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Abstract

It is demonstrated that a simple deterministic model in discrete time can reproduce the scaling behaviour of hydroclimatic

processes at timescales coarser than annual, a behaviour more widely known in hydrology as the Hurst phenomenon. This toy

model is based on a generalised ‘chaotic tent map’, which may be considered as the compound result of a positive and a negative

feedback mechanism, and involves two degrees of freedom. The model is not a realistic representation of a climatic system, but

rather a radical simplification of real climatic dynamics. However, its simplicity helps understand the physical mechanisms that

cause the scaling behaviour and simultaneously enables easy implementation and convenient experimentation. Application of the

toy model gives traces that can resemble historical time series of hydroclimatic variables, such as temperature and river flow. In

particular, such traces exhibit scaling behaviour with a Hurst coefficient greater than 0.5 and their statistical properties are similar

to that of observed time series. Moreover, application demonstrates that large-scale synthetic ‘climatic’ fluctuations (like upward

or downward trends) can emerge without any specific reason and their evolution is unpredictable, even when they are generated by

this simple fully deterministic model with only two degrees of freedom. Thus, the model emphasises the large uncertainty

associated with the scaling behaviour, rather than enhances the prediction capability, despite the simple deterministic dynamics it

uses, which obviously, are only a caricature of the much more complex dynamics of the real climatic system.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction
1.1. The notion of a toy model

According to a definition adapted from Cox and

Isham (1998), a toy model is a model in which

the features represented are kept to a minimum in order
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to show that some empirical phenomenon can or

cannot be produced from primitive assumptions. The

objectives of a toy model are (a) to investigate whether

simple mechanisms can produce a complex phenom-

enon, (b) to identify essentials and discard details in the

system dynamics, and (c) to identify sets of parameters

for which the phenomenon occurs. Generally, in a toy

model a small number of parameters are involved

whose formal fitting may be irrelevant.

Several examples of toy models can be found in the

literature, which cover a broad range of complex
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phenomena in geosciences, such as the earthquake

generation (Burridge and Knopoff, 1967; Bak and

Tang, 1989), the evolution of avalanches (Bak and

Sneppen, 1993), the ENSO dynamics (Andrade et al.,

1995), and in biosciences such as the biological

evolution of species (Wandewalle and Ausloos, 1996)

and the attraction of parasites and predators

(Freund and Grassberger, 1992). Some of these

models have become famous for their simplicity and

generality.

The phenomenon studied here is the simple scaling

behaviour of hydroclimatic time series in discrete

time. Scaling is meant in terms of invariance proper-

ties of the time series aggregated (or averaged) on

different timescales.
1.2. A simple scaling process as a stochastic process

The scaling behaviour is better expressed math-

ematically based on the theory of stochastic processes.

Let Xi denote a hydrological or meteorological

process with iZ1, 2,., denoting discrete time with

time step or scale which for the purposes of this paper

is annual or multi-annual. It is assumed that the

process is stationary, a property that does not hinder to

exhibit multiple scale variability. Further, let its mean

be denoted as m:ZE[Xi], its autocovariance gj:Z
Cov[Xi, XiCj] (jZ0, G1, G2,.), its autocorrelation

rj:ZCorr[Xi, XiCj]Zgj/g0, and its standard deviation

s :Z
ffiffiffiffiffi
g0

p
.

Let k be a positive integer that represents a

timescale larger than the basic timescale of the

process Xi. The aggregated stochastic process on

that timescale is denoted as

ZðkÞ
i :Z

Xik
lZðiK1ÞkC1

Xl (1)

The statistical characteristics of ZðkÞ
i for any

timescale k can be derived from those of Xi. For

example, the mean is

E½ZðkÞ
i �Z km (2)

whilst the variance and autocovariance (or autocorre-

lation) depends on the specific form of gj (or rj). In the

case examined in this paper, the process of interest

exhibits simple scaling behaviour, described by
the relationship

ðZðkÞ
i KkmÞZ

d k

l

� �H

ðZðlÞ
j K lmÞ (3)

where the symbol Zd stands for equality in (finite

dimensional joint) distribution and H is the Hurst

coefficient. This relationship holds strictly if Xi is

fractional Gaussian noise (FGN; Mandelbrot, 1965),

or if consecutive Xi are stationary increments of a self-

similar process. Our interest here includes processes

that may be not Gaussian, so we will limit the scaling

property (3) to second-order properties only and we

will use the term simple scaling signal (SSS) for the

process. In this case, for iZjZlZ1 we obtain from

(3) that the variance of the aggregated process is

g
ðkÞ
0 :ZVar½ZðkÞ

i �Z k2Hg0 (4)

Thus, the standard deviation is a power law of the

scale or level of aggregation k with exponent H, i.e.

sðkÞ :Z ðg
ðkÞ
0 Þ1=2 Z kHs (5)

The autocorrelation function, for any aggregated

timescale k, is independent of k, and given by (e.g.

Koutsoyiannis, 2002)

r
ðkÞ
j Z rj Z ð1=2ÞðjjC1j2H C jjK1j2HÞK jjj2H

zHð2HK1Þjjj2HK2 (6)

which shows that autocorrelation is a power function

of lag. Consequently, the autocovariance g
ðkÞ
j Z

g
ðkÞ
0 r

ðkÞ
j is a power law of both the scale k (with

exponent 2H) and the lag j (with exponent 2HK2).

The power spectrum of the process

sðkÞg ðuÞZ 2
XN
jZKN

g
ðkÞ
j cosð2pjuÞ (7)

is given approximately by

sðkÞg ðuÞz4ð1KHÞg
ðkÞ
0 ð2uÞ1K2H (8)

which is a power law of both the scale k

(with exponent 2H) and the frequency u (with

exponent 1K2H).

Any of the power law equations (4)–(6) and (8) can

be used to detect the potential simple scaling

behaviour of a time series. The easiest is (5), which

calls for a double logarithmic plot of standard
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deviation of the aggregated process ZðkÞ
i versus

timescale k. In such a plot, which will be used

extensively here (with the first example being

illustrated in Fig. 1, down) and will be called

 

 

  

  

 

 
 

Fig. 1. (Up) Plot of the Boeoticos Kephisos river runoff series, both measu

confidence limits for the 30-year scale, estimated by Monte Carlo simulation.

30-year timescales, and of the corresponding 95% confidence limits for the 3
the aggregated standard deviation plot, a scaling

behaviour is manifested as a straight line arrangement

of points corresponding to different timescales, whose

slope is the Hurst coefficient.
 

