= ГЕОХИМИЯ =

УДК 553.491.8:549.271(571.5)

ВЕЩЕСТВЕННЫЙ СОСТАВ ПЛАТИНОИДНОЙ МИНЕРАЛИЗАЦИИ БОР-УРЯХСКОГО МАССИВА (МАЙМЕЧА-КОТУЙСКАЯ ПРОВИНЦИЯ, РОССИЯ)

© 2011 г. К. Н. Малич, академик Л. Н. Когарко

Поступило 06.05.2011 г.

Бор-Уряхский массив ультраосновных и щелочных пород, так же как и другие сходные массивы (Гулинский, Кугдинский и Одихинчинский), находится в пределах Маймеча-Котуйской провинции в северной части Сибирской платформы [1, 3, 12 и др.]. Значительные прогнозные ресурсы благородных металлов (около 20 т) в комплексных золото-платиноидных россыпях Гулинского массива позволили по-новому оценить металлогенический потенциал Маймеча-Котуйской провинции [4, 6 и др.], традиционно перспективной на апатит-магнетитовые и флогопитовые руды, нефелиновое сырье и редкоземельные элементы, ассоциирующие с ийолит-карбонатитовыми массивами маймеча-котуйского комплекса [1]. В данной работе впервые приведены химические составы минералов платиновой группы (МПГ) из шлиховых ассоциаций Бор-Уряхского массива, являющегося перспективным объектом Маймеча-Котуйской провинции на благороднометальное оруденение [4].

Бор-Уряхский массив, обнаруженный Ю.М. Шейнманном в 1944 г., занимает площадь ~18.5 км² (рис. 1). Массив интрудирует терригенно-карбонатные породы позднего протерозоя (среднего рифея) и кембрия, образующих куполообразную структуру. Ядерная часть массива сложена оливинитами, сменяющимися в периферической части дунитами с нодулярным хромитом. Оливиниты ядра прорываются жильными крупнозернистыми рудными оливинитами (содержащими до 20-50% титаномагнетита и перовскита), щелочными сиенитами и реже мельтейгитами и кальцитовыми карбонатитами (рис. 1). По данным K-Ar-метода возраст флогопита из жильных оливинитов изменяется в интервале 215-222 млн лет [1].

Бор-Уряхский массив в центральной части представляет собой эрозионный кратер, который окружен кольцевым хребтом, состоящим из кембрийских и рифейских пород. Основной россыпеобразующей структурой является долина р. Буор-Юрях, которая берет начало в месте слияния двух потоков в центральной части массива и течет на северо-восток, прорезая ультрамафиты массива и вмещающие породы кольцевого хребта (рис. 1). По данным шлихового опробования Полярной поисково-съемочной экспедиции ПГО "Красноярскгеология" четвертичные отложения в районе Бор-Уряхского массива с содержанием полезного компонента 11-265 мг на кубический метр являются перспективными на благородные металлы. Наше исследование основано на изучении 19 зерен Os-Ir- и Pt-Fe-сплавов размером от 0.1 до 0.25 мм, которые были отобраны из четвертичных и современных отложений в пределах поисковых линий Л-120 и Л-98, расположенных в северо-восточной части массива (рис. 1).

Химический состав платиноидной минерализации проанализирован методом микрорентгеноспектрального анализа (Camscan-4 с энергодисперсионным спектрометром Link-10000 и длинноволновым спектрометром Microspec, OAO "Mexahoбp-Ahaлит, Cahkt-Петербург, Россия, и ARL-SEMQ с четырьмя волновыми спектрометрами, оснащенными энергодисперсионным анализатором LINK, Институт геологических наук, Горный университет Леобена, Австрия). Подробно методика микрорентгеноспектрального анализа охарактеризована нами ранее [13].

Шлиховая платиноидная минерализация Бор-Уряхского массива представлена как субидиоморфными и идиоморфными кристаллами, так и агрегатами идиоморфных кристаллов (рис. 2), среди которых Os-Ir-сплавы преобладают над Pt-Fe-сплавами (12 и 7 зерен соответственно).

