Bottom sediments of Kandalaksha Bay in the White Sea: the phenomenon of Mn.
- DSpace Home
- →
- Геология России
- →
- PANGAEA
- →
- View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Bottom sediments of Kandalaksha Bay in the White Sea: the phenomenon of Mn.
Rozanov, Alexander G; Volkov, Igor I
xmlui.dri2xhtml.METS-1.0.item-citation:
Rozanov, Alexander G; Volkov, Igor I (2009): Bottom sediments of Kandalaksha Bay in the White Sea: the phenomenon of Mn. Geochemistry International, 47(10), 1004-1020, https://doi.org/10.1134/S001670290910005X
Date:
2009-10-16
Abstract:
The redox stratification of bottom sediments in Kandalaksha Bay, White Sea, is characterized by elevated concentrations of Mn (3-5%) and Fe (7.5%) in the uppermost layer, which is two orders of magnitude and one and a half times, respectively, higher than the average concentrations of these elements in the Earth's crust. The high concentrations of organic matter (Corg = 1-2%) in these sediments cannot maintain (because of its low reaction activity) the sulfate-reducing process (the concentration of sulfide Fe is no higher than 0.6%). The clearest manifestation of diagenesis is the extremely high Mn2+ concentration in the silt water (>500 µM), which causes its flux into the bottom water, oxidation in contact with oxygen, and the synthesis of MnO2 oxy-hydroxide enriching the surface layer of the sediments. Such migrations are much less typical of Fe. Upon oxygen exhaustion in the uppermost layer of the sediments, the synthesized oxyhydroxides (MnO2 and FeOOH) serve as oxidizers of organic matter during anaerobic diagenesis. The calculated diffusion-driven Mn flux from the sediments (280 µM/m**2 day) and corresponding amount of forming Mn oxyhydrate as compared to opposite oxygen flux to sediments (1-10 mM/m**2 day) indicates that >10% organic matter in the surface layer of the sediments can be oxidized with the participation of MnO2. The roles of other oxidizers of organic matter (FeOOH and SO4**2-) becomes discernible at deeper levels of the sediments. The detailed calculation of the balance of reducing processes testifies to the higher consumption of organic matter during the diagenesis of surface sediments than it follows from the direct determination of Corg. The most active diagenetic redox processes terminate at depths of 25-50 cm. Layers enriched in Mn at deeper levels are metastable relicts of its surface accumulation and are prone to gradual dissemination.
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
This item appears in the following Collection(s)
-
PANGAEA
Метаданные публикаций с сайта https://www.pangaea.de/
Related items
Showing items related by title, author, creator and subject.
-
Gusakova, A I (PANGAEA, 2013-08-16)Mineral composition of recent bottom sediments was studied in the White Sea. A single terrigenous-mineralogical province is defined; it is characterized by a mineral association of amphibole, epidote, garnet, and pyroxene. ...
-
Dolotov, Yury S; Filatov, N N; Rimsky-Korsakov, Nikolay A; Zdorovennov, R E; Pronin, Andrey A; Tolstikov, A V; Filippov, Alexander S; Novichkova, Ekaterina A; Kutcheva, I P; Shevchenko, Vladimir P (PANGAEA, 2011-08-16)
-
Novichkova, Ekaterina A; Polyakova, Elena I (PANGAEA, 2007-09-09)Dinoflagellate cysts were studied in 42 samples from surface sediments of the White Sea. Total concentration of dinocysts varies from single cysts to 25000 cyst/g of dry sediments, which reflects biological productivity ...
Search DSpace
Browse
-
All of DSpace
-
This Collection