ГЕОЛОГИЯ И СТРАТИГРАФИЯ

УДК 553. 462.43:553.411(571.65)

СООТНОШЕНИЕ МЕДНО-МОЛИБДЕН-ПОРФИРОВОГО И ЗОЛОТОГО ОРУДЕНЕНИЯ НА п-овах КОНИ И ПЬЯГИНА (СЕВЕРНОЕ ПРИОХОТЬЕ)

Е. Е. Колова, Н. Е. Савва

Северо-Восточный комплексный научно-исследовательский институт ДВО РАН, г. Магадан E-mail: kolova@neisri.ru; savva@neisri.ru

По результатам геолого-минералогических и изотопно-геохронологических исследований предложена рудно-магматическая модель формирования Сu-Mo-порфирового и Au оруденения на п-овах Кони и Пьягина. Проведенный анализ позволил наметить динамику геологотектонического развития территории и понять закономерности размещения во времени и пространстве различных типов Au оруденения относительно Cu-Mo-порфировой системы. Установлено, что Au-Te-Bi и Au-сульфидное оруденение – допорфировое, а Au-Ag – послепорфировое. Также показано, что в пространственном размещении Au-содержащих рудопроявлений большую роль играл Средненский магматогенный свод.

Ключевые слова: золотое оруденение, медно-молибден-порфировая система, рудно-магматическая модель, минерализация, рудопроявление.

Территория п-овов Кони и Пьягина расположена в 120 км к востоку от г. Магадана (рис. 1, верхняя врезка) и обладает потенциальными ресурсами Си, Мо, Аи, Ад. Рассматриваемый район является одной из составляющих Си-Мо-порфировой Кони-Мургальской металлогенической зоны (Умитбаев, 1986). Специфика металлогении территории обусловлена особенностями проявления тектоно-магматической активизации в раннепозднемеловое время, связанной с формированием Охотско-Чукотского вулкано-плутонического пояса (ОЧВП). В подобных сложных геологических обстановках наиболее отчетливо проявляются связи процессов магматизма, метаморфизма и рудообразования. В практическом плане проведение исследований имеет немаловажное значение для развития минерально-сырьевой базы региона, поскольку комплексной программой развития Магаданской области отдаются приоритеты вовлечению в промышленное освоение полезных ископаемых Примагаданской экономической зоны, в которую и входит территория п-вов Кони и Пьягина.

История геологического изучения территории п-вов Кони и Пьягина насчитывает около 70 лет. За это время довольно полно были охарактеризованы геология и стратиграфия вулканогенных и вулканогенно-осадочных толщ, петрографические и структурные особенности интрузивных, субвулканических тел и сопровождающих их метасоматических изменений вмещающих пород; установлены Си-Мо-порфировые, Аи- и Ад-содержащие рудопроявления и восемь шлиховых ореолов распространения россыпного Аи. Значительный объем новой информации был получен в 1997-2004 гг. при проведении здесь АО «Дукатская ГГК» детальных поисков. Именно в этот период авторы, работая в составе поисковых отрядов, получили новые оригинальные геологические материалы, позволившие: 1 – практически закрыть белое пятно в минералогических данных для этой территории; 2 - выявить ряд экзотических минеральных фаз; 3 – установить пространственновременные соотношения Си и Аи оруденений; 4систематизировать Аи-рудