MANGANESE AND IRON IN THE WHITE SEA: SEDIMENTATION AND DIAGENESIS
- DSpace Home
- →
- Геология России
- →
- ELibrary
- →
- View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
dc.contributor.author | Rozanov A.G. | |
dc.contributor.author | Volkov I.I. | |
dc.contributor.author | Yudin M.V. | |
dc.contributor.author | Kokryatskaya N.M. | |
dc.date.accessioned | 2024-12-28T06:16:13Z | |
dc.date.available | 2024-12-28T06:16:13Z | |
dc.date.issued | 2006 | |
dc.identifier | https://www.elibrary.ru/item.asp?id=13532280 | |
dc.identifier.citation | Lithology and Mineral Resources, 2006, 41, 5, 483-501 | |
dc.identifier.issn | 0024-4902 | |
dc.identifier.uri | https://repository.geologyscience.ru/handle/123456789/47143 | |
dc.description.abstract | Iron and manganese in bottom sediments studied along the sublatitudinal transect from Kandalaksha to Arkhangelsk are characterized by various contents and forms depending on sedimentation environments, grain size of sediments, and diagenetic processes. The latter include redistribution of reactive forms leading to enrichment in Fe and Mn of the surface sediments, formation of films, incrustations, and ferromanganese nodules. Variations in the total Fe content (2-8%) are accompanied by changes in the concentration of its reactive forms (acid extraction) and the concentration of dissolved Fe in the interstitial water (1-14 μM). Variations in the Mn content in sediments (0.03-3.7%) and the interstitial water (up to 500 μM) correspond to a high diagenetic mobility of this element. Changes in the valence of chemical elements results in the redox stratification of sediment strata with maximum concentrations of Fe, Mn, and sulfides. Organic matter of sediments with a considerable terrestrial constituent is oxidized by bottom water oxygen mainly at the sediment surface or in anaerobic conditions within the sediment strata. The role of inorganic components in organic matter oxidation changes from surface sediments, where manganese oxyhydroxide dominates among oxidants, to deeper layers, where sulfate of interstitial water serves as the main oxidant. Differences in river runoff and hydrodynamics are responsible for geochemical asymmetry of the transect. The deep Kandalaksha Bay serves as a sediment trap for manganese (Mn content in sediments varies within 0.5-0.7%), whereas the sedimentary environment in the Dvina Bay promotes its removal from sediments (Mn 0.05%). © Pleiades Publishing, Inc. 2006. | |
dc.title | MANGANESE AND IRON IN THE WHITE SEA: SEDIMENTATION AND DIAGENESIS | |
dc.type | Статья | |
dc.identifier.doi | 10.1134/S0024490206050087 |
Files in this item
This item appears in the following Collection(s)
-
ELibrary
Метаданные публикаций с сайта https://www.elibrary.ru