lay-
r, and the Marmousi model. The number of iterations versus fre-
uency and the computational time normalized by the number of
ridpoints versus frequency are plotted in Figures 2 and 3, respec-
ively. In these experiments, the number of gridpoints per wave-
ength is kept constant, so the number of gridpoints n in each coordi-
ate is proportional to the frequency used. Figure 2 shows the num-
er of iterations varies linearly with the frequency. This behavior is
uboptimal. Nevertheless, the numeric results suggest that the pre-
onditioned iterative method proposed by Erlangga et al. �2004,
006� is predictable and robust. In Figure 3, the computational time
ivided by the number of gridpoints increases linearly with frequen-
y. From a complexity point of view, this result shows that the fre-
uency-domain iterative solver is less efficient asymptotically than
he frequency-domain direct solver and the time-domain approach.

In three dimensions, the use of a direct solver is not an option for
roblems of realistic size. The time-domain method has a complexi-
y nsO�n4�, and an extrapolation of the above 2D results suggests that
he iterative solver for the frequency-domain problem has a com-
lexity of nsO�n5� when nit = O�n�. Still, only the precise values of
he constants involved in the cost estimates reveal the efficiency of
his new iterative solver. This will require a 3D implementation of
he iterative method.

NUMERICAL EXPERIMENTS

To illustrate this method, we compare the wavefield computed
ith the iterative solver to the one obtained by a direct frequency-
omain solver. The example is based on the Marmousi model �Bour-
eois et al., 1990�. The velocity model used in the numerical experi-
ents is plotted in Figure 4. The source is located at the surface �x
6000 m� just below the absorbing boundary. The model is dis-

retized on a regular grid with dx = dz = 4 m. The pressure wave-
eld is recorded by 1900 receivers spaced 4 m apart. The real part of

he wavefield at 30 Hz, obtained with the new iterative solver, is dis-
layed in Figure 5; the solution from the direct solver is depicted in
igure 6. In Figure 7, we compare the solutions of the new iterative
olver and the direct solver at x positions of 5.4 and 4 km, respec-
ively.

We can conclude that the frequency-domain results obtained by
he new iterative solver and the direct solver are the same. The itera-
ive solver actually converged at 30 Hz in this example, whereas ear-
ier preconditioners based on incomplete LU decomposition or sepa-
ation of variables did not. Figure 8 shows the time-domain wave-
igure 2. The number of iterations of the iterative solver versus fre-
uency. The constant-velocity model has a velocity of 1500 m/s.
he three-layer wedge model varies from 1500–3000 m/s. The
armousi model is plotted in Figure 4.
igure 3. The computation time normalized by the number of grid-
oints versus frequency. The constant-velocity model has a velocity
f 1500 m/s. The three-layer wedge model varies from 1500–
igure 4. The Marmousi velocity model used in the numeric experi-
ents.
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eld obtained by the iterative solver; the result from the direct solver
s plotted in Figure 9. The frequency of the source varies from
–60 Hz. In Figure 10 we compare the results obtained by the itera-
ive solver with the results obtained by the direct solver for traces at
.8, 5, 4.5, 4, 3.5, and 3 km, respectively. From these figures, we can
lso conclude that the time-domain numerical results obtained by
he iterative solver and by the direct solver are in very good quantita-
ive agreement.

igure 5. The real part of the wavefield at 30 Hz obtained by �a� the
ew iterative solver for the Marmousi model and �b� the direct solver
or the Marmousi model.

igure 6. Comparison between the frequency-domain results from
igure 5 at x is �a� 5400 m and �b� 4000 m. The solid line is the nu-
eric result obtained by the direct solver; the dashed line is the result

btained by the iterative solver.
igure 7. The time-domain results using �a� the new iterative solver
nd �b� the direct solver.
igure 8. Comparison in time of the response obtained by the direct
olver and the iterative solver at x is �a� 5800 m and �b� 5000 m. The
olid line is the numeric result obtained by the iterative solver; the
ashed line is the result obtained by the direct solver.
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CONCLUSIONS