Чтобы избежать путаницы с осмием как элементом, мы далее (табл. 1) для богатых осмием минералов используем названия самородный осмий (с содержанием Os > 80 ат. %; ан. 9) и иридистый осмий (с содержанием осмия 57.44– 66.49 ат. % и иридия 28.38–33.16 ат. %; ан. 1, 5, 7,

Институт геологии и геохимии им. А.Н. Заварицкого Уральского отделения Российской Академии наук, Екатеринбург

Институт геохимии и аналитической химии им. В.И. Вернадского Российской Академии наук, Москва

Рис. 1. Схема геологического строения Бор-Уряхского массива с указанием места отбора образцов. *1* – дунит, *2* – оливинит, *3* – рудный оливинит, *4* – пегматоидный оливинит, *5* – мельтейгит, *6* – щелочной сиенит, *7* – карбонатит, *8* – долерит, *9* – роговиковый ореол, *10* – доломит и мергель, *11* – доломит билляхской свиты, *12* – кварцит мукунской свиты, *13* – места отбора образцов.

8 и 10). Большинство (11 из 12) богатых осмием шлиховых зерен являются иридистым осмием с незначительным количеством ченгдеита (Ir₃Fe, рис. 2а, б, табл. 1, ан. 6). Ос-Іг-сплавы встречены также в виде включений и ламелей в зернах Pt-Feсплавов (рис. 2в, г), которые характеризуются составом, близким к Pt_2Fe (где Pt равно сумме ат. % элементов платиновой группы (ЭПГ), Fe равно сумме ат. % железа, никеля и меди; табл. 1, ан. 2–4). По геохимической специализации Pt-Fe-твердые растворы можно подразделить на две группы. Первая содержит повышенные количества иридия и родия (около 5 и 8 ат. % соответственно, табл. 1, ан. 2). Pt-Fe-сплавы второй группы характеризуются меньшими концентрациями примесных ЭПГ (0-0.96 ат. % иридия и 1.23-2.10 ат. % родия, табл. 1, ан. 3, 4). Минерал со стехиометрией Pt₂Fe не известен в синтетической системе Pt-Fe [14]. Однако природные Pt-Fe-твердые растворы с химическим составом, близким к Pt₂Fe, характерны для ультрамафитовых комплексов уральского типа, офиолитовых массивов и дифференцированных ультрамафит-мафитовых интрузивов [7, 9, 13, 15, неопубликованные данные авторов и др.].

Согласно классификации Л. Кабри и М. Фезера [8] в системе Pt—Fe известны четыре Pt-Fe-минерала: самородная платина с разупорядоченной

ДОКЛАДЫ АКАДЕМИИ НАУК том 440 № 6 2011

гранецентрированной кубической структурой (fcc, пространственная группа Fm3m) и содержанием платины > 80 ат. %; железистая платина с разупорядоченной гранецентрированной кубической структурой (fcc, пространственная группа *Fm3m*) и содержанием Fe между 20 и 50 ат. %; изоферроплатина с упорядоченной примитивной кубической структурой (рсс, пространственная группа *Рт3т*) и содержанием Fe между 25 и 35 ат. %; тетраферроплатина с тетрагональной структурой (пространственная группа Р4/тт) и содержанием железа примерно 45-55 ат. %, что соответствует PtFe. Выполненное ранее рентгеноструктурное исследование Pt-Fe твердых растворов Гулинского, Кондерского, Инаглинского и Нижнетагильского массивов [13] позволило сделать вывод, что все изученные Pt-Fe-минералы, за исключением одного образца тетраферроплатины из Нижнетагильского массива, являются железистой платиной, характеризующейся разупорядоченной гранецентрированной кубической структурой (Fm3m) и содержанием Fe между 20.52 и 36.16 ат. %. Несмотря на отсутствие рентгеноструктурных данных для Pt-Fe-твердых растворов Бор-Уряхского массива по химическому составу (табл. 1) данные минералы соответствуют железистой платине.

Рис. 2. Особенности внутреннего строения платиноидной минерализации Бор-Уряхского массива. Общий вид (а) и фрагмент (б) обр. ВU-4, представленного минеральной ассоциацией иридистого осмия (Os, Ir) и ченгдеита (Ir₃Fe). Общий вид обр. ВU-2 (в) и фрагмент обр. ВU-1(г) состоят из минеральной ассоциации железистой платины (Pt₂Fe) и иридистого осмия (Os, Ir). Все изображения в обратнорассеянных электронах с вещественным контрастом. 1–3, 5, 6 – места проведения электронно-микрорентгеноспектральных анализов, соответствующие табл. 1.

