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Summary In this paper, the potential for identifying discharge and/or flood hydrograph from
remotely sensed data is explored. The parameter identification process is based on the min-
imization of the difference between the solution of the model equations and the observed
system response which consists in maximum inundation extent. The river geometry is sup-
posed to be known, effect of the accuracy of these data on the estimation has been tested.
Sensitivity of the model to individual parameters is then assessed using an extension of the
generalized sensitivity analysis. Synthetic data have been used to test the methodology.
Results show that the Nash criterion of the estimated flood hydrograph is higher than 0.9
for all the tested cases.
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Introduction

According to Bjerklie et al. (2003) and Fekete et al.
(1999), less than 60% of the runoff from the continents is
monitored at the point of inflow in the ocean, and the dis-
tribution of runoff within the continent is even less moni-
tored. Moreover, the number of operating hydrometric
gauges is decreasing since 1980s, the delivering time is of-
ten greater than several months, and there is a great dis-
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parity in the gauges spatial distribution (Bjerklie et al.,
2005; Seyler, 2003). Barrett (1998) points out that hydro-
graphic data obtained from satellites and other remote
sources offer the possibility of broad and potentially fre-
quent global coverage of river discharge estimates. Esti-
mating river discharge using remotely sensed data may
then be a mean to increase the global streamflow monitor-
ing network. Moreover, remote sensing is able to provide
information over large areas, including those where
ground-based data is difficult to obtain. There is therefore
a need to develop discharge estimation procedures that do
not require ground-based information. Estimating dis-
d.
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Notation

A cross-sectional area [m2]
B flow top width [m]
B0 main channel width [m]
g gravitational acceleration (9.81 m s�2)
H water depth [m]
Lsill sill length [m]
‘ parameter affecting the length of the generated

flood wave
n Manning roughness coefficient [s m�1/3]
P sill height [m]
Q discharge [m3 s�1]
Qb base flow [m3.s�1]
Qp peak flow [m3.s�1]
RH hydraulic radius [m]
Sf friction slope (slope of energy grade line)

[m m�1]
t time [s]

tp time to peak [s]
U cross-sectional averaged velocity [m s�1]
x distance along the channel [m]
X model state vector
Z stage [m]
lD energy-loss coefficient of the sill
r noise level, standard variation of noise within a

sample
U performance function

Superscripts
o observed value
s simulated value

Subscripts
L related to the left bank
R related to the right bank
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charge in river from hydraulic information obtained exclu-
sively from aerial and satellite platforms has been ex-
plored by Bjerklie et al. (2003), Bjerklie et al. (2005)
and Smith (1997). They mainly develop general relation-
ships between river characteristics than can be observed
from space-based platforms and river discharge.

The methodology presented in this paper takes advan-
tage of optimization methods to minimize discrepancies be-
tween simulations and observations of flood extent fields in
order to estimate river discharge. As assessed before, there
is a clear case for the estimation of effective values of dis-
charge from space observations. Water surface width can be
measured from a variety of sensors and imagers mounted on
satellites and aircrafts. The accuracy of the water surface
estimates measured from the images is, in part, a function
of the resolution of the images and the accuracy of the mea-
suring tool (Bjerklie et al., 2005). For instance, panchro-
matic images have spatial resolution as high as a few
meters and synthetic aperture radar (SAR) imagers as high
as 10 m (Bjerklie et al., 2003). However, width estimates
using any imagers may be subject to other errors associated
for instance with clouds, vegetation obscuring the banks or
wind roughening in the case of SAR. Valley and channel fea-
tures such as channel length can be observed from different
data sources including visible images, DEMs and topographic
map information (Bjerklie et al., 2003).

This paper presents an analysis of the possibility to mon-
itor discharge from space using imaging sensors. The analy-
sis is carried out by applying a Saint-Venant based routing
routine to a flood wave in a synthetic river channel. The
routing parameters are identified by minimizing the differ-
ence between simulated and observed river top widths.
The channel geometry and flow resistance variables are
known. An evaluation of the uncertainties introduced by er-
rors in the observations of the river channel surface is also
proposed. The paper initially describes the model which
has been applied, and then it discusses the sensitivity anal-
ysis. This is followed by a presentation of the parameter
identification procedure and the results. Results presented
in this paper have been obtained with synthetic data that
have been used in order to develop the method. Implemen-
tations using field data are now in progress.
Approach

