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S U M M A R Y
Both anisotropy and non-linearity of rocks are important properties related to the elastic wave
propagation in the Earth. However, in the literature, there has been a continuous increase in the
interest of anisotropy, but very few studies of non-linearity are reported. In this paper, we aim
to tackle this imbalance by examining propagation characteristics of non-linear elastic waves in
anisotropic media. As analytic solutions to anisotropic wave equation in non-linear media (or
non-linear wave equation in anisotropic media) are not readily available, we use a numerical-
based approach. However, we realize that numerical modelling of non-linear seismic waves
suffers from problems such as steep gradients, shocks and unphysical oscillations. Accordingly,
some special treatments have been presented in the literature to reduce these problems. In this
paper, we present a second-order central finite difference scheme based on the modified flux-
corrected transport (FCT) technique, and we also present the stability criterion for the FCT. Our
modelling results show that the product of strength of non-linearity and the initial amplitudes of
the seismic source is the main factor influencing propagation characteristics accumulated with
traveltimes. Moreover, the effects of non-linear elastic wave propagation can be distorted by
the initial frequency of the seismic source and become enhanced by the presence of anisotropy.
Similarly, the effects induced by anisotropy are enhanced in non-linear media. Both in isotropic
and vertical symmetry axis media, the non-linear effects, such as the waveform aberration (or
waveform distortion), the resonant peak shift and the generation of harmonics, can be clearly
seen, and the interaction between anisotropy and non-linearity is also obvious. In conclusion,
both the anisotropy and the non-linearity should be considered to investigate characteristics of
elastic wave propagation in solid media, especially when the source is strong (e.g. in source
regions).
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1 I N T RO D U C T I O N

The assumption that rocks are perfectly linearly elastic media is just a matter of simplicity, but it is not based on laboratory and field observations

(Helbig & Rasolofosaon 2000). In fact, it is now well established that most rocks are anisotropic (their elastic response depends on directions

of observations) and rocks exhibit a non-linear elastic response, which manifests itself in a variety of interrelated manners. That is, rocks are

examples of consolidated materials whose primary physical properties are a consequence of the process of their genesis (Guyer & Johnson

1999).

Non-linear effects in rocks, such as non-linear dependence of seismic velocities on stress (Birch 1961), resonant peak shift (Winkler

et al. 1979) and harmonic generation (Johnson et al. 1987) have been widely observed in laboratory experiments (Toksöz et al. 1976; Johnson

& Shankland 1989) and studied since at least the later 1960s (Nikolaev 1967; Vasil’ev et al. 1969, 1977). Actually, non-linear elasticity in

rocks influences many areas of Earth sciences, especially seismology, when the spectral distortion of seismic waves is considered (Bulau

et al. 1984). Many experiments with crystalline rocks have shown a strong non-linear elastic response (Johnson et al. 1987), and accordingly

the third-order elastic tensors have been given in the literature (Prosser & Green 1990; Prosser et al. 1992). Another well-known fact is

the presence of anisotropy in almost all rock types (Crampin 1987). For example, many sedimentary rocks contain fine layering or aligned

cracks, joints and fractures, giving rise to seismic anisotropy. Fracture orientations, current stress fields, and preferred fluid-flow direction in

hydrocarbon reservoirs may be effectively predicted using the concept of seismic anisotropy. The significance of the seismic anisotropy in

exploration geophysics is well summarized by Helbig (1994), Liu et al. (2000) and Lynn (1996), and in global seismology by Savage (1999).
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As both non-linearity and anisotropy in rocks are believed to be important aspects for the propagation of elastic waves in the Earth,

the following problems should be properly addressed: (a) differentiation of linear and non-linear elastic waves; (b) which of the two aspects

are more important for elastic wave propagation and (c) the characterisation of non-linear elastic waves in anisotropic media. In this paper,

we provide some answers, to these questions through numerical modelling of non-linear elastic waves in anisotropic (vertical symmetry axis;

VTI) media. Note that it may be argued that the three problems mentioned here are only meaningful in theory as in practice all rocks are

anisotropic and non-linear, and only when anisotropy or non-linearity is weak, can we differentiate anisotropy and non-linearity. While this

argument may be correct for weak anisotropy, non-linearity may be resolved, and similarly for non-linearity, anisotropy may be characterized.

We aim to draw the attention to this subject as we feel that some of the effects due to non-linearity (e.g. waveform distortion, peak frequency

shifts) may easily be mistaken as due to dispersion or attenuation.

Non-linear elastic wave equations in rocks (with anisotropic characteristics) have been presented in several papers (Murnaghan 1951;

Landau & Lifshitz 1986; Xu et al. 1999). Unfortunately, it is difficult to obtain analytic solutions in these cases. A representative analytic

method is the iterative technique based on Green’s function developed by McCall (1994) and McCall & Guyer (1994). In this method, the

solution of the 1-D non-linear wave equation is represented as a power series. However, closed-form solutions can only be obtained for a few

special cases. Consequently, it is necessary to use numerical methods, such as explicit or implicit finite difference (FD) schemes, pseudospectral

methods on standard or staggered grids, finite elements or spectral element methods (Levander 1988; Frankel & Leith 1992; Schultz 1997;