Соотношения фаз равновесия Оs-содержащих сплавов Бор-Уряхского массива, основанные на бинарной системе Os-Ir [14], а также наличие включений богатых осмием сплавов в Pt-Fe-минералах свидетельствуют о высокой температуре образования МПГ. Таким образом, не вызывает сомнения, что коренным источником платиноидной минерализации являются ультрамафиты Бор-Уряхского массива. Мы предполагаем, что изученные Os-Ir- и Pt-Fe-сплавы характеризуют различные коренные источники. Действительно, ранее выявленные высокие концентрации палладия в железо-платиновых твердых растворах из клинопироксенитов контрастируют с иридиевой специализацией Pt-Fe-сплавов из хромититов и дунитов зональных массивов [3, 11, 13 и др.]. Богатые осмием сплавы Гулинского массива, представленные самородным осмием и иридистым осмием, типичны для дунитов и хромититов соответственно [5]. Основываясь на геологической позиции платиноидной минерализации и с учетом выявленных закономерностей геохимической специализации МПГ [3, 5, 11, 13 и др.], коренным источником изученных Os-Ir-сплавов и обогащенных иридием и родием Pt-Fe-твердых растворов можно считать хромититы и дуниты соответственно. Источником Pt-Fe-сплавов с низкими концентрациями примесных ЭПГ, предположительно, являются оливиниты.

Наличие богатых железом сплавов платиноидов указывает на низкую фугитивность серы в процессе формирования пород Бор-Уряхского массива.

Выполненное исследование свидетельствует о том, что вещественные характеристики платиноидной минерализации Бор-Уряхского массива близки особенностям состава Os-Ir- и Pt-Feсплавов Гулинского массива Маймеча-Котуйской провинции, платиноносных зональных ультраосновных массивов Алданской провинции (Кондерского, Инаглинского, Чадского) и Пла-

ВЕЩЕСТВЕННЫЙ СОСТАВ

Элемент	1	2	3	4	5	6	7	8	9	10
Mac. %										
Fe	0.00	11.78	10.58	10.95	0.28	8.50	0.00	0.29	0.00	0.23
Ni	0.00	0.28	0.62	0.43	0.00	1.11	0.00	0.00	0.00	0.00
Cu	0.00	0.46	0.46	1.15	0.00	0.00	0.00	0.00	0.00	0.00
Ru	5.13	0.21	0.00	0.00	2.53	0.00	2.54	2.27	0.38	2.69
Rh	2.94	5.59	1.45	0.85	0.35	0.00	0.00	0.00	0.00	0.00
Pd	0.00	0.00	0.23	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Os	61.15	0.00	0.14	0.13	62.88	0.00	64.54	68.26	88.66	62.40
Ir	30.53	6.86	1.24	0.00	33.81	88.88	32.48	29.46	10.98	34.22
Pt	0.00	74.78	85.75	86.25	0.00	1.99	0.00	0.00	0.00	0.00
Сумма	99.75	99.96	100.47	99.76	99.85	99.48	99.56	100.28	100.02	99.54
Ат. %										
Fe	0.00	30.20	28.27	29.15	0.92	24.29	4.71	0.96	0.00	0.77
Ni	0.00	0.68	1.58	1.09	0.00	0.30	0.00	0.00	0.00	0.00
Cu	0.00	1.04	1.07	2.69	0.00	0.00	0.00	0.00	0.00	0.00
Ru	9.07	0.30	0.00	0.00	4.64	0.00	0.00	4.16	0.71	4.96
Rh	5.11	7.78	2.10	1.23	0.63	0.00	0.00	0.00	0.00	0.00
Pd	0.00	0.00	0.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Os	57.44	0.00	0.11	0.10	61.23	0.00	63.61	66.49	88.45	61.11
Ir	28.38	5.11	0.96	0.00	32.58	73.78	31.68	28.39	10.84	33.16
Pt	0.00	54.89	65.59	65.74	0.00	1.63	0.00	0.00	0.00	0.00
Сумма ЭПГ	100.00	68.08	69.08	67.07	99.08	75.41	100.00	99.04	100.00	99.23
Fe + Cu + Ni	0.00	31.92	30.92	32.93	0.92	24.59	0.00	0.96	0.00	0.77