  

  

 

 

 
 

red and modelled, in annual and 30-year timescales, and of the 95%

(Middle) Plot of the rainfall series at the same catchment in annual and

0-year scale. (Down) Aggregated standard deviation plot of the series.
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1.3. The hydrological importance of the scaling

behaviour

It is well known that the scaling behaviour in

natural processes has been discovered by Hurst

(1951), while investigating the discharge time series

of the Nile River. This behaviour, also termed

(long-term) hydrological persistence, was essentially

observed as a tendency of wet years to cluster into

multi-year wet periods or of dry years to cluster

into multi-year drought periods. The terms

‘Hurst phenomenon’ and ‘Joseph effect’ (due to

Mandelbrot, 1977, from the biblical story of the

‘seven years of great abundance’ and the ‘seven

years of famine’) have been used as alternative

names for the same behaviour. Since then, the

scaling behaviour has been identified in several

hydrological time series such as (to mention a few

of the more recent studies) flows of several rivers

such as Nile (Eltahir, 1996; Koutsoyiannis, 2002),

Warta, Poland (Radziejewski and Kundzewicz,

1997), Boeoticos Kephisos, Greece (Koutsoyiannis,

2003a,b), Nemunas, Lithuania (Sakalauskienė,

2003), and Canadian streamflow series (Yue and

Gan, 2004), and inflows of Lake Maggiore, Italy

(Montanari et al., 1997). It was also identified in

other climatological time series including wind

power (Haslett and Raftery, 1989); global or point

mean temperatures (Bloomfield, 1992; Koutsoyian-

nis, 2003a; Rust et al., submitted for publication);

indexes of North Atlantic Oscillation (Stephenson

et al., 2000); and tree-ring widths, which are

indicators of past climate (Koutsoyiannis, 2002).

The initial discovery of the scaling behaviour in the

framework of hydrological studies is not coincidental.

Rather, it manifests the strong consequences of this

behaviour in water resources engineering and man-

agement. Particularly, the practical importance of the

Hurst phenomenon increases in projects whose

operation cycles span across long periods of time.

As a typical example may serve large reservoirs with

multi-year flow regulation (Klemeš et al., 1981;

Koutsoyiannis, in press). However, even in hydro-

systems with small reservoirs or no reservoirs at all

the effect on the scaling behaviour is significant if the

uncertainty (not only the expected value) of water

availability is to be assessed. Since uncertainty has

become a major issue in water management today
(also in relation to climate changes), the Hurst

phenomenon has gained new interest (e.g. Evans,

1996; Koutsoyiannis, 2003a,b; Koutsoyiannis and

Efstratiadis, 2004).

Specifically, if a hydrological process was random

and our information on this was based on a sample of

size n, then the uncertainty on the long term, which

can be expressed in terms of the variance of the

estimator of the mean, �X, would be:

var½ �X�Z
s2

n
(9)

This offers good approximation for a process with

short-term persistence, as well, but it is not valid for a

process with scaling behaviour. Instead, the following

relation holds (Adenstedt, 1974; Beran, 1994, p. 54;

Koutsoyiannis, 2003a):

var½ �X�Z
s2

n2K2H
(10)

The difference between the classical statistical

formula (9) and the SSS formula (10) becomes very

significant for large values of H. For example, in a

time series of nZ100 years of observations and

standard deviation s, according to the classical

statistics (Eq. (9)), the standard estimation error, i.e.

the square root of var½ �X�, is s/10. However, for HZ
0.8 the correct standard error, as given by Eq. (10), is

s/2.5, i.e. four times larger. To have an estimation

error equal to s/10, the required length of the time

series would be 100,000 years! Obviously, this

dramatic difference induces substantial differences

in other common statistics as well (Koutsoyiannis,

2003a).

A further demonstration of the difference in

uncertainty estimations between classical and SSS

statistics is given in Fig. 1 by means of an example

taken from Koutsoyiannis and Efstratiadis (2004).

The upper panel depicts a runoff time series, that of

the Boeoticos Kephisos River basin, which is the

longest available in Greece (96 years). The fact that

the Boeoticos Kephisos River supplies water to

Athens, the capital of Greece with a population

approaching 5 million, makes the study of uncertainty

of the runoff extremely important. The uncertainty

should be assessed in several timescales, from annual

to multi-year ones. Thus, apart from the annual time
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series plot, a plot of the 30-year moving average is

also given in Fig. 1 (here the averaged rather than

aggregated time series, i.e. zð30Þ
i =30, has been used).

The 30-year timescale is typically assumed to be

sufficient to smooth out the annual variations and

provide values representative of the climate. The

latter plot indicates a downward trend. It may be

speculated that this seemingly monotonic trend may

be part of a large-scale fluctuation behaviour, which in

this case cannot be seen due to the limited observation

time window (this will become clearer later using

longer time series). Such a large-scale fluctuation is

none other than the scaling behaviour (Koutsoyiannis,

2002). As mentioned above, a better means to identify

the scaling behaviour is the aggregated standard

deviation plot of the time series. This is plotted in

Fig. 1 (down), where the scaling behaviour becomes

evident as a straight line arrangement of points

corresponding to different timescales, whose slope is

the Hurst coefficient (HZ0.79). Based on this

coefficient and using the stochastic description of

the scaling behaviour described above, the quantifi-

cation of uncertainty can be done in terms of

confidence limits that can be obtained by Monte

Carlo simulation and can incorporate both the

uncertainty due to unknown parameters and due to

the variability of the process at each scale of interest.

Such confidence limits, taken from Koutsoyiannis and

Efstratiadis (2004) and referring to this example and

to the 30-year (climatic) average, were plotted in

Fig. 1 (up), also in comparison with confidence limits

estimated from classical statistics. It is observed that

the confidence band has dramatically widened (almost

four times) in the SSS case in comparison to that of

the classical statistics.

In an attempt to understand what caused the scaling

behaviour of this runoff time series (manifested in this

case as a downward trend due to the limited

observation period) one should perform a similar

analysis to the rainfall time series of the same

catchment. Apparently, rainfall and runoff are associ-

ated in a cause-and-effect relation. Plots of the annual

rainfall time series, the 30-year moving average and its

confidence bands, estimated both by classical and SSS

statistics are given in the middle panel of Fig. 1.

Behaviour similar to that of the runoff can be observed

in the rainfall time series, with a dominant downward

trend. The scaling behaviour of rainfall is more evident
in the lower panel of Fig. 1, where the aggregated

standard deviation plot of the time series shows again a

straight line arrangement of points with slopeHZ0.64.

Thus, the scaling behaviour of rainfall may be

hypothesised as a cause for the scaling behaviour of

runoff. To enhance this hypothesis, a rainfall–runoff

model of the catchment (Rozos et al., 2004) was fed by

the rainfall series and the resulted runoff has been

plotted both in annual and 30-year scale, in comparison

to the measured series, in the upper panel of Fig. 1.

From this plot, which for the 30-year scale is

practically indistinguishable from the historical one,

as well as from the aggregated standard deviation plot

of the modelled series, also shown in the lower panel of

Fig. 1, it becomes clear that the scaling behaviour

of runoff is completely explained by the similar

behaviour of rainfall. The enhancement of the Hurst

coefficient, from 0.64 to 0.79, is in accord to Klemeš’s

(1974) observation, that the output of a system grows

progressively more Hurst-like with an increasing

complexity of the system.