Komatitsch & Tromp 1999; Zhang et al. 1993, 1999). However, numerical methods have some difficulties to address problems like steep

gradients, unphysical numerical oscillations and shocks related to the propagation of non-linear waves in anisotropic media. To avoid or reduce

these problems, special treatments have to be adapted in the numerical modelling of non-linear waves. For examples, Scalerandi et al. (1999)

used two FD schemes with different orders of accuracy in both space and time to investigate non-linear acoustic waves; Zheng et al. (2004)

used this method to study non-linear elastic waves in media where elastic properties vary in 1-D; Kouri et al. (1999) obtained numerical

solutions of non-linear wave equations by setting limits to the maximum value of the displacement. Daniel (1997) obtained numerical solutions

of a non-linear wave equation derived from the FPU model (after Fermi et al. 1974; Ulam 1965, 1974) by setting limits to the maximum

values of the spatial derivatives of displacements.

These studies resulted in many interesting and significant results for the non-linear elastic waves, although the problems of steep gradients

and shocks are still very severe. At the same time, the unphysical oscillations caused by the discretization of the wave equation and the error

accumulation could not be completely eliminated. To overcome the undesirable ripples in wavefield simulations, Boris & Book (1973,

1976a,b) and Book et al. (1975) developed a flux-corrected transport (FCT) technique to solve the first-order system of continuity equations

in hydrodynamics (DeVore 1991). Fei & Larner (1995) and Yang et al. (2002) have applied the FCT technique to the second-order partial

differential equations in order to improve the accuracy of numerical solutions. However, this method cannot be used directly to solve the

problems of non-linear wave propagation, especially when the non-linearity is strong or the displacements are large.

We presented a modified FCT technique consisting of an additional correction stage added to the FCT algorithm reported by Yang et al.
(2002). The technique is very effective to overcome the problems mentioned before, and it does not destroy the characteristics of non-linear

waves.

In this paper, we firstly deduce the non-linear elastic wave equation for displacements ux and u z in 2-D transversely isotropic media with

a VTI. We then present in detail the modified FCT technique based on second-order central FDs scheme (hereafter referred to as MFCT)

and the stability criterion. This method is numerically tested using several examples to show various non-linear and anisotropic effects. We

also investigate the spectral characteristics of linear and non-linear wave propagation and compare the time-series (waveforms) of linear and

non-linear elastic waves propagating in isotropic and anisotropic media. Our main aim is to draw attentions to the different effects caused by

non-linearity and anisotropy, and with the loss of generality, we only consider the most commonly used, yet simplest, anisotropic media, that

is, transversely isotropic media with a VTI. Other type of anisotropy may be studied in a similar way using the method presented in this paper,

but our general conclusions are expected to also hold essentially for more general anisotropy.

2 N O N - L I N E A R E L A S T I C WAV E E Q UAT I O N A N D F I N I T E - D I F F E R E N C E S C H E M E

The non-linear elastic wave equation is given by Murnaghan (1951), Engelbrecht (1983) and Landau & Lifshitz (1986). Here we use the

general equation presented by Rasolofosaon & Yin (1996):

ρüi = ∂2

∂x j∂xl

[
Ci jkl + (

C (NLphysical)
i jklmn + C (NLgeometrical)

i jklmn

)∂um

∂xn

]
uk, (1)

where

C (NLphysical)
i jklmn = Ci jklmn,

and

C (NLgeometrical)
i jklmn = Ci jlmδkn + Cilnmδ jk + Ciklmδ jn,

where ρ designates density, t is the time, xj is the jth component of position vector, ui is the ith component of displacements, Cijkl and Cijklmn

(i, j, k, l, m, n = 1, 2, 3) are the components of the fourth-rank or second-order elastic (SOE) tensor and the sixth-rank or third-order elastic

(TOE) tensor, respectively, and δ is the Kronecker symbol. There are two types of non-linearity represented in eq. (1), one is C (NLgeometrical)
ijklmn ,
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called geometrical non-linearity, which accounts for the non-linear relationship between strain and displacement when finite deformations are

taken into account. The other type of non-linearity, C (NLphysical)
ijklmn , is ‘physical’, which is contained in the TOE coefficients. We can condense a

pair of indices (i, j) into a single index I following the rule of the standard Voigt notation, that is,11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 → 5,

and 12 → 6. For example, C3312 and C113313 can be simply replaced by C36 and C135, respectively. In VTI media, the independent components

of Cijkl and Cijklmn are C 11, C 12, C 13, C 33, C 44 and C 111, C 112, C 113, C 123, C 133, C 144, C 155, C 222, C 333 and C344, respectively (Hermon 1953).

Helbig (1998, 2000) has given a comprehensive analysis of the properties of these two tensors including some clarifications of terminology

used in the literature.

