Abstract:
Infrared spectroscopy and ion micro-probe measurements showed that the major constituent minerals of eclogites from the Kokchetav massif, which have been subducted to ~180 km depths, contain significant amounts of water up to 870 ppm H2O (by weight) in omphacite, 130 ppm H2O in garnet and 740 ppm H2O in rutile. Omphacite shows three hydroxyl absorption bands at 3440-3460, 3500-3530 and 3600-3625 cm-1, garnet has a single band at 3580-3630 cm-1 and rutile has a single sharp band at 3280 cm-1. The hydroxyl absorbance at these wavenumbers changes with the crystal orientation in polarized infrared radiation, indicating that the water is structurally incorporated in these minerals. The water contents in omphacite and garnet increase systematically with the metamorphic pressure of the host eclogites. The partitioning coefficient of the water content between coexisting garnet and omphacite is similar in different eclogites, DGrt/Omp~0.1-0.2, but decreases slightly at high pressure. Based on the mineral proportions of the eclogites, we estimate bulk-rock water content in the eclogites ranging from 3070 to 300 ppm H2O (by weight). Although hydrous minerals are absent in the diamond-grade eclogite (~60 kbar and ~1000 °C), trace amounts of water are incorporated in the nominally anhydrous minerals such as omphacite and garnet. The presence of significant water in these minerals implies that the subducting oceanic crust can transport considerable amounts of water into the deep upper mantle beyond the stability of hydrous minerals. Such water may be stored in the deep upper mantle and have an important influence on dynamics in the Earth's interior. © 2005 Elsevier B.V. All rights reserved.