1.4. Physical explanations of the scaling behaviour

Although the scaling behaviour of hydrometeor-

ological processes has been considered by many as

mysterious, several explanations have been proposed.

Most of them, however, are conceptual, rather than

physical, i.e. they do not aim at explaining the

physical mechanism leading to the scaling behaviour

of historical records of the processes, but examine

different stochastic mechanisms that might produce

realisations resembling the patterns of the observed

empirical time series. For example, Klemeš (1974)

analysed several variants of the ‘changing mean’

mechanism which assumes that the mean of the

process is not a constant determined by the arithmetic

mean of the record, but varies through time.

Montanari et al. (1999) studied the effect of periodical

patterns, as a potential cause of the Hurst phenom-

enon, although they note that such patterns are

unusual in real data. Bhattachara et al. (1983) studied

the effect of monotonic deterministic trends and

showed mathematically that a trend which is a

power law of time (plus a constant), results in time

series exhibiting the Hurst phenomenon. We may

note, however, that this kind of non-stationarity with a

monotonic deterministic trend spanning the whole
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length of a time series can hardly represent a long time

series of real data, even though in short time series

may seem to be realistic. Another explanation was

proposed by Koutsoyiannis (2002), who demonstrated

that a Markovian underlying process at the annual

scale can result in a nearly FGN process if there occur

random fluctuations of the mean of the process on two

different scales (e.g. tens and hundreds of years), yet

the resulting composite process being stationary.

Two more physically based model types that lead

to system evolution (in time or space) with scaling

properties are described by Beran (1994, pp. 16–20).

The first model type applies to critical phenomena in

nature such as phase transition (transition from liquid

to gaseous phase, or spontaneous magnetisation of

ferromagnetic substances). For some critical system

temperature, the correlation of the system state at any

two points decays slowly to zero, so the correlation in

space can be represented by (6). The second type is

related to models based on stochastic partial differ-

ential equations, which, under certain conditions,

result in solutions with long-range dependence. These

models provide sound links of the scaling behaviour

with physics but are very complex.

In this respect, the toy model proposed in this study

aims to provide a simple and easily understandable

physical mechanism than can cause scaling behaviour

of a hydroclimatic process. As justified above, even

though the importance of the scaling behaviour rises

to prominence mainly in hydrology and water

resources management, its physical explanation

should be sought mostly in climatic mechanisms.

For this reason, the empirical basis of the study

(Section 2) includes climatic time series and the

model formulation follows a brief description of the

major climate change processes and feedbacks

(Section 3). The toy model is formulated by a

simplification of climatic dynamics (Section 4) yet

being able to reproduce the scaling characteristics

observed in climatic time series (Section 5). Given the

deterministic character of the toy model, an important

potential use is to assess whether the deterministic

dynamics can or cannot reduce the large uncertainty

implied by the scaling behaviour, as already described

in statistical terms above. This problem is explored

systematically (Section 6) and it is demonstrated that

the model use emphasises the inherent natural
uncertainty, rather than enhances the deterministic

prediction capability.
2. Empirical basis of the study

The already presented time series of the Boeoticos

Kephisos catchment were used here as an introductory

hydrological example, mainly to demonstrate the

hydrological importance of the scaling behaviour and

the close relationship between scaling in rainfall and

runoff. However, due to their short length (albeit much

longer than typical hydrologic records used in

engineering practice) they are not appropriate for

further investigation. Instead, three long hydroclimatic

time series are used as the main empirical basis of this

study. The first series, one of the most intensively

studied, is the annual minimum water level of the Nile

River for the years 622–1284 AD (663 observations),

measured at the Roda Nilometer near Cairo (Toussoun,

1925, pp. 366–385; Beran, 1994; available online from

http://lib.stat.cmu.edu/S/beran). In Fig. 2 (up), we have

plotted the data values versus time, as well as the 5-year

and 25-year averages versus time, which represent the

aggregated processes at timescales kZ5 and 25,

respectively. For comparison we have also plotted in

Fig. 2 (middle) a series of white noise with statistics

same with those of the Nilometer data series. We can

observe that the fluctuations of the aggregated

processes, especially for kZ25, are much greater in

the real world time series than in the white noise series.

These fluctuations could be taken as non-stationarities,

that is, deterministic rising or falling trends that last

100–200 or more years. For example, if one had

available only the data of the 100-year period 700–800

one would detect a ‘deterministic’ falling trend of the

Nile level (as happened in the 96-year Boeoticos

Kephisos data series); similarly, one would detect a

regular rising trend of the Nile level between the years

1000 and 1100. However, the complete picture of the

series suggests that these trends are parts of large-scale

random fluctuations rather than monotonic trends, thus

pointing out to the scaling behaviour of the series. The

scaling behaviour is more evident in the aggregated

standard deviation plot of Fig. 2 (down), where we

have also plotted for comparison theoretical curves for

the white noise (in which the standard deviation is

proportional to the square root of scale) and the FGN

http://lib.stat.cmu.edu/S/beran


Fig. 2. (Up) Plot of the Nilometer series indicating the annual minimum water level of the Nile River for the years 622–1284 AD (663 years);

(middle) a synthetic white noise series, for comparison; (down) aggregated standard deviation plot of the series.
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model (for which Eq. (5) holds) for HZ0.85. Clearly,

the empirical plot is virtually identical to the

theoretical FGN plot and departs significantly from

the plot corresponding to the white noise, whose slope

equals 0.5.

The second series, the Jones data series (available

from ftp.ngdc.noaa.gov/paleo/contributions_by_

author/jones1998/), represents the Northern Hemi-

sphere temperature anomalies of 992 years (in 8C)

with reference to 1961–1990 mean. This series was

constructed by Jones et al. (1998) using temperature

sensitive paleoclimatic multi-proxy data from 10 sites
worldwide that include tree rings, ice cores, corals,

and historical documents. Only four of the proxy data

series go back before 1400 AD and, therefore, data

prior to about 600 years ago are more uncertain. This

series has been plotted in Fig. 3 (up) and its scaling

properties (which have been also studied earlier;

Koutsoyiannis, 2003a) are evident from the aggre-

gated standard deviation plot of Fig. 3 (down). The

Hurst coefficient is 0.88 for the total series and,

notably, it does not change if the data values of the

20th century, which may incorporate anthropogenic

influence, are excluded.

http://ftp.ngdc.noaa.gov/paleo/contributions_by_author/jones1998/
http://ftp.ngdc.noaa.gov/paleo/contributions_by_author/jones1998/


Fig. 3. (Up) Plot of the Northern Hemisphere temperature anomalies in 8C with reference to 1961–1990 mean (992 years, Jones data set); (down)

aggregated standard deviation plot of the series.
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The third example, the Vostok data series (avail-

able from http://www1.ncdc.noaa.gov/pub/data/

paleo/icecore/antarctica/vostok/deutnat.txt), is the

temperature difference with reference to the mean

recent time value as estimated from the Vostok ice

core deuterium data set that goes back to 422,766

years before present (Petit et al., 1999). This

temperature difference is calculated based on the

deuterium content of the ice using a deuterium/

temperature gradient of 9‰/8C, after accounting for

the isotopic change of sea-water. The temporal

resolution ranges from 17 (present time) to 631

years. Here, the series was re-interpolated using a

constant 400-year temporal resolution. The time

series is shown in Fig. 4 (up) and its aggregated

standard deviation plot is shown in Fig. 4 (down),

where a scaling behaviour with a scaling coefficient

0.94 is observed.