Substituting these independent components and the corresponding non-zero components of the SOE and TOE constants into eq. (1), and

considering in 2-D media the components ux and u z , we can obtain the non-linear elastic wave equation in VTI media,

ρ(x, z)
∂2U

∂t2
= ∂

∂x

(
A

∂

∂x
+ D

∂

∂z

)
U + ∂

∂z

(
G

∂

∂x
+ Q

∂

∂z

)
U + F, (2)

where

A =
⎡⎣ C11 + (C111 + 3C11) ∂ux

∂x + (C113 + C13) ∂uz
∂z (C155 + C55) ∂uz

∂x + (C155 + C11) ∂ux
∂z

(C155 + 3C55) ∂uz
∂x + (C155 + C55) ∂ux

∂z C55 + (C155 + C13) ∂ux
∂x + (C355 + C55) ∂uz

∂z ,

⎤⎦

D =
⎡⎣ (C155 + C55 + 2C13) ∂uz

∂x + (C155 + C55) ∂ux
∂z C13 + (C113 + C55) ∂ux

∂x + (C133 + C13) ∂uz
∂z

C55 + (C155 + 2C55 + C13) ∂ux
∂x + (C33 + C355) ∂uz

∂z (C355 + C33) ∂uz
∂x + (C355 + C55) ∂ux

∂z

⎤⎦

G =
⎡⎣ (C155 + C55) ∂uz

∂x + (C155 + C11) ∂ux
∂z C55 + (C155 + C11) ∂ux

∂x + (C355 + C13 + 2C55) ∂uz
∂z

C13 + (C113 + C13) ∂ux
∂x + (C133 + C55) ∂uz

∂z (C355 + C55) ∂uz
∂x + (C355 + C55 + 2C13) ∂ux

∂z

⎤⎦
Q =

[
C55 + (C155 + C55) ∂ux

∂x + (C355 + C13) ∂uz
∂z (C355 + C55) ∂uz

∂x + (C355 + 3C55) ∂ux
∂z

(C355 + C33) ∂uz
∂x + (C355 + C55) ∂ux

∂z C33 + (C133 + C13) ∂ux
∂x + (C333 + 3C33) ∂uz

∂z ,

]
where U = (ux, u z)

T , F = ( fx, f z)
T and fx, f z denote the components of the source in x- and z-directions. Using the central difference scheme

to approximate eq. (2) without the source term F, we have

U n+1
i, j = 2U n

i, j − U n−1
i, j + m2 Ai, j

(
U n

i+1, j − 2U n
i, j + U n

i−1, j

) /
ρi, j

+ n2 Ai, j

(
U n

i+1, j − 2U n
i, j + U n

i−1, j

) /
ρi, j

+ l2(Di, j + Gi, j )
(
U n

i+1, j+1 + U n
i−1, j−1 − U n

i+1, j−1 − U n
i−1, j+1

) /
ρi, j ,

(3)

where m = �t/�x, n = �t/�z, l = �t/2
√

�x�z, �x and �z being the spatial increments in x- and z-directions, respectively; �t is the

time-step size, and Un
i, j = U (i�x , j�z, n�t). Similarly, we can apply the discrete scheme to replace ∂U/∂x and ∂U/∂z in the matrices A,

D, G and Q by (Un
i+1, j − Un

i−1, j )/(2�x) and (Un
i, j+1 − Un

i, j−1)/(2�z).

According to the analyses similar to those presented by Richtmyer & Morton (1967) and Yang et al. (2002), and through a series of

mathematical operations, we can obtain the stability criterion for the FD scheme in eq. (3) (see details in Appendix A).

3 T H E M O D I F I E D F C T F I N I T E - D I F F E R E N C E A L G O R I T H M

The numerical modelling of non-linear seismic waves suffers from several problems such as the steep gradients, shocks and unphysical

oscillations and, therefore, the numerical computation may become unstable. To reduce these drawbacks, some special treatments have been

proposed. A typical procedure is given by Kouri et al. (1999), in which the displacement is constrained by u < umax. Another typical procedure

is suggested by Daniel (1997), in which the value of local ∂ui/∂xj is constrained similarly. However, in the first method, the selection of proper

limit umax is difficult: if umax is too large, it will be useless to reduce above drawbacks, if it is too small, it will severely decrease the numerical

accuracy. As for the second method, ui has to be used to calculate ∂ui/∂xj before the correction procedure. After the correction, ∂ui/∂xj will

be used to calculate ui. Obviously, these processes will introduce new errors to the numerical solutions and make the numerical modelling

more difficult.

Fortunately, the FCT technique originally presented by Boris & Book (1973, 1976a,b) and Book et al. (1975), and later extended by Yang

et al. (2002), can be used to tackle some of these problems, since it can not only remove the problems caused by the modelling of non-linear

waves, but also maintain the characteristics of non-linear waves. Following Yang et al. (2002), the FCT-based FD algorithm consists of three

stages: FDs for solving eq. (3); diffusion computation, and offsetting diffusion. However, the validity of the FCT technique is uncertain when

the value of the displacement ui, obtained by numerical calculation is too large in some local zones. As a consequence, we propose to modify

the FCT technique to include an additional stage, in which a limiting function for the solutions is used to correct ui. We shall call this modified

FCT as MFCT (see details in Appendix B).
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4 N U M E R I C A L E X P E R I M E N T S