Model description

One-dimensional flow routing approaches still form the
majority of traditional numerical models used in practical
river engineering (Pappenberger et al., 2005). Moreover,
when Horritt and Bates (2002) compared 1D and 2D model
codes (HEC-RAS, LISFLOOD-FP and TELEMAC-2D) in an opti-
mization framework, they found that in some cases, 1D
models may be very effective in predicting flood extent.
Therefore, the model that has been developed solves the
one-dimensional Saint-Venant equations:
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where A is the cross-sectional area, Q the discharge, U the
cross-sectional averaged velocity, g the gravitational accel-

eration, Z the stage, Sf the friction slope: Sf ¼ n2Q2

R
4=3
H

A2, n the

Manning roughness coefficient, RH the hydraulic radius, t
the time and x the distance along the channel.

The compound channel modeling considered uses the
Einstein formula which supposes the equality of friction
slopes and velocities in all the cross-sectional subdivisions
(Carlier, 1982; USACE, 1997):

Sfji ¼ Sfjiþ1; i ¼ 1; . . . ; I

Uji ¼ Ujiþ1; i ¼ 1; . . . ; I

�
ð2Þ

Sfji is the friction slope of subdivision i, Uji the averaged
velocity of subdivision i and I the total number of subdivi-
sions in the cross-section. It allows calculation of a compos-
ite coefficient of roughness, function of the water depth.
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Case study

The basis for the gauged data to be used in the identification
process was generated by simulating a hydrodynamic wave
through a 5 km long model river. Fig. 1 represents the uni-
form channel cross-section. The channel roughness was cho-
sen to be representative of natural rivers with a Manning
value of 0.033 s m�1/3 for the main channel and 0.1 s m�1/3

for the overbanks. The upstream inflow Q(x = x1,t) at time
t was generated by the following formula (Khatibi et al.,
1997):

Qðx ¼ x1; tÞ ¼ Q b þ Q p �
t

tp
exp 1� t

tp

� �� �‘
ð3Þ

The chosen parametric values are the following: base flow
Qb = 100 m3 s�1, peak flow Qp = 500 m3 s�1, time to peak
tp = 5 · 103 s and exponent ‘ = 16. The value of the parame-
ter ‘ affects the length of the flood wave as it can be seen in
Fig. 2. A flow depth relationship based on the Manning equa-
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Figure 2 Effect of the value of the length of the
tion was assumed to describe the downstream boundary
condition:

Hðx ¼ xJ; tÞ ¼
Qðx ¼ xJ; tÞ
lDLsill

ffiffiffiffiffi
2g

p
 !2=3

þ P ð4Þ

where H(x = xJ,t) is total head, lD = 0.38 an energy-loss
coefficient, Lsill = 50 m sill length and P = 4 m sill height. In
order to solve the Saint-Venant unsteady flow equation,
the state of flow – Z(x,t = 0) and Q(x,t = 0) – must be
known at all cross-sections at the beginning of the simula-
tion. The initial condition has been chosen as steady flow
condition: discharge at t = 0 is equal to base flow
Qb = 100 m3 s�1 at each cross-section. The stage Z(x,t = 0)
associated with the steady flow is computed by solving the
steady-state Saint-Venant equations using the fourth-order
Runge–Kutta method.

These data were sufficient to simulate inflow flood wave
through the model river. The system of governing Eq. (1) is
approximated using the Preissmann four-point scheme (Pre-
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issmann, 1961). The resulting system of finite difference is
solved by a direct decomposition method called double
sweep method or Thomas algorithm (Langendoen, 2000).
The channel has been divided into sectional nodes spaced
out at 100 m. The simulation was carried out using a time
step Dt of 500 s and an implicit difference weighting factor
of 2/3. The total duration of the simulation is of 15,500 s.