A more careful analysis of the Vostok time series

reveals inherent periodicities. Indeed, the period-

ogram s(u) (the estimate of the power spectrum
defined in (7)), which is depicted in Fig. 5, has

peaks at frequencies 9.5!10K6, 2.6!10K5 and 3.5!
10K5 yearsK1 or periods of about 105,000, 38,500 and

28,500 years, respectively. These periods approxi-

mately correspond to the well-known Milankovitch

cycles of Earth’s orbital stretch, axial tilt and axial

path wobble, respectively. The magnitudes of the

peaks, which indicate the percentage of variance

explained by the corresponding cycles, are s(u)/

(ns2)Z37%, 8.4% and 4.4%, respectively, where n is

the record length (Z1061) and s2 is the variance

(Z7.81 8C2).

In an attempt to describe the periodic behaviour of

the series, for the first cycle we fitted by least squares

the equation

~xt Z 3:917 cosð2pt=tC0:2146ÞK4:856 (11)

where tZ103,598 years. This principal harmonic is

depicted in Fig. 6 (up) in comparison with the original

series. This harmonic is then subtracted from

the original series and the resulting series is plotted

http://www1.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/vostok/deutnat.txt
http://www1.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/vostok/deutnat.txt


Fig. 4. (Up) Plot of the temperature difference, with reference to the mean recent time value, from the Vostok ice core deuterium data set going

back to 422,766 years before present; (down) aggregated standard deviation plot of the series.
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in Fig. 6 (middle). In this, the variance s2 is reduced

by 25% (it becomes 5.88 8C2) and still the frequency

9.5!10K6 explains a great percentage (20%) of the

reduced variance (15% of the initial variance).

The other two peak frequencies (2.6!10K5 and

3.5!10K5 yearsK1) explain smaller percentages

of the reduced variance (11 and 5.6%) so their
Fig. 5. Periodogram of the Vostok temperature time series
subtraction is aimless. The aggregated standard

deviation plot of the adapted series is shown in

Fig. 6 (down), where no significant change, in

comparison with Fig. 4 (down), is observed, so the

scaling coefficient continues to be 0.94. The scaling

behaviour is also observed in Fig. 5 (right), where the

periodogram appears to be a power law of frequency
in Cartesian (left) and logarithmic (right) ordinates.



Fig. 6. (Up) Fitting of the principal harmonic for the temperature difference of the Vostok data set; (middle) plot of the adapted, by subtraction of

the principal harmonic, temperature difference of the Vostok data set; (down) aggregated standard deviation plot of the adapted series.
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(note that the subtraction of the harmonic does not

create significant changes in double logarithmic plot

of the periodogram).
3. Major climate change processes and feedbacks

The Milankovitch cycles are known periodical

effects on the climate, which can be considered as
external forcings. Other external forcings, such as

changes in solar irradiance and the volcanic activity

have significant effect on climate. In addition, there

exist internal climatic mechanisms related to the

composition of the atmosphere and the ocean–

atmosphere–land interactions, which act as feedback

controls either amplifying change (positive feed-

backs) or producing stability (negative feedbacks).

Some well-known examples easy to understand



Fig. 7. Schematic of a simplified representation of a climatic system

with a feedback loop including a positive and a negative reaction.
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(e.g. Moran and Morgan, 1997, pp. 484–485) are

the ice-albedo feedback (temperature increase/ice

melt/decrease of albedo/temperature increase; i.e.

positive feedback), the water vapour feedback (tem-

perature increase/greater evaporation/more

vapour in the atmosphere, which is a greenhouse

gas/decrease of infrared radiation leaving Earth/
temperature increase; i.e. positive feedback), and the

low cloud feedback (temperature increase/greater

evaporation/more low clouds in the atmosphere,

which are highly reflective/increase of albedo/
temperature decrease; i.e. negative feedback).

Biosphere plays also an important role in

climate as it creates its own feedbacks. Even the

effect of biosphere to the albedo of land surface

may be very significant as demonstrated by Watson

and Lovelock (1983) in their well-known ‘Daisy-

world’ parable. However, the effect of biosphere

may be much more complex as articulated by

Lovelock (1982) in his Gaia hypothesis, which

claims that the Earth is a self-organising Cybernetic

system, in which the living matter, atmosphere,

ocean, and land surfaces interact to keep the Earth

a fit place for life.

Obviously, the interaction of all climatic mechan-

isms is extremely complex and its detailed mathemat-

ical representation is difficult task. To construct a toy

model, however, the accurate description of mechan-

isms is not necessary but rather, according to the

definition given in Section 1, a minimum of key

mechanisms should be taken into account in order to

show that the phenomenon studied, the climatic

scaling behaviour, can or cannot be produced from

these key mechanisms. In this respect, it suffices to

explore the general behaviour that a synthesis of

positive and negative reactions in a feedback loop

may produce. In this attempt we will ignore the

external forcings and we will use a simple systems

approach in discrete time.

The dynamics of a system, expressed in discrete

time, is a transformation xtZF(xtK1) of the previous

system state xtK1 to the current state xt. Generally, the

system state is represented by a vector but in our

examples it suffices to consider the system state as a

scalar (e.g. the temperature anomaly in the Jones and

Vostok cases or the minimum river level in the Nile

case). A system state x* satisfying x*ZF(x*) is a

fixed (or stationary) point of the transformation. The
transformation F is usually the compound effect of

several system components performing their separate

transformations. These are linked together in a loop or

network, whose branches and connections represent

the interaction of components. A comprehensive

presentation of systems with feedback components

and their mathematical analysis is contained, among

others, in Oppenheim et al. (1983).

A simple system that will be used as an extremely

simplified representation of the climatic system is

depicted in Fig. 7. The boxes in this figure can be

thought of as components (reactions) of the system

that transform their inputs to obtain their outputs.