Таблица 1. Представительные химические составы МПГ Бор-Уряхского массива

Примечание. Ан. 1 – обр. ВU-1 (Os, Ir); ан. 2 – обр. ВU-1 (Pt₂Fe); ан. 3 – обр. ВU-2 (Pt₂Fe); ан. 4 – обр. ВU-3 (Pt₂Fe); ан. 5 – обр. ВU-4 (Os, Ir); ан. 6 – ВU-4 (Ir₃Fe); ан. 7 – обр. ВU-5 (Os, Ir); ан. 8 – обр. ВU-8 (Os, Ir); ан. 9 – обр. ВU-9 (Os); ан. 10 – обр. ВU-13 (Os, Ir). (Os, Ir) – иридистый осмий, Os – самородный осмий, Ir₃Fe – ченгдеит, Pt₂Fe – железистая платина.

тиноносного пояса Урала (Нижнетагильского, Кытлымского и др.) [2, 3 и др.].

Авторы выражают признательность главному геологу ПГП "Норильскгеология" М.М. Гончарову за предоставленную для исследования коллекцию МПГ.

Работа выполнена при поддержке Министерства образования и науки России (Гос. контракт 02.740.11.0726), Российского фонда фундаментальных исследований (грант 09–05–01242а) и Горного университета Леобена (Австрия).

СПИСОК ЛИТЕРАТУРЫ

- Егоров Л.С. Ийолит-карбонатитовый плутонизм (на примере маймеча-котуйского комплекса Полярной Сибири). Л.: Недра, 1991. 260 с.
- 2. Золоев К.К., Волченко Ю.А., Коротеев В.А. и др. Платинометальное оруденение в геологических

ДОКЛАДЫ АКАДЕМИИ НАУК том 440 № 6 2011

комплексах Урала. Екатеринбург: Урал. геологосъемочная экспедиция, 2001. 199 с.

- 3. *Малич К.Н.* Платиноиды клинопироксенит-дунитовых массивов Восточной Сибири (геохимия, минералогия, генезис). СПб.: СПб картографическая фабрика ВСЕГЕИ, 1999. 296 с.
- 4. *Малич К.Н., Баданина И.Ю., Гончаров М.М. и др. //* ДАН. 1996. Т. 348. № 2. С. 232–235.
- 5. Малич К.Н., Кадик А.А., Баданина И.Ю., Жаркова Е.В. // Геохимия. 2011. Т. 49. № 7. С. 767–771.
- 6. *Малич К.Н., Малич Н.С., Симонов О.Н. и др.* // Отеч. геология. 1998. № 3. С. 30-34.
- Служеникин С.Ф. Малосульфидное платиновое оруденение в дифференцированных базит-гипербазитовых интрузивах Норильского района. Автореферат дис. канд. геол.-минерал. наук. М.: ИГЕМ РАН, 2000. 26 с.

810

- Cabri L.J., Feather C.E. // Canad. Miner. 1975. V. 13. P. 117–126.
- Cabri L.J., Harris D.C., Weiser T.W. // Explorat. and Mining Geol. 1996. V. 5. P. 73–167.
- Harris D.C., Cabri L.J. // Canad. Miner. 1991. V. 29. P. 231–237.
- 11. Johan Z., Ohnenstetter M., Slansky E., et al. // Miner. and Petrol. 1989. V. 40. P. 289–309.
- 12. *Kogarko L.N., Kononova V.A., Orlova M.P., Wooley A.R.* Alkaline Rocks and Carbonatites of the World. Pt 2. Former USSR. L.: Chapman and Hall, 1995. 226 p.
- 13. *Malitch K.N., Thalhammer O.A.R.* // Canad. Miner. 2002. V. 40. P. 395–418.
- Binary Alloy Phase Diagrams / T.B. Massalski. Ed. 2nd ed. Materials Park (Ohio): ASM Intern., 1993. V. 112. 2224 p.
- Weiser T., Bachmann H.-G. // Canad. Miner. 1999. V. 37. P. 1131–1145.