Abstract:
The additive logratio (alr) transformation has been used in several case studies to predict regionalized compositions using standard geostatistical estimation methods such as ordinary kriging and ordinary cokriging. It is a simple method that allows application to transformed data all the body of knowledge available for geostatistical analysis of coregionalizations without a constant sum constraint. To compare the performance of methods, it is customary to use a univariate crossvalidation approach based on the leaving-one-out technique to evaluate the performance for each attribute separately. For multivariate observations this approach is difficult to interpret in terms of overall performance. Therefore, we propose using appropriate distances in real space and in the simplex, to improve the crossvalidation approach and, going a step forward, to adapt the concept of stress from multidimensional scaling to obtain a global measure of performance for each method. The Lyons West oil field of Kansas is used to illustrate the impactof using different distances in the performance of ordinary kriging versus ordinary cokriging.