The component transformation is determined by

multiplying the input by the so called gain value,

which is depicted over each component in Fig. 7. The

entire system is a loop containing a forward

component with gain 1 and two reaction components

connected in series in a feedback path, one positive

with gain f1 and one negative with gain f2. The

positive feedback is characterised by a gain for

which j1Kf1j%1, whereas the negative feedback is

characterised by j1Kf2jR1 (Mitchell, 2003).

Further, we will assume that the feedback com-

ponents of the system are non-linear, so that the gains

are functions of the previous system state xtK1 (i.e.

f1(xtK1) and f2(xtK1), respectively).

In the absence of the feedback path of the system,

its operation is the simplest possible: the output OZ
xtKx* equals the input IZxtK1Kx*, i.e. no change

occurs since the forward gain is 1 (immobility). Under

the action of one of the two components with gain

fi(xtK1) (iZ1 or 2), it is easy to see that the input of

the forward component is the sum of the system

input xtK1Kx* and the feedback, which is the product

of the output OZxtKx* and the gain fi(xtK1).



Fig. 8. (Up) Schematic of the dynamics of a system subject to a

feedback loop with a positive and a negative reaction; (down)

evolution of the system under the positive, negative or both

reactions, when it starts from very close to its fixed point (x*Z2/3,

x0Z0.67).
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Equating the input and output of the forward

component, we easily obtain that the system dynamics

is

xt Z x� C ðxtK1 Kx�Þ=½1K fiðxtK1Þ� (12)

For example, if fi(xtK1)Z0.5, which represents a

positive feedback since j1K fiðxtK1Þj%1, then (12)

yields xtKx�Z2ðxtK1Kx�Þ, so the deviation from

the fixed point is doubled at each time step. This

soon will lead the system to the so called runaway

situation. If fi(xtK1)ZN, which is a negative

feedback since j1K fiðxtK1ÞjR1, then (12) yields

xtZx*, so the system is brought to its fixed point

regardless of the previous state xtK1 (complete

stability). If fi(xtK1)Z0, which in fact is absence of

feedback, the example system is characterised by

immobility.

The system behaviour becomes more interesting

if both reactions operate simultaneously. It

is easily obtained that the compound effect

of the two components results in the system

dynamics:

xt Z x� C ðxtK1 Kx�Þ=½1K f1ðxtK1Þf2ðxtK1Þ� (13)

Fig. 8 depicts a numerical example of (13), for a

system whose state ranges between 0 and 1. The

first reaction is assumed to follow the simple

symmetrical form

f1ðxÞZminðx; 1KxÞ (14)

with a maximum value f1(0.5)Z0.5 so that j1K
f1(x)j%0.5 which secures that the feedback is

positive. The second one is chosen in a manner

that the compound effect of both is symmetric and

covers the whole range [0, 1]:

f2ðxÞZ
3

minð6xK2; 2K2xÞ
(15)

The minimum value of j1Kf2(x)jZ2 (for xZ
0.5) which secures that the feedback is negative.

The fixed point is assumed to be x*Z2/3. The

resulting, according to transformation (12), system

dynamics for each of the reactions are depicted in

Fig. 8 (up). It can be easily shown that

the synthesis of the two feedback components

given by (13) is simplified to the so called tent
transformation

xt Z 2 minðxtK1; 1KxtK1Þ (16)

which, as also depicted in Fig. 8 (up), has an

upward and a downward segment. It can be easily

shown that the compound feedback is negative for

x%x�2Z4=9 and positive for xR4/9. Apparently,

such a form with an upward and a downward

segment may appear for other combinations of

f1(xtK1) and f2(xtK1) or for other topologies of the

control loop. For example, it could be obtained from

a control loop with a forward component with gain

greater than 1 (so that any deviation from the fixed

point is amplified) and a single negative feedback

component. However, it was preferred to derive it as



Fig. 9. The generalised tent map for different values of its

parameter a.
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the compound effect of two reaction components,

acting in series (and thus in a multiplicative manner)

as shown in Fig. 7, because the derived system is

simpler (e.g. mathematically equivalent and inter-

changeable f1 and f2).

On the other hand, a form with an upward and a

downward segment does not appear for any functions

f1(xtK1) and f2(xtK1); it could be a constantly increas-

ing or decreasing curve, but the existence of both

increasing and decreasing segments is a better choice

for a toy model as it makes the completely stable or the

runaway behaviour of the system less likely. Fig. 8

(down) depicts an evolution for an initial state x0Z0.67

very close to the fixed point, x*Z2/3. The negative

reaction acting alone brings the system immediately to

its fixed point exactly and keeps it steadily to this state.

The positive reaction acting alone leads the system to a

runaway behaviour, which in this case is represented

by xZ1 (had the initial state be lower than 2/3, the

runaway behaviour would be represented by xZ0).

The synthesis of both reactions leads the system to

oscillate in an erratic rhythm, so it creates a more

‘realistic’ trajectory of the system.
4. The toy model

The above example provides some insight on the

causes of erratic behaviour but it is too simple to

capture the scaling behaviour. Therefore, some steps

of generalisation are needed to construct a more

realistic toy model. In the first step we add one

parameter (a) to the transformation (16) to get the

generalised tent map

xt Z gðxtK1;aÞ :Z
ð2KaÞminðxtK1; 1KxtK1Þ

1Ka minðxtK1; 1KxtK1Þ
(17)

with 0%xt%1 and a!2. For aZ0, (17) is reduced

to (16) but still for as0 it keeps the symmetry of

(16) and the upward–downward segments. Fig. 9

depicts (17) for different values of its parameter a.

The generalised tent map has been used in the study

of dynamical systems. For example, the map

approximates the relation between successive max-

ima in the variable x(t) from the Lorenz equations

that describe climatic dynamics (Lasota and

Mackey, 1994, p. 150).
More complex maps result from successive

applications of generalised tent map, i.e.

xt Z gnðxtK1;aÞ :Z gðgð.ðgðxtK1;aÞ.Þ;aÞ;aÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n

(18)

Equivalently, the transformation gn( ) can be

defined from

xt Zyn t; yn t Zgðyn tK1;aÞ; y0 Z x0; tZ0;1;2;.

(19)

where the intermediate terms yðnK1ÞtC1;.;yn tK1

are regarded as hidden terms. Fig. 10 demonstrates

the transformation gn(x; a) for nZ4 and aZ1, which

has eight upward and eight downward segments.

A time series generated by the transformation gn(x;

a) displays random appearance of the series at the

basic scale and stabilising behaviour at larger scales,

which is manifested by a Hurst coefficient equal

to 0.5. This behaviour is observed for any a!1

(a dwarf scaling behaviour but with unrealistic shape

appears for a between 0.99 and 1), whereas for aO1

a runaway behaviour is observed. Thus, the general-

ised tent map is not an appropriate toy model for

our purpose, as it does not exhibit the scaling

property sought with Hurst exponent greater than

0.5. However, it becomes appropriate if we make its

parameter a time dependent, assuming that its

temporal evolution is described again by the same



Fig. 10. Synthesis of four generalised tent maps for aZ1.