The numerically true simulated values where obtained by
running the model to predict the discharges and stages
throughout the system. Knowing the stage and the cross-
section geometry, it is then possible to calculate the true
extent of the flow B(x,t) throughout the system, which is
the basis for the generation of the observation data neces-
sary for identification of the discharge.
Table 1 Induced data error for each noise level,
jBo � BjL or R is the variation of flow top width for each bank,
jBo � Bj is the total variation of flow top width

Noise level r jBo � BjL or R (m) jBo � Bj (m)

No. 1 (lowest) 0.5 0.7
No. 2 1.0 1.4
No. 3 1.4 2.0
No. 4 1.9 2.7
No. 5 2.4 3.4
No. 6 (highest) 2.9 4.0
Discharge estimating methodology

Identification procedure

Flow state equations describe open-channel hydrodynamics
through a number of complex equations in terms of dis-
charge and stage. These equations involve geometric and
hydrometric parameters and sometimes a number of empir-
ical parameters specifying the system particulars. Given the
values of these parameters, it is possible to solve the Saint-
Venant equations to simulate the flow conditions. As some
open-channel parameters often lack exact values, flow-
state equations may be formulated to ascertain the values
of these parameters. The formulation of flow-state equa-
tions to this end is referred to under the generic name of in-
verse problem (Khatibi et al., 2001). This study formulates
Saint-Venant based equations to estimate the upstream
boundary inflow of a flood event.

The inverse problem is formulated as a non-linear optimi-
zation model. X is the vector of unknown parameters. The
unknown parameters will be selected so as to minimize an
objective function that measures the distance between
the numerical solution and the observations (Eq. (5)). This
distance is chosen as the sum of squares of the differences
between the simulated and measured values of flow top
width: it is a widely used error criterion in hydrology (Nash
and Sutcliffe, 1970).

UðXÞ ¼
XJ
j¼1

ðBo
j � BðXÞjsjÞ

2
� 	

ð5Þ

j is the spatial subscript. It varies recursively from 1 to J, J
being the number of cross-sections. Bo

j is the observed flow
top width of cross-section j and BðXÞjsj is the flow top width
at cross-section j, simulated using the estimated parame-
ters X. In order to minimize the performance function U
in Eq. (5), an iterative minimization procedure is required
(Ding et al., 2004). The minimization is carried out using
traditional algorithms based on the non-linear least square
technique (Madsen, 2003): a quasi-Newton method has been
chosen in this study.

The numerical test procedure consists of two steps: (i)
selecting a set of reference parameters Xref, solving the
flow equations to generate the basis for the observed data.
The numerically true simulated values at each computa-
tional node are then contaminated with Gaussian noise in
order to emulate remote sensing data, Bo (Following §).
(ii) The inverse problem is implemented to identify the set
of reference parameters Xref from the observations Bo

(i.e. the flow top widths contaminated with noise).

Generation of gauged data

Assuming that noise contained in satellite data is normally
distributed, noise-free top width values B = B(x,t), as de-
scribed above, were contaminated with Gaussian noise,
emulating satellite data. Samples of data-errors have been
generated by changing the seeding of the random number
generator with a prescribed noise level r, allowing a study
of the effect of data-errors on the identified parameters,
similar to Khatibi et al. (2001). Noise level r refers to the
standard deviation of noises within a sample. Six noise lev-
els have been introduced, resulting in an average variation
of flow top width at nodal points jBo � Bj from 1 to 4 m (Ta-
ble 1) which is approximately the resolution that can be pro-
vided by the panchromatic images of IKONOS for instance.
At the maximum extent, averaged flow top width is about
3 km.

The use of synthetic data provides the following facili-
ties: (i) as the true value of the parameters to be estimated
is known, it becomes possible to evaluate the performances
of the proposed model; (ii) there is no restriction on the
number of synthetically-generated gauged events whereas
the field data are often scarce. Notwithstanding the above,
synthetic data cannot replace field data, as a model theo-
retically studied using synthetic data has to be tested using
field data. As already discussed in the introduction, both
water surface width and water surface area can be mea-
sured from satellites or aircrafts. Panchromatic imagers
have spatial resolution as high as 1 m (1 m for IKONOS,
2.5 m for SPOT 5) and SAR imagers as high as 5 m (5 m for
NASA/JPL AIRSAR, 10 m for ERS-1 SAR). However, the ability
of a sensor to observe water surface width not only depends
on the imager resolution. Indeed, width estimates are sub-
ject to errors associated with vegetation obscuring the
water surface and clouds, or surface wind in the case of
SAR which can observe through the cloud cover. To improve
the accuracy, the width can be estimated by dividing the
measured total water surface area of the reach by the reach
length. In that case, a suggested reach length for averaging
is at least 10 times the channel width. Bjerklie et al. (2005)
uses aerial photos at 1:10,000 scale and found an accuracy
for width measurement of approximately 4 m. They also
emphasize the fact that the accuracy would generally be
greater for large rivers.
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Another constraint of remote sources is the repeat cycle:
high resolution data have to be consistently acquired at a
high frequency to detect brief flood event (Smith et al.,
1996). In that case, aerial observations can provide denser
time series than satellite ones.