The complexity of the new frequency-domain iterative solver of
he undamped wave equation developed in Erlangga et al. �2004,
006� has been investigated and compared to its time-domain coun-
erpart. The iterative solver is based on a preconditioned BI-CG-
TAB method. The preconditioner is based on a strongly damped
ave operator. The iterative solver obtains its efficiency by using the
ultigrid method for the approximate inversion of the precondition-

r. To obtain reasonably fast convergence of the multigrid method, a
airly large amount of damping corresponding to a quality factor of
wo is applied in the preconditioner. The resulting iterative solver is a
ombination of an inner iteration with the multigrid method and out-
r iterations with BI-CGSTAB.

Complexity estimates, based on 2D simulations, show that the
ew solver is suboptimal because the number of iterations is propor-
ional to frequency. Nevertheless, the iterative solver appears to be
obust, and convergence was reached in complex models for rela-
ively high frequencies. This result is an improvement over other

igure 9. Same as in Figure 8, but at x is �a� 4500 m and �b� 4000 m.

igure 10. Same as in Figure 8, but at x is �a� 3500 m and �b� 3000 m.
terative solvers that generally fail at high frequencies in complex
arth models. Asymptotically, the time domain is faster by an order
, with n being the number of gridpoints in each coordinate. In prac-
ice, the actual constants in the complexity play an important role.
he usefulness of the iterative method for 3D migration still needs
ssessment.

We have applied the new iterative solver to the Marmousi model
nd have validated our numeric results by comparing them to the re-
ults obtained using a direct solver. We conclude that the time-
omain numeric results obtained by the new iterative solver and the
irect solver are in very good quantitative agreement.
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APPENDIX A

THE BI-CGSTAB ALGORITHM

The preconditioned BI-CGSTAB algorithm �Van der Vorst,
992� for solving the linear system Ax = b with preconditioning
atrix M is given as follows:

hoose an initial guess x0; r0 = b − Ax0.

hoose r̄0 such that � r̄0r0� � 0, e.g., r̄0 = r0.

−1 = �−1 = �−1 = 1

−1 = ṽ−1 = 0
or i = 0,1,2,. . .

�i = � r̄0,ri�;�i−1 = ��i/�i−1���i−1/�i−1�
vi = ri + �i−1�vi−1 − �i−1ṽi−1�
y = M−1vi

vi
˜ = Ay

�i = �i /� r̄0,vi
˜ �

s = ri − �ivi
˜

z = M−1s
t = Az
�i = �t,s�/�t,t�
xi+1 = xi + �iy + �iz
ri+1 = s − �it

nd.

ere, M is the preconditioning matrix defined in equation 4, and
·, · � denotes the inner product. In this algorithm, we need two
atrix-vector products. The algorithm carries out the BI-CGSTAB

rocedure for the explicitly preconditioned linear system
M−1v = b. The residual ri corresponds to the original system
x = b.
i



B

B

B

B

C

C

E

E

—

G

H

H

J

K

L

M

M

M

—

P

—

S

T

V

Y

Y

New iterative wave-equation solver E63

D
ow

nl
oa

de
d 

12
/0

8/
14

 to
 1

52
.7

.1
7.

12
7.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

REFERENCES

amberger, A., B. Enquist, L. Halpern, and P. Joly, 1988, Parabolic wave
equation approximation in heterogeneous media: Society for Industrial
and Applied Mathematics �SIAM� Journal of Applied Mathematics, 48,
99–128.

iondi, B., and G. Palacharla, 1996, 3-D prestack migration of common-azi-
muth data: Geophysics, 61, 1822–1832.

ourgeois, A., M. Bourget, P. Lailly, M. Poulet, P. Ricarte, and R. Versteeg,
1990, Marmousi, model and data: 52nd Annual International Meeting,
EAEG, ExtendedAbsracts, 5–16.

riggs, W. L., V. E. Henson, and S. F. McCormick, 2000, A multigrid tutori-
al: Society for Industrial andApplied Mathematics.

laerbout, J. F., 1985, Imaging the earth’s interior: Blackwell Scientific Pub-
lications, Inc.