D. Koutsoyiannis / Journal of Hydrology 322 (2006) 25–4838
tent transformation. The resulting compound trans-

formation, which we will call the double tent

transformation, is given by

ut ZGðutK1;atK1; k; lÞ :Z gðutK1; k atK1Þ;

at Z gðatK1; lÞ
(20)
Fig. 11. Schematic of the general behaviour of the double tent map in terms

to nZ1 and the dark area to nZ4.
We also extend this transformation by adding

hidden terms thus getting

ut Z yn t; yn t ZGðyn tK1;an tK1; k; lÞ;

y0 Z u0; tZ 0; 1; 2;.
(21)

Both parameters k, l should be smaller than 2

whereas the domain of ut is the interval [0, 1]. This

domain is not appropriate for climatic variables. Thus,

we apply an additional rescaling transformation to

shift from [0, 1] to [b, N) (for some b positive,

negative or zero):

xt Z bCc½tanðput=2Þ�
d (22)

The final model for xt, which will be our toy model

sought, is two-dimensional, as it involves two degrees

of freedom corresponding to the initial conditions (a0,

u0), and contains five real valued parameters (k, l, b,

c, d) and one integral parameter (n). Among these, the

most important, which determine the scaling beha-

viour of the model, are the parameters of the double

tent transformation k and l. The model behaviour with

respect to these parameters has been investigated

numerically and the results are depicted in Fig. 11.
of the ranges of its parameters k and l. The shaded area corresponds



Table 1

Parameters and initial values of the toy model fitted to the three example time series

Data set Fitted parameters Initial values

k l b c d u0 a0

Nilometer 1.871 0.477 K26871.1 28130.5 0.0013 0.030 0.335

Jones 1.765 0.317 73.3 K73.8 0.0013 0.797 0.325

Vostok 1.810 0.332 624.8 K628.6 0.0011 0.988 0.327
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We observe that for small values of the parameter k,

the time series synthesised by the model do not exhibit

scaling behaviour but, rather, they have Hurst

coefficient 0.5. For large values of k, the model yields

a runaway behaviour. In between the two non-

interesting areas, the non-scaling and the runaway,

there is an area of parameter values, shaded in Fig. 11,

in which the resulting time series exhibit the scaling

behaviour sought; this area shrinks for increasing n,

but still does not disappear as shown in Fig. 11. This

will be used further in the application of the toy model

with the example time series. All three types of

behaviour are observed for negative values of l (not

shown in Fig. 11) whereas for lO1 only the runaway

behaviour is observed regardless of the value of k.
Fig. 12. (Up) Plot of the synthetic time series generated by the toy

model fitted to the Nilometer data set; (down) comparison of the

synthetic and original time series in terms of their 50-year moving

averages.
5. Model application

The model application with the example data sets

contains two steps: the estimation of parameters

(fitting of the toy model) and the comparison of

statistical properties (with emphasis on the scaling

behaviour) of the original and the synthesised by the

toy model series.

Due to the deterministic character of the model, the

estimation of parameters is done in a manner similar

to that usually used in fitting deterministic models

rather than in stochastic models. It is reminded that in

stochastic modelling the preservation of the particular

data values forming the time series is irrelevant,

so certain summary statistics are derived and

subsequently used in the model fitting. In contrast,

in deterministic modelling the aim is to reproduce the

particular data values of the time series as faithfully as

possible. What differs here from typical deterministic

models (e.g. rainfall–runoff models) is the absence of

an input time series. As usual, parameter estimation

can be regarded as a typical optimisation problem, in
which the objective is to obtain the optimal fitting by

appropriate choice of the values of the unknown

parameters and the unknown initial conditions. Due to

the sensitive dependence of the toy model on its

parameters and initial conditions, a random search

technique is the most appropriate to determine the

values of unknowns. The criterion set for the model

fitting is to obtain large correlation of a series

generated by the model for the specified parameter

set with the historical series both for the basic

timescale (1 time step) and an aggregated timescale

(chosen to be 50 time steps). Equal weights were

assumed for the correlations of both timescales. The

random search procedure requires a large number of

repetitions. In each repetition, the parameters, k, l, d

and the initial conditions a0, u0 are generated at

random from their appropriate domains. A time series

is then generated assuming that the additional
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parameters b and c are, respectively, 0 and 1 and then

the values of these parameters are estimated by linear

regression between historical and generated series.

After a large number of repetitions, the parameter set

with the greatest value of the fitting criterion set is

chosen.
Fig. 13. Comparison of statistical properties of the original

Nilometer time series and the synthetic one of Fig. 12: (up)

distribution function; (middle) autocorrelogram; (down) aggregated

standard deviation plot.
The second step (comparison) includes statistical

comparisons of the generated and historical series, in

terms of the marginal distribution, the temporal

structure expressed by the autocorrelation function,

and finally the scaling behaviour, which is the focus of

the study, expressed by the aggregated standard

deviation plot.

Table 1 lists the parameter values and initial values

of the toy model fitted to the three example time

series. In all cases the integral parameter was assumed

to be nZ4. Fig. 12 shows the synthetic time series

generated by the toy model fitted to the Nilometer

series (upper panel) and a comparison of this series

with the historical one in terms of their 50-year

moving averages. Fig. 13 shows graphical compari-

sons of the statistical properties of the original

Nilometer time series and the synthetic one in terms

of distribution function (upper panel), autocorrelo-

gram (middle panel) and aggregated standard devi-

ation plot (lower panel). It is generally observed that

the resemblance of the statistical characteristics

including the scaling behaviour is impressively

good, despite the simplicity and the deterministic

character of the toy model.
Fig. 14. (Up) Plot of the synthetic time series generated by the toy

model fitted to the Jones data set; (down) comparison of the

synthetic and original time series in terms of their 50-year moving

averages.



Fig. 15. Comparison of statistical properties of the original Jones time

series and the synthetic one of Fig. 14: (up) distribution function;

(middle) autocorrelogram; (down) aggregated standard deviation plot.

Fig. 16. (Up) Plot of the synthetic time series generated by the toy

model fitted to the adapted Vostok data set; (down) comparison of

the synthetic and original time series in terms of their 20,000-year

moving averages.
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Similarly, good performance can be observed for

the other two cases. The results for the Jones data set

are shown in Fig. 14 (time series) and Fig. 15

(comparisons). The application to the Vostok data set
was based initially on the adapted time series (with the

principal harmonic subtracted) and the results are

shown in Fig. 16 (time series) and Fig. 17 (compari-

son). Then the harmonic of Eq. (11), which should be

regarded as an external effect not related to the

internal feedback mechanisms, was added to the time

series of Fig. 16. The resulting time series is shown in

Fig. 18 whereas the comparisons of its characteristics

with those of the original Vostok time series are

shown in Fig. 19.
6. The emergence of uncertainty in a deterministic
context

The above examples show that the toy model is

good enough to generate climatic sequences that

resemble the actual ones, despite its simplicity and

low dimensionality. The entire model involves no

randomness at all and given the values of parameters

and initial conditions it gives a unique evolution.