We put the seismic source with equivalent energy of shear and compressional waves at the centre of the study domain. The source function is

a Ricker wavelet,

S(t) = SA[1 − (2π ft)2/2] exp[−(2π ft)2], (4)

which has to be convolved with the source term F in eq. (2) during numerical computation to obtain displacements. In this paper, we take

the source strength Sa = 0.003 (in unit force), peak frequency f = 30 Hz. In the FD calculations, the time interval �t = 0.2 ms, and

spatial grid intervals �x = �z = 5 m. Note that we vary the value of Sa to give an indication of the source strength (the absolute value

of Sa is only used as a reference, and the relative value between various plots involving variations of Sa is more meaningful. For plotting

purpose, we use small values of Sa in order to achieve some sensible values for displacements ux and ux). To record the forward propagating

waves only, a moving boundary around the seismic source is set during the computation. Johnson & Rasolofosaon (1996) suggested that the

magnitude of the non-linearity is quantified by the ratio between the TOE and the SOE constants. We introduce three global non-linearity

parameters,

SNp = ‖C̃NLphysical‖
‖C̃Linear‖ , (5a)

SNg = ‖C̃NLgeometrical‖
‖C̃Linear‖ , (5b)

SN = SNg + SNp, (5c)

where ‖ · ‖ denotes the norm of a tensor, C̃Linear, C̃NLphysical and C̃NLgeometrical denote the linear elastic tensor, the physical non-linear elastic

tensor and the geometrical non-linear elastic tensor, respectively. SNp and SNg can be compared to determine whether the geometrical

or physical non-linearity dominates the non-linear elastic phenomena in a given material. SN denotes the total non-linear strength. The

explicit expressions of C̃Linear, C̃NLphysicaland C̃NLgeometrical are given in Appendix C. Note that the use of eq. (5) to quantify the magnitude

of non-linearity is not strictly valid. The reason is that though the second-order and third-order tensors have the same dimension (in Pa),

one cannot compare tensors of different ranks. The difficulty is caused by the fact that in Hooke’s law the two tensors are multiplied,

respectively, with εi j and εi j εmn and the strain tensor ε is formally dimensionless. Ideally we would prefer a dimensionless number that

allows us to compare different materials and the proper (and valid) way would be to compare the Cijkl with εmn Cijklmn. Helbig (1998,

2000) has discussed this problem in great details, who suggests to use eigenstrains and eigenstiffnesses using Kelvin notation of elastic

tensors.

To show the different effects caused by anisotropy and non-linearity, we introduce two variables,

Xu−ν(t) = Xu−ν(n�t) =
∑

i, j abs
(
un

i, j − vn
i, j

)∑
i, j abs

(
vn

i, j

) , (6a)

Yu−ν(t) = Yu−ν(n�t) =
∑

i, j abs
(
un

i, j

) − abs
(
vn

i, j

)∑
i, j abs

(
vn

i, j

) , (6b)

where un
i, j and vn

i, j denote model displacements at the location (i, j) when t = n�t for elastic waves propagating in two different kinds of

media, in which the displacements are denoted by u and ν, respectively. The summation in eq. (6) is over number of samples on windowed

traces. The eq. (6) will be used to quantify the effects of anisotropy and non-linearity on recorded seismic traces. Their physical meaning will

be explained in Section 4.2.

The solid media are represented by the respective SOE and TOE constants. In the following numerical examples, the following values

for the SOE and TOE coefficients are used as a reference. For the isotropic medium, we choose C 11 = C 33 = 28.5 GPa, C 13 = C 55 = 9.5 GPa,

C 111 = C 333 = −780 GPa, C 113 = C 133 = −180 GPa, C 155 = C 355 = −150 GPa, and we simply call this material BMIN and obtain SNg =
9.25, SNp = 54.7 and SN = 63.99. For the VTI medium, C 11 = 28.5 GPa, C 33 = 30 GPa, C 13 = 6 GPa, C 55 = 9.5 Gpa, C 111 = −780 GPa,

C 333 = −850 GPa, C 113 = −16 GPa, C 133 = −90 GPa, C 155 = −108 GPa, C 355 = −154 GPa, and we simply call this material BMAIN and

obtain SNg = 9.14, SNp = 50.26 and SN = 59.40. An average value of density ρ = 2.75 g cm −3 is used for all the examples. In our examples

in the next section, we shall vary the values of SNg, SNp and SN so to cover the expected strain levels near source regions.

4.1 MFCT–FD algorithm versus FD

First of all, two facts must be mentioned in order to emphasize the efficiency of the MFCT–FD algorithm. The first fact is that the

MFCT–FD algorithm does not induce additional distortions to the waveforms, which can be substantiated by comparing the numerical

solutions reported by standard FD and MFCT–FD for linear waves. The other fact is that the MFCT–FD algorithm is very efficient to

reduce or even to eliminate the problems of steep gradients, shocks and unphysical oscillations generated by non-linear wave propaga-

tion, which can be seen by comparing the numerical solutions given by FD and MTCT-FD for non-linear waves. To show these two facts,
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Figure 1. Model 1. Seismic source S (0, 500) (x = 0 m, z = 500 m) is located at the centre of an isotropic medium where SNp = 54.74, SN = 63.99, and a

recording point R is set at x = 50 m, z = 500 m.

we consider a simple isotropic full-space (no layers) model with SOE constants as those of BMIN, model1 (the model geometry, source

S and receiver R positions are shown in Fig. 1). The numerical results are shown in Fig. 2. We can see that the MFCT–FD algorithm

is effective to overcome problems from the numerical modelling of non-linear elastic waves without large distortions of the waveforms.

The undesirable oscillation trails appear in the results of the conventional FD method when the non-linearity or source energy becomes

stronger.