Sensitivity to individual parameters

In this section, part of the generalized likelihood uncer-
tainty estimation (GLUE) methodology is introduced; it will
then be implemented to assess sensitivity of the model to
individual parameters. A widely used criterion, the effi-
ciency of the model (Eq. (6)), is taken as a measure to eval-
uate model predictions.
Table 2 Parameter ranges used in Monte-Carlo simulations

Parameter Description Minimum Maximum

Qb Base flow (m3 s�1) 90 110
Qp Peak flow (m3 s�1) 450 550
tp Time to peak (s) 4500 5500
‘ Length of flood wave (–) 14.4 17.6
Methodology of the sensitivity analysis

GLUE is a Bayesian Monte-Carlo method which allows that
different parameter sets within a model structure might
perform equally well in reproducing the observations (Beven
and Binley, 1992; Freer et al., 1996; Pappenberger et al.,
2005). Uncertainty is generic to the application of environ-
mental models and it might be difficult to decide between
different sets of effective parameter values (Beven,
2004). The result is the equifinality problem, defines by Bev-
en (1993). In GLUE, this problem is acknowledged by running
the model with different randomly chosen sets of parameter
values. The procedure used in this study can be summarized
as follows (Beven and Binley, 1992; Freer et al., 1996):

Step 1. Definition of a likelihood measure intended as a
measure of how well the model conforms to the observed
behavior of the system. An example of likelihood measure
is the model efficiency Le, defined by

Le ¼ 1� r2
e

r2
o

; r2
e < r2

o ð6Þ

where r2
e is the variance of the errors and r2

o is the variance
of the observations, that is to say, for this study:

Le ¼ 1�

PJ
j¼1
ððBo

j � BðXÞjsjÞ
2Þ

PJ
j¼1
ððBo

j � BoÞ2Þ
ð7Þ

Bo is the average of the observed flow top widths.
Step 2. Definition of the initial range or distribution of

parameter values to be considered. Uniform distributions
are mainly used in lack of prior information.

Step 3. Monte-Carlo simulations achieved by running the
model with different randomly chosen sets of parameter
values. Each set of parameter values is assigned a likelihood
of being a simulator of the system, on the basis of the cho-
sen likelihood measure.

Step 4. Sensitivity to individual parameters. The sensi-
tivity of the model predictions to the individual parameters
can be tested by using the generalized sensitivity analysis
(Hornberger and Spear, 1981). The authors constructed dis-
tributions for each parameter conditioned on a classifica-
tion of the Monte-Carlo simulations into two classes:
behavioral and non-behavioral. The criterion for differenti-
ating between the two classes is a subjectively chosen value
of a goodness of fit measure, like the likelihood measure
used in the GLUE procedure. A strong difference between
distributions reveals a sensitive parameter. A direct
measure of the separation of the cumulative distribution
functions can be the statistic drs used in the Kolmogorov–
Smirnov two sample test:

drs ¼ sup
X
jSrðXÞ � SsðXÞj ð8Þ

where Sr and Ss are the sample distribution functions of the
parameter X corresponding to the cumulative distribution
functions of the behavioral and non-behavioral categories
respectively, for r behaviors and s non-behaviors. Large val-
ues of drs indicate that the parameter is important for sim-
ulating the behavior. However, this is only a univariate
analysis, it is possible that cumulative distribution functions
of one parameter exhibit no separation under the behavioral
classification and yet this parameter could be crucial to a
successful simulation, by virtue of a strong correlation with
other parameters under the behavior.

Results

Sensitivity to 4 parameters has been tested. Ranges of var-
iation of the parameters are listed in Table 2. Prior param-
eter distributions have been chosen uniform. The behavior
criterion is defined as followed: (i) Le > 0:8: simulations
behavioral, (ii) Le 6 0:8: simulations non-behavioral.

Of 5000 simulation runs conducted in the Monte-Carlo
experiments, 1132 fell in the behavior category with 3868
in the non-behavior class. In Fig. 3 it can be seen that good
and poor simulations are available throughout the same
parameter range. It suggests that the parameter response
surface is very complex and confirms that the value of a sin-
gle parameter has little meaning when taken outside the
context of the values of the other parameters.