Given the deterministic character of the model, one

may think of utilising it to forecast future climate. We

will demonstrate here that this is structurally

impossible.



Fig. 17. Comparison of statistical properties of the adapted Vostok

time series and the synthetic one of Fig. 16: (up) distribution

function; (middle) autocorrelogram; (down) aggregated standard

deviation plot.

Fig. 18. (Up) Plot of the synthetic time series of Fig. 16 to which the

harmonic with period 103,598 years has been added; (down)

comparison of this series with the original Vostok data series in

terms of their 20,000-year moving averages.
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In the preceding examples of synthetic time series

the initial conditions were generated at random. In a

forecast framework, however, the initial values u0

and a0 should be estimated so that the synthetic

series match the historical ones at the most recent
two values. Having this in mind and referring to the

Jones data set we have generated, in addition to

the already discussed series which is referred to as

synthetic series 1, two additional series referred to as

synthetic series 2 and 3, which both match the

historical values at the first two years (1000 and

1001). The initial values for synthetic series 2 are

u0Z0.70375 and a0Z0.3164 while for synthetic

series 3 the same u0 was used but the value of a0 was

assumed very faintly different, i.e. greater by only

0.00001% than that of the synthetic series 2. This

difference of course is not visible in terms of

matching the two initial historical values, but yields

visible effects with the grow of time, as shown in

Fig. 20 (up), where the first 50 years of evolution of

the two synthetic time series and the historical Jones

series have been plotted. The difference of both

synthetic series from the historical one is visible

from even the first ‘forecast’ time step (year 1002)

and the two synthetic series deviate from each other

three time steps later (year 1005).

Now, we will assume that the synthetic series 2 is a

forecast of the actual evolution, represented by the

historical series, and will assess the forecast capability



Fig. 19. Comparison of statistical properties of the original Vostok

time series and the synthetic one of Fig. 18: (up) distribution

function; (middle) autocorrelogram; (down) aggregated standard

deviation plot.

Fig. 20. (Up) Plot of the first 50 years of evolution of the historical

Jones data series and two synthetic time series (synthetic series 2

and 3), similar to that of Fig. 14 (synthetic series 1) but with initial

values u0 and a0 estimated so that the synthetic series match the

historical one at the first two values with the only difference

between series 2 and 3 being that the initial value a0 in the latter is

greater by 0.00001% than in the former; (middle) comparison of

forecast errors of two forecast methods, (a) statistical, in which the

forecast is the average of synthetic series 2 for the 50-year period,

and deterministic, in which the forecast is the synthetic series 2;

(down) same as in the middle panel but assuming that the actual

evolution is that of synthetic series 3.
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by comparing it to the simplest pure statistical forecast

method, according to which the forecast for any time

step is given as a constant value which is the

time average of the historical or simulated series.

Here, the average of the first 50 terms of synthetic
series 2 was used as the statistical forecast. The

comparison of the two methods is given graphically in

Fig. 20 (middle), where it becomes clear that the

statistical method outperforms the deterministic one.

The standard forecast error of the statistical method

(0.25 8C) is smaller than that of the deterministic one

(0.31 8C).
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One may attribute the poor forecast capability of

the deterministic model to the fact that the determi-

nistic toy model is a poor model of reality. So, let us

pretend that the actual evolution of the time series of

interest is not given by the historical series but by

synthetic series 3, for which the toy model is perfect,

since it was used to generate it. Based on this, we

repeated the experiment shown in Fig. 20 (middle)

and the new experiment is depicted in Fig. 20 (down).

The deterministic forecast capability is not improved

(in fact it gets worse as the standard forecast error

becomes 0.39), and the statistical forecast still is

better (standard forecast error 0.26) except for the first

three to four terms. It should be noted that the

statistical forecast capability can be improved at small

lead times by utilising the high autocorrelation (0.67

for lag one), which was not taken into account here.
Fig. 21. (Up) Comparison of the synthetic series 2 and 3 of Fig. 20, and the

years for all the 1000-year period; (down) comparison of the aggregated s
If forecast is so difficult for annual values, even

though they are generated by the extremely simplified

toy model, the situation becomes even more discoura-

ging if ‘climate’ values are to be predicted. Assuming

as usual that a climatic value is the average of the past

30 annual values, we have plotted in Fig. 21 (up) the

climatic values of the Jones series and those of

synthetic series 2 and 3. Series 2 and 3 are not closer

to each other than they are to the historical series,

despite the fact that they were generated by the same

model with the same parameters and virtually the

same initial values. Interestingly, in their origins,

the historical climate and the synthetic climate 2

coincide and both have upward trends. At the same

time the synthetic climate 3 starts 0.2 8C higher than

synthetic climate 2 and follows a downward trend

thereafter. None of the two synthetic climates captures
original Jones series in terms of their moving averages of the past 30

tandard deviation plots of the three series.
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the upward trend in the recent years, whereas, as

shown in Fig. 14 (up) this behaviour was well

described by synthetic series 1. It should be

emphasised, however, that both synthetic series 2

and 3, despite the different climate evolution they

imply, still resemble the statistical behaviour of the

historical series, as happened with synthetic series 1,

and especially resemble the scaling behaviour charac-

terised by a Hurst coefficient 0.88. The latter is

depicted in Fig. 21 (down).

The preservation of the scaling behaviour was

further explored by extending the length of synthetic

series 1 from 1000 to 12,000 ‘years’ (Fig. 22, up).

Several segments of the extended series with various

lengths were used to explore this behaviour and it was

found that the statistical characteristics and especially

the Hurst exponent do not depend seriously on length

or location within time series (Fig. 22, down).

In conclusion, the toy model although structurally

deterministic behaves like a stochastic model as it

resembles statistical characteristics without enhancing
Fig. 22. (Up) Plot of the 50-year moving average of the synthetic time serie

length 12,000 ‘years’; (down) aggregated standard deviation plots of seve
the forecast capability. This indicates that the great

uncertainty associated with scaling behaviour, which

was described in stochastic terms in Section 1, may

not at all decrease even if we construct a deterministic

model capable of reproducing historical hydrocli-

matic series and the scaling behaviour thereof. This

may not be a peculiarity or weakness of this particular

toy model since, as von Storch et al. (2001) put it,

‘climate must be considered as a stochastic system,

and our climate simulation models as random number

generators’. Indeed, determinism is very hard to trace

in series generated by the toy model. To demonstrate

this, we used the standard method of detecting

determinism in a time series (Grassberger and

Procaccia, 1983; Kantz and Schreiber, 1997; Kout-

soyiannis and Pachakis, 1996). This is based on the

correlation sum C2(3, m) and its local slope d2(3, m),

where 3 is the scale length and m the embedding

dimension. The technical details of the algorithm can

be found in the references listed above. In our case,

since the toy model has dimension DZ2, we would
s of Fig. 14, corresponding to the Jones data set, but extended to the

ral parts of the 12,000-year series.