4.2 Anisotropic and non-linear effects

In the following we use the notations, X im−n and Y im−n , i = x or i = z, for displacements ux, vx, or u z , v z , respectively, in eqs (6a) and (6b);

Indices m and n denote the type of models used. Four models are used here, namely, linear elastic waves propagating in isotropic media,

which are denoted as ‘IL’; linear elastic waves propagating in anisotropic (VTI) media, denoted as ‘AL’; non-linear elastic waves propagating

in isotropic media, denoted as ‘IN’; and non-linear elastic waves propagating in anisotropic (VTI) media, denoted as ‘AN’. For example,

X xAL−IL represents the x- component calculated by linear elastic wave displacement ux in VTI media and linear elastic wave displacement

vx in isotropic media. X and Y represent the difference in amplitudes (the absolute value of the displacement) and phases (the sign of the

displacement) between u and v corresponding to elastic waves in two kinds of media. Thus, they can be used to investigate the effect due to

the presence of anisotropy or non-linearity.

To investigate the different effects caused by anisotropy and non-linearity, we calculate x− and y− component synthetic seismograms

using the values given to the source strength SA, the frequency f and the variable SN . Fig. 3 shows the results for X xAL−IL, X zAL−IL, Y xAL−IL

and Y zAL−IL for three values of peak frequency f (Figs 3a–d) and two values of source strength SA (Figs 3e–h). As for the plots for different

frequency f , similar synthetic traces are obtained and only small difference among them can be observed. In particular, all of them reach

constant values after seismic waves travel a certain distance. For example, Y xAL−IL and Y zAL−IL reach to 0.065 and 0.0735, respectively. Thus

different frequencies f do not lead to different anisotropic effects. Similarly, from the plots computed for different values of the source strength

SA, we may conclude that the anisotropic effects do not depend on the energy of seismic source. (Note that what we have implied here is

that anisotropy is a property of the medium concerned, and it does not vary with source strengths, frequency or source–medium distance.

Obviously, we understand that anisotropy is always a consequence of internal structures, for example, caused by fabric, cracks and joints, and

thus depends on the ration of wavelength to the characteristic scale-length, in which case both second-order and third-order tensors will be

frequency/scale dependent, see for example Liu et al. 2003, for a discussion about frequency-dependent seismic anisotropy).

To show the non-linear effects more clearly, we increase the value of each TOE constant by a factor of 2, and thus SNg = 9.25, SNp =
109.47 and SN = 118.72. Varying the frequency f , we obtain the corresponding time-series of X xIN−IL, X zIN−IL, Y xIN−IL and Y zIN−IL shown

in Figs 4(a)–(d). We find that there are three distinct stages in these plots: the rapid increase stage, from the initial time to 0.03 s; the steady

change stage, from 0.03 to 0.13 s; the steady increase stage, after 0.13 s. Comparing with Fig. 3, we can see that the values of X are no longer

significantly smaller than those of Y at the same time, but the variation of X is similar to that of Y in Fig. 4. These different features of X and

Y between Figs 3 and 4 can be attributed to the different effects of anisotropy and non-linearity. Since no convergent values of X and Y are

seen in Fig. 4, we can say that the non-linear effect may have some link with the peak frequency f of the seismic source function, which is

expected so if the source function is expressed as displacement, and while strain varies with frequency. Keeping the same values of the TOE

constants and varying the value of source SA, we can obtain the time-series of X xIN−IL, X zIN−IL, Y xIN−IL and Y zIN−IL as shown in Figs 4(e)–(h).

Obviously, the differences between the dotted lines and dashed lines are much smaller than those between the solid lines and dotted lines, and

the slopes of solid lines both in the plots of X and Y after 0.13 s are almost three times larger than those presented in dotted lines and five

times larger than those presented in dashed lines. Accordingly, we know that the non-linear effects that accumulate with traveltime following

a non-linear function become more evident when the source strength SA increases.
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Figure 2. Snapshots and waveforms of linear and non-linear waves reported by FD (the first column and dotted lines in the third column) and MFCT–FD (the

second column and solid lines in the third column) corresponding to model 1. The first and third row (A, B, C, G, H, J) figures correspond to ux; The second

and fourth row (D, E, F, J, K, L) figures correspond to u z . The waveforms recorded at point R (Fig. 1) are shown in plots C, F, I and L.

In the subsequent examples, we only vary the values of each TOE constant and obtain the time-series of X xIN−IL, X zIN−IL, Y xIN−IL and

Y zIN−IL. The results are shown in Fig. 5 for four kinds of non-linearity. We set each TOE constant equal to 2.5 times (SNg = 9.25, SNp =
136.84 and SN = 146.09), twice (SNg = 9.25, SNp = 109.47 and SN = 118.7), 1.2 times SNg = 9.25, SNp = 54.74 and SN = 63.99) and

0.4 times (SNg = 9.25, SNp = 21.89 and SN = 31.14) of that for BMIN. From Fig. 5, we can see that the effect of non-linearity in isotropic

media depends on its strength. The plots of X xIN−IL, X zIN−IL, Y xIN−IL and Y zIN−IL shown in Fig. 5 have similar variations with traveltime as

those shown in Fig. 4. Particularly, we can identify almost the same curves of X xIN−IL, X zIN−IL, Y xIN−IL and Y zIN−IL from Figs 4 and 5 when

the product of SN and SA has the same value. Therefore, we may conclude that the product of SN and SA dominates the non-linear effect of

elastic wave propagation.