A ranking of individual parameters on the basis of the
separation in the distribution functions (Eq. (8)) classified
1 of the 4 parameters as unimportant for mimicking the
behavior (Table 3). Values of the flow top width seems to
be very sensitive to the base flow Qb. Parameters Qp, tp
and ‘ show a large range of equifinality. Next step will be
to test the possibility of identifying the hydrograph using a
traditional optimization method.

Estimating river discharge

Implementation of the optimization method

In a first step, the discharge along the channel at the initial
time Q(x,t = 0) is estimated. Then, starting from this initial
condition, the identified discharge along the channel, the
discharge at the upstream boundary for each time step
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Figure 3 Scatter plot of efficiency results for each parameter in Monte-Carlo simulations; likelihood measure of Eq. (7).

Table 3 Ranking of individual parameters on the basis of
the Kolmogorov–Smirnov statistic and corresponding level of
significance for 1132 behavioral simulations of 5000 simula-
tion runs

Parameter drs Level of significance (%)

Qb 0.29 >99.9
tp 0.10 >99.9
Qp 0.06 >99.5
‘ 0.03 <90.0
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Q(x = x1,t) is estimated. The cross-section geometry is con-
sidered as known (Fig. 4(a)). The true values of the geomet-
ric parameters – depth, slope, flow resistances – have been
contaminated with Gaussian noise for the emulation of
noise normally contained in field data (Fig. 4(b)). These geo-
metric data are necessary to estimate discharge according
to the methodology that has been implemented here. Chan-
nel features such as channel slope can be observed from
DEMs and topographic map information, the channel width
can be measured from different sensors and imagers in
the same way as the water surface width (§ Generation of
gauged data). Lots of work has been done in the estimation
of riverbed roughness, see for instance Khatibi et al. (1997);
Atanov et al. (1999); Werner et al. (2005), but there are
only few attempts to retrieve information on riverbed
geometry using remote sensing observations (Roux and Dar-
tus, 2005). Measuring or estimating these variables from re-
mote sources still remains a difficult task.

Performance function
In order to take into account the asymmetry of the flooded
area, the chosen objective function represents the sum of
squares of the differences between gauged flow top widths
and simulated flow top widths for each bank. At each time
step, the objective function is formulated as follows:

UðXkÞ ¼
XJ
j¼1

Bojkj � BsðXkÞjkj
� 	2

R
þ Bojkj � BsðXkÞjkj
� 	2

L

� �
ð9Þ

k is the temporal superscript. The subscript R concerns the
values related to the right bank, the subscript L the ones re-
lated to the left bank.

This performance function is minimized at each time
step. At t = 0, X0 is the discharge along the channel:
X0 = Q(x,t = 0); for t = k,k varying from 1 to K, Xk is the dis-
charge at the upstream boundary: Xk = Q(x = x1,t = k).

The following results have been obtained by assimilation
of 32 data sets, each set is a (51,1) vector of noisy flow top
widths at time t = k. For each time step and for each noise
level r, 30 gauged samples have been generated by changing
the seeding of the random number generator as explained
before. Sample here is used in the sense of gauged event.
All the figures in this section represent an average of the
identified values of each 30 samples of the different data
sets. The initial estimates of the parameters and the bound
constraints of the algorithm are listed Table 4.
Identification of the initial state of flow

If the geometry is known exactly (Fig. 4(a)), that is to say
without introduction of noise, estimates of the initial dis-
charge at nodal points oscillate around the true value as it
can be seen on Fig. 5. Further investigation was also carried
out using Student’s t distribution to calculate confidence
intervals (Khatibi et al., 2001). If we consider the mean of
the estimates at nodal points, the identified value varies



Figure 4 (a) Noise free geometry, (b) geometry contaminated with Gaussian noise.

Table 4 Initial estimates and bound constraints of the
minimization algorithm

Q(x,t = 0) Q(x = x1,t = k)

Initial estimate (m3 s�1) 150 Q(x = x1,t = k � 1)
Lower bound (m3 s�1) 80 100
Upper bound (m3 s�1) 180 1000