Fig. 23. Plots of the correlation sums C2(3, m) (up) and their local

slopes d2(3, m) (down) versus the scale length 3 for embedding

dimension mZ1 to 8, for the 12,000-year synthetic time series of

Fig. 22 corresponding to the Jones data set.
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expect that an embedding dimension mZ2DC1Z5

at most would suffice to reconstruct the dynamics

from a time series and that the local slope d2(3, m)

would saturate at the value DZ2 for mR5 and it

would have values %2 for m!5. The correlation

sums C2(3, m) and their local slopes d2(3, m) estimated

from the extended 12,000-year synthetic time series 1

of Fig. 22 (corresponding to the Jones data set) have

been plotted in Fig. 23 versus the scale length 3 for

embedding dimension mZ1 to 8. Clearly, no

saturation of slope appears and local slopes greater

than 2 emerge. That is, the standard algorithm fails to

capture the low dimensional determinism in the

produced series and deems it as a random series.

The reason for this is the fact that the method requires

tremendously high lengths of time series to work and

the length of 12,000 of our case is too short for the

algorithm, simultaneously being extremely and unrea-

listically high if compared to typical sizes of climate

records.
7. Synopsis and conclusions

The Hurst phenomenon, which has been identified

to be omnipresent in long hydrological time series,

should be attributed to the scaling behaviour of

climatic processes that stimulate the hydrological

cycle. This scaling behaviour is associated to the

irregular changes (upward and downward fluctu-

ations) on all timescales, given that ‘Climate changes

irregularly, for unknown reasons, on all timescales’

(National Research Council, 1991, p. 21).

Synthetic time series with scaling behaviour are

typically generated by appropriate stochastic models.

However, the idea of using a simple deterministic toy

model to generate time series with scaling behaviour

may be attractive as it can serve as a physical

explanation of the causes of the scaling behaviour and

provide some insights for the system examined. Based

on this and assuming that the climatic system, which

in fact incorporates atmospheric and hydrological

processes, is characterised by the action of several

feedback mechanisms, a simple climatic toy model

was constructed. This toy model is based on the

chaotic tent map, which may represent the compound

result of a positive and a negative feedback mechan-

ism. The simplicity of the deterministic toy model

enables easy implementation, even on a spreadsheet

environment, and convenient experimentation.

Obviously, however, the toy model should not be

thought of as an operational tool for climate model-

ling and predictions.

Application of the toy model gives traces that can

resemble historical climatic time series. In particular,

they exhibit scaling behaviour with a Hurst exponent

greater than 0.5, thus suggesting that even simple

mechanisms based on few internal components of the

climate system are enough to result in a perpetually

changing climate. Moreover, application demon-

strates that large-scale synthetic ‘climatic’ fluctu-

ations can emerge without any specific reason and

their evolution is uncertain and unpredictable, even

when they are generated by this simple model with the

caricature, purely deterministic, dynamics with only

two degrees of freedom. Obviously, the fact that such

a simple model can generate time series that are

realistic surrogates of real climatic series does not

mean that the real climatic system involves that

simple dynamics. In contrast, the dynamics of the real



D. Koutsoyiannis / Journal of Hydrology 322 (2006) 25–48 47
climate system is greatly more complex than in this

simple toy model.
Acknowledgements

The author is grateful to two anonymous reviewers

for their comments, which helped to significantly

improve presentation.
References

Adenstedt, R.K., 1974. On large sample estimation for the mean of a

stationary random sequence. Ann. Statist. 2, 1095–1107.

Andrade Jr., J.S., Wainer, I., Mendes Filho, J., Moreira, J.E., 1995.

Self-organized criticality in the El Niño Southern oscillation.

Physica A 215, 331–338.

Bak, P., Sneppen, K., 1993. Punctuated equilibrium and criticality

in a simple model of evolution. Phys. Rev. Lett. 74, 4083–4086.

Bak, P., Tang, C., 1989. Earthquakes as self-organized critical

phenomena. J. Geophys. Res. 94, 15635–15637.

Beran, J., 1994. Statistics for Long-Memory Processes, Monographs

on Statistics and Applied Probability, vol. 61. Chapman & Hall,

New York, USA.

Bhattacharya, R., Gupta, N., Waymire, V.K., 1983. The Hurst effect

under trends. J. Appl. Prob. 20, 649–662.

Bloomfield, P., 1992. Trends in global temperature. Climate Change

21, 1–16.

Burridge, R., Knopoff, L., 1967. Model and theoretical seismicity.

Bull. Seismol. Soc. Am. 57, 341–371.

Cox, D.R., Isham, V., 1998. Stochastic spatial-temporal models for

rain. In: Barndorff-Nielsen, O.E., Gupta, V.K., Pérez-Abreu, V.,
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Hurst. C.R. Acad. Sci. 260, 3274–3277.

Mandelbrot, B.B., 1977. The Fractal Geometry of Nature. Freeman,

New York, USA.

Mitchell, R., 2003. Introduction to Feedback Systems, Lecture

Notes. Department of Cybernetics, University of Reading

(http://www.cyber.rdg.ac.uk/people/R.Mitchell/feedback/

index.htm).

Montanari, A., Rosso, R., Taqqu, M.S., 1997. Fractionally differ-

enced ARIMA models applied to hydrologic time series. Water

Resour. Res. 33 (5), 1035–1044.

Montanari, A., Taqqu, M.S., Teverovsky, V., 1999. Estimating

long-range dependence in the presence of periodicity: an

empirical study. Math. Comput. Model. 29, 217–228.

Moran, J.M., Morgan, M.D., 1997. Meteorology: The Atmosphere

and the Science of Weather. Prentice-Hall, London.

National Research Council, 1991. Opportunities in the Hydrologic

Sciences. National Academy Press, Washington DC, USA.

Oppenheim, A.V., Willsky, A.S., Young, I.T., 1983. Signals and

Systems. Prentice-Hall, London.

http://www.itia.ntua.gr/g/docinfo/565/
http://www.itia.ntua.gr/g/docinfo/606/
http://www.itia.ntua.gr/g/docinfo/606/
http://www.cyber.rdg.ac.uk/people/R.Mitchell/feedback/index.htm
http://www.cyber.rdg.ac.uk/people/R.Mitchell/feedback/index.htm


D. Koutsoyiannis / Journal of Hydrology 322 (2006) 25–4848
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M.,

Basile, I., Bender, M., Chappellaz, J., Davis, J., Delaygue, G.,

Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.,
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