Comparing the variations of Y in Figs 4 and 5 with those in Fig. 3, we see that the anisotropic effects have similar strengths as the

non-linear effects when SA is less than 0.0005 (Fig. 4) or SN is less than about 31 (Fig. 5), that is, the product of SA and SN is less than

0.06. We may also consider the case when the strengths of anisotropy and the strength of non-linearity are similar. However, in this case,

both the variations and absolute value of X are clearly different (see Figs 3–5) just because of the different features of linear elastic wave

propagation in anisotropic (VTI) media and non-linear elastic wave propagating in isotropic media. Moreover, the strength of effects introduced

by non-linearity is accumulated with time.

To compare and specify the characteristics of non-linear effects in anisotropic (VTI) media, four kinds of X and Y time-series in different

media are computed (Fig. 6), i.e. X xAL−IL, X zAL−IL, Y xAL−IL and Y zAL−IL ; X xIN−IL, X zIN−IL, Y xIN−IL and Y zIN−IL (same as those in Fig. 5,
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Figure 3. Time-series of X and Y calculated by linear elastic wave propagation in isotropic and anisotropic (VTI) media. Plots a, b, c, d correspond to different

value of initial frequency f , namely, solid lines ( f = 30 Hz), dashed lines ( f = 40 Hz) and dotted lines ( f = 20 Hz). Plots e, f, g, h correspond to different

value of SA, namely, solid lines (SA = 0.008) and dotted lines (SA = 0.002).

SN = 118.72); X xAN−IL, X zAN−IL, Y xAN−IL and Y zAN−IL(SN = 103) and X xAN−AL, X zAN−AL, Y xAN−AL and Y zAN−AL(SN = 98.58). We can see

clearly the following two features of elastic waves in isotropic and VTI media. Firstly, comparing the solid lines with the dotted lines, we see the

non-linear effect in VTI media is more evident than that in isotropic media when the strength of non-linearity in these two media is similar. The

second feature is that the anisotropic effects in non-linear VTI media become enhanced and, therefore, clearer than those in linear VTI media.

4.3 Non-linear elastic waveforms

The non-linear waves exhibit distinct propagation characteristics, such as waveform distortion (Zheng et al. 2004), resonant peak shift (Winkler

et al. 1979), or harmonic generation (Johnson et al. 1987). However, most of these results were obtained for acoustic waves or only one type of

elastic waves propagating in isotropic media. To investigate the characteristics of non-linear elastic waves in both time and frequency domains,

we consider the isotropic and VTI model shown in Fig. 7, where two receivers are located at different points.

The linear (solid lines) and non-linear (dashed lines) elastic waveforms recorded in isotropic medium at receiver R1 are shown in Fig. 8.

We can see the waveform distortions in the time domain. Similarly, in the frequency domain, the resonant peak shift and harmonic generation

corresponding to non-linear elastic waves are enhanced for the displacements ux and u z .
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Figure 4. Time-series of X and Y calculated by non-linear and linear elastic wave propagation in isotropic. Plots a, b, c, d correspond to different value of

initial frequency f , namely, solid lines ( f = 30 Hz), dashed lines ( f = 40 Hz) and dotted lines ( f = 20 Hz). Plots e, f, g, h correspond to different value of SA,

namely, solid lines (SA = 0.002), dashed lines (SA = 0.001) and dotted lines (SA = 0.0005).

The linear and non-linear elastic waveforms recorded in a VTI medium at receiver points R1 and R2 are given in Fig. 9, from which

the distortions of non-linear elastic waveforms in the time domain are also clear. In the frequency domain, the resonant peak shift and

harmonic generation corresponding to the non-linear elastic waves are also obvious in the both displacements ux and u z . In comparison with

the propagation characteristics presented by the non-linear elastic waves propagating in the isotropic medium (Fig. 8), the non-linear elastic

waves in VTI media become more complex, and in particular, they vary with directions (hence anisotropic).

5 D I S C U S S I O N A N D C O N C L U S I O N S

We have proposed a modified flux-corrected transport (MFCT)-based FD method to simultaneously take into account the effects of anisotropy

and non-linearity in wave propagations. It is successfully used to avoid problems such as steep gradients, shocks and unphysical oscillations,

which occur in the modelling of non-linear seismic waves with ‘unmodified’ methods, and to obtain stable and accurate numerical solutions to

non-linear seismic wave equation. Based on the successful implementation of the MFCT algorithm, we may apply it to other FD schemes with
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a higher-order accuracy and free stable criterion to build new numerical methods and achieve more accurate solutions to non-linear elastic

wave equation.

We have demonstrated clearly distinct features between the effects of anisotropy and non-linearity in this paper, although not the anisotropy

but non-linearity considered in this paper is very weak compared with measured results of Rasolofosaon & Yin (1996). Particularly, the elastic

wave propagation characteristics in non-linear media accumulate with traveltime and depend strongly on source energy strength. The product

of source strength SA and magnitude of non-linearity SN is the main factor dominating the non-linear characteristics of the elastic waves.