264 H. Roux, D. Dartus
from 99.8 m3 s�1 for the lowest observation noise level to
97.9 m3 s�1 for the highest observation noise level. The true
value of the initial discharge is estimated with a relative er-
ror of less than 2% for each noise level.
When the geometry is contaminated with Gaussian noise
for the emulation of measurement uncertainties
(Fig. 4(b)), the estimate of the initial discharge could be
not satisfactory: it can present a relative error of approx-
imately 30% for each noise level. The oscillations of the
estimated discharge may be due to the lack of a prior or
background estimate of the parameters. Indeed, for data
assimilation methods, regularization may be provided in
this form. A new objective function may then be formu-
lated as the sum of a background term and an observation
term. The background term measures the distance be-
tween the prior and the current estimate; the observation
term represents the distance between observation and
simulation.
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Identification of the flow at the upstream end

The initial stages at nodal points are calculated by solving
the steady-state Saint-Venant equations using the estimates
of the initial discharge at nodal points (§ Identification of
the initial state of flow). These stages and discharges at no-
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Figure 6 Mean of identified discharge at the upstream end of
contaminated with Gaussian noise.
dal points are the initial conditions necessary to solve the
Saint-Venant unsteady flow equations. The discharge at
the upstream boundary is estimated at each time step by
minimization of the performance function (Eq. (9)).

When the geometry is known exactly the upstream dis-
charge is estimated with a Nash criterion (Eq. (10)) of more
than 0.99 for all the data noise levels.

Nash ¼ 1�
PK

k¼1 Qx¼x1 j
k � Q s

x¼x1 j
k

� 	2
PK

k¼1 Qx¼x1 j
k � Qx¼x1

� 	2 ð10Þ

Qx¼x1 j
k ¼ Qðx ¼ x1; t ¼ kÞ is the true upstream discharge at

time t = k, Q s
x¼x1 j

k is the estimated upstream discharge at
time t = k and Qx¼x1 is the average of the true upstream dis-
charges during the considered period (Nash and Sutcliffe,
1970). Even using the geometry contaminated with Gaussian
noise, the discharge at the upstream end of the reach is al-
ways identified with a Nash criterion greater than 0.9
(Fig. 6) which is a good performance for flood prevention.

Conclusions

There are lots of applications for remote discharge esti-
mates, for rivers that have poor accessibility, for a global
coverage which will provide frequent estimate of discharge
over large areas.

The approach presented in this paper uses the most com-
mon hydraulic property studied by remote sensing: the inun-
dation extent field (Bates et al., 1997). Measurements of
width using remote sources can reach accuracy as high as
some meters, as the synthetic gauged data used in this
study. The accuracy would generally be greater in the case
of large rivers. Moreover, the frequency of satellite obser-
vations is not compatible with the tracking of a brief flood
2.5 3 3.5 4

me (h)

True value
Identified value

the reach for the highest observation noise level, geometry
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wave. From these perspectives, potential application of the
method presented in this paper to remote sensing can be
considered in the context of large rivers. Aerial observations
constitute an alternative to obtain denser time series and
detect a brief flood wave. The successful use of this meth-
odology will also depend on the ability to measure and/or to
estimate river geometry from space. To this end, develop-
ment and verification of this technology will greatly en-
hance the potential ability to measure river discharge
from space (Bjerklie et al., 2003).

Estimation of discharge over a reach by minimization of
an objective function (Eq. (9)) can be used to derive a reach
averaged value with reasonable accuracy, provided that the
geometry of the river is well known. Estimation of discharge
over a time period by minimization of the same objective
function (Eq. (9)) gives good results, even when the geome-
try of the river is contaminated with noise. For all the obser-
vation noise levels, a comparison of the estimations with
the ‘‘true’’ hydrograph shows that the procedure gives good
estimates, with accuracy better than 20%. Traditional
ground based, non-contact measurements, like the slope-
area method usually provide an accuracy of ±20% (Bjerklie
et al., 2005), accuracy of the estimate provided using re-
mote sensed information may then be comparable.

A strong point of the methodology of this study is that it
is easily adaptable to the new sorts of data that the pro-
gresses in telemetry are going to make available in a few
years (Smith, 1997). Indeed, satellite altimetry (TOPEX/
POSEIDON launched in August 1992, or ENVISAT launched
in March 2002) has been able to measure time series of
water levels on very large rivers, such as the Amazon (Birk-
ett, 1998; Koblinsky et al., 1993), the Paraná or the Gange.
If water levels were also available, the assimilation problem
could be formulated in a multi-objective context in which
different cost functions those measure different distances,
one related to the water level and one related to the flow
top width for instance, can be optimized simultaneously.
In this framework, the calibration will be tailored to the
specific model application being considered (Madsen, 2003).
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