ollino, F., and P. Joly, 1995, Splitting of operators, alternate directions, and
paraxial approximations for the three-dimensional wave equation: Society
of Industrial andApplied Mathematics �SIAM� Journal on Scientific Com-
puting, 16, 1019–1048.

lman, H. C., and D. P. O’Leary, 1998, Efficient iterative solution of the
three-dimensional Helmholtz equation: Journal of Computational Phys-
ics, 142, 163–181.

rlangga, Y. A., C. Vuik, and C. Oosterlee, 2004, On a class of precondition-
ers for the Helmholtz equation: Applied Numerical Mathematics, 50,
409–425.
—–, 2006, A novel multigrid based preconditioner for heterogeneous
Helmholtz problems: Society of Industrial and Applied Mathematics
�SIAM� Journal on Scientific Computing, 27, 1471–1492.

eorge, A., and J. W. Liu, 1981, Computer solution of large sparse positive
definite systems: Prentice-Hall, Inc.

arari, I., and E. Turkel, 1995, Accurate finite difference methods for time-
harmonic wave propagation: Journal of Computational Physics, 119,
252–270.

eikkola, E., Y. A. Kuznetsov, and K. N. Lipnikov, 1999, Fictitious domain
methods for the numerical solution of three-dimensional acoustic scatter-
ing problems: Journal of ComputationalAcoustics, 7, 161–183.

in, S., R. S. Wu, and G. Peng, 1998, Prestack depth migration using a hybrid
pseudoscreen propagator: 68th Annual International Meeting, SEG, Ex-
pandedAbstracts, 1819–1822.

im, S., and S. Kim, 2002, Multigrid simulation for high-frequency solu-
tions of the Helmholtz problem in heterogeneous media: Society of Indus-
trial and Applied Mathematics �SIAM� Journal on Scientific Computing,
24, 684–701.

arsson, E., 1999, A domain decomposition method for the Helmholtz equa-
tion in a multilayer domain: Society of Industrial and Applied Mathemat-
ics �SIAM� Journal on Scientific Computing, 20, 1713–1731.
arfurt, K. J., 1984. Accuracy of finite-difference and finite-element model-
ing of the scalar and elastic wave equations: Geophysics, 49, 533–549.
arfurt, K. J., and C. S. Shin, 1989. The future of iterative modeling in geo-
physical exploration, in E. Eister, ed., Supercomputers in seismic explora-
tion: Permagon Press Inc., 203–228.
ulder, W. A., and R.-E. Plessix, 2004a, How to choose a subset of frequen-
cies in frequency-domain finite-difference migration: Geophysical Jour-
nal International, 158, 801–812.
—–, 2004b, One-way and two-way wave-equation migration: Geophysics,
69, 1491–1504.

lessix, R.-E., and W. A. Mulder, 2003, Separation of variables as a precon-
ditioner for an iterative Helmholtz solver: Applied Numerical Mathemat-
ics, 44, 385–400.
—–, 2004, Frequency-domain finite-difference amplitude-preserving mi-
gration: Geophysical Journal International, 157, 975–987.

aad, Y., 2003, Iterative methods for spare linear system, 2nd ed.: Society for
Industrial andApplied Mathematics.

rottenberg, U., C. W. Oosterlee, and A. Schüller, 2000, Multigrid:Academ-
ic Press Inc.

an der Vorst, H. A., 1992, BI-CGSTAB: A fast and smoothly converging
variant of Bi-CG for the solution of nonsymmetric linear systems: Society
for Industrial and Applied Mathematics �SIAM� Journal on Scientific and
Statistical Computing, 13, 631–644.

oon, Y., K. J. Marfurt, and W. Starr, 2004, Challenges in reverse-time mi-
gration: 74th Annual International Meeting, SEG, Expanded Abstracts,
1057–1060.

oon, K., C. Shin, S. Suh, L. R. Lines, and S. Hong, 2003, 3D reverse-time
migration using the acoustic wave equation: An experience with the SEG/
EAGE data set: The Leading Edge, 22, 38–41.