Therefore, we expect that no obvious non-linear response of seismic waves may be observed when the non-linear medium is far away from

the seismic source (our estimate is three to four times a wavelength) even if the strength of non-linearity of this medium may be very high.

This is definitely different from the anisotropic effects, which do not depend on the medium-source distance. In this aspect, non-linear wave

propagation may be considered as a ‘local’ and accumulated phenomenon depending strongly on source–medium distance, and the presence
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z = 1300 m, respectively. The solid medium is isotropic or VTI media.
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Figure 8. Linear (solid lines) and non-linear (dotted lines) waveforms and their amplitude spectra recorded at R1 in isotropic media (SNp = 109.47, SN =
118.72, Fig. 7). Plots a, b correspond to ux; Plots c, d correspond to u z .

of anisotropy can enhance the non-linear effects of wave propagation (similarly the presence of non-linearity can enhance the anisotropic

effects). Note that some of the non-linear wave propagation phenomena, such as waveform distortions, resonant peak shift and harmonic

generations, can easily be mistaken as due to dispersion or attenuation, and we believe that is why the non-linear effects, though observed in

laboratory data repeatedly, have rarely been reported in field seismic data (while directional anisotropic effects are less likely to be mistaken).

From numerous other studies (e.g. Kazakov et al. 2002; Guyer & Johnson 1999), we know that different model sizes of non-linear media

can display different non-linear characteristics. From our results presented in this paper, we find that non-linear responses display a more

complicated relationship with model size (because of the dependence on source–medium distance) than those displayed by anisotropy (which

does not really depend on source–medium distance).
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A P P E N D I X A : T H E S TA B I L I T Y C R I T E R I O N F O R T H E M F C T – F D S C H E M E

We consider the terms ∂u/∂x ≈ (un
i+1, j − un

i−1, j )/(2�x) and ∂u/∂z ≈ (un
i, j+1 − un

i, j−1)/(2�z) in matrices of the A, D, G, Q as coefficients.

According to the analyses of Richtmyer & Morton (1967) and Yang et al. (2002), we obtain the stability criterion for the FD scheme used in

eq. (3) as follows:

‖A‖m2 + ‖Q‖k2 ≤ ρ if ‖D + G‖ ≤ 2
√‖D‖ · ‖G‖,

max[F(α, β), ‖A‖m2 + ‖Q‖n2] ≤ ρ if ‖D + G‖ > 2
√‖D‖ · ‖G‖,

where

F(α, β) = m2‖A‖ sin2 α + n2‖Q‖ sin2 β + l2‖D + G‖ sin 2α sin 2β,

sin 2α = ‖Q‖
‖D + G‖2

[‖D + G‖4 − 16‖A‖2‖Q‖2

‖A‖2/k4 + ‖Q‖2

]1/2
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and

sin 2β = ‖D + G‖ sin 2α

k
√

4‖Q‖2 + k2‖D + G‖2 sin 2α
,

where k = �z/�x , and ‖ · ‖ denotes a matrix modulus.

The items ∂u/∂x and ∂u/∂z included in each element of matrices of A, D, G and Q can be replaced by max [abs(∂u/∂x)] and max

[abs(∂u/∂z)] in probing modulus of A, D, G and Q. The approximate value of max [abs(∂u/∂x)] and max [abs(∂u/∂z)] can be reported by

the numerical test of small size regions.

A P P E N D I X B : T H E M O D I F I E D C E N T R A L F I N I T E D I F F E R E N C E F C T A L G O R I T H M

This MFCT algorithm presented in this paper consists of the following steps:

1. Application of finite-difference scheme to eq. (3) to compute un+1
i, j where n ≥ 0.

2. Numerically corrected solution. The modified solution is

ũn+1 = limiter
(
un+1

i, j

) = sign
(
un+1

i, j

) · min[abs
(
un+1

i, j

)
, ua, ub], (B1)

where ua = f [abs(un+1
i, j ) − a1 s] + a1 s, ub = a2 s, a2 >a1 > 0, and can be taken as constants; f (x) > 0 if x > 0 and satisfies f (x 1) > f (x 2)

> 0 if x 1 >x 2 > 0, f (x) = 0 if x ≤ 0; s > 0 is a constant depending on the power of the source.

3. Diffusion computation. We distinguish two steps:

3.1 Computing diffusive fluxes at the nth time step:

pn
i+1/2, j = σ1

[(
ũn

i+1, j − ũn
i, j

) − (
ũn−1

i+1, j − ũn−1
i, j

)]
,

qn
i, j+1/2 = σ1

[(
ũn

i, j+1 − ũn
i, j

) − (
ũn−1

i, j+1 − ũn−1
i, j

)]
,

where σ 1(0 ≤ σ 1 ≤ 1) is the smoothing parameter for displacement ui. Usually, it can be chosen as a constant determined from a few

small-scale numerical experiments. In this paper, we find 0.005 ≤ σ 1 ≤ 0.095 is acceptable for our numerical examples.

3.2 Smoothing the corrected solution of eq. (3), ũn+1, through diffusive fluxes p and q:

un+1
i, j

= ũn+1 + (
pn

i+1/2, j − pn
i−1/2, j

) + (
qn

i, j+1/2 − qn
i, j−1/2

)
. (B2)

4. Offsetting diffusion. Here we distinguish three steps:

4.1 Computing diffusive fluxes at the n + 1 time step:

pn+1
i+1/2, j

= σ2

[(
ũn+1

i+1, j − ũn+1
i, j

) − (
ũn

i+1, j − ũn
i, j

)]
,

qn+!
i, j+1/2

= σ2

[(
ũn+1

i, j+1 − ũn+!
i, j

) − (
ũn

i, j+1 − ũn
i, j

)]
,

where σ 2(0 ≤ σ 2 ≤ 1) is the compensation parameter for displacement or amplitude. In this paper, σ 2 is chosen as a constant and taken as

about 5–15 per cent larger than σ 1.

4.2 Utilizing the modified and the corrected solutions to compute the offsetting diffusive fluxes:

xi+1/2, j = (
un+1

i+1, j
− un+1

i, j

) − (
ũn

i+1, j − ũn
i, j

)
,

zi, j+1/2 = (
un+1

i, j+1
− un+!

i, j

) − (
ũn

i, j+1 − ũn
i, j

)
.

4.3 Utilizing the offsetting diffusive fluxes and modifying the solution ūn+1
i, j again, then we finally obtain the corrected solution

un+1
i, j = un+1

i, j
− (

xi+1/2, j − xi−1/2, j

) − (
zi, j+1/2

− zi, j−1/2

)
, (B3)

where

xi+1/2, j = sx · max
{

0, min
[
sx · xi−1/2, j , abs

(
pn+1

i+1/2, j

)
, sx · xi+3/2, j

]}
,

zi, j+1/2
= sz · max

{
0, min

[
sz · zi, j−1/2, abs

(
qn+1

i, j+1/2

)
, sz · zi, j+3/2

]}
,

sx = sign
(

pn+1
i+1/2, j

)
, sz = sign

(
qn+1

i, j+1/2

)
.

We perform the numerical calculation by repeating stages 1 ∼ 4.

A P P E N D I X C : T H E N O R M S O F S O E A N D T O E V E C T O R S

To represent the global non-linearity in 3-D media, the explicit expressions of the norms C̃Linear, C̃NLphysical and C̃NLgeometrical are given below.

To study the differences between the SOE and TOE coefficients, the absolute value of each elastic constant is used. Note that we use the sum

of absolute values to give a rough estimate of the strength of non-linearity only and it would be more proper to use the sum of the squared
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values (or Euclidean norm) or coordinate-free representation of elastic tensors as pointed by one of the reviewers Professor K. Helbig in his

paper (Helbig 2000). The norm of the linear elastic coefficients is

‖C̃Linear‖ = |C11| + 2|C12| + 2|C13| + 4|C14| + 4|C15| + 4|C16| + |C22|
+ 2|C23| + 4|C24| + 4|C25| + 4|C26| + |C33| + 4|C34| + 4|C35|
+ 4|C36| + 4|C44| + 8|C45| + 8|C46| + 4|C55| + 8|C56| + 4|C66|. (C1)

The norm of the physical non-linear elastic coefficients is

‖C̃NLphysical‖ = |C111| + 3 |C112| + 3 |C113| + 6 |C114| + 6 |C115| + 6 |C116| + 3 |C122| + 6 |C123|
+ 12 |C124| + 12 |C125| + 12 |C126| + 3 |C133| + 12 |C134| + 12 |C135| + 12 |C136|
+ 12 |C144| + 24 |C145| + 24 |C146| + +12 |C155| + 24 |C156| + 12 |C166| + |C222|
+ 3 |C223| + 6 |C224| + 6 |C225| + 6 |C226| + 3 |C233| + 12 |C234| + 12 |C235|
+ 12 |C236| + 12 |C244| + 24 |C245| + 24 |C246| + 12 |C255| + 24 |C256| + 12 |C266|
+ |C333| + 6 |C334| + 6 |C335| + 6 |C336| + 12 |C344| + 24 |C345| + 24 |C346|
+ 12 |C355| + 24 |C356| + 12 |C366| + 8 |C444| + 24 |C445| + 24 |C446| + 24 |C455|
+ 48 |C456| + 24 |C466| + 8 |C555| + 24 |C556| + 24 |C566| + 8 |C666| . (C2)

The norm of the geometrical non-linear elastic tensor is

‖C̃NLgeometrical‖ = 15|C11| + 12|C12| + 12|C13| + 24|C14| + 60|C15| + 60|C16|
+ 15|C22| + 12|C23| + 60|C24| + 24|C25| + 60|C26| + 15|C33|
+ 60|C34| + 60|C35| + 24|C36| + 42|C44| + 84|C45| + 84|C46|
+ 42|C55| + 84|C56| + 42|C66| + 2 |2C36 + C45| + 4 |C36 + 4C45|
+ 4 |2C25 + C46| + 4 |C25 + 2C46| + 2 |2C13 + C55| + 2 |C13 + 2C55|
+ 4 |2C14 + C56| + 4 |C14 + 2C56| + 2 |2C12 + C66| + 2 |C12 + 2C66| . (C3)

Only the values of C 11, C 13, C 33, C 55, C 111, C 113, C 133, C 155 and C355are needed for a VTI medium; the other elastic tensors in eqs (C1),

(C2) and (C3) are set equal to zero when we calculate SNp, SNg and SN given in eq. (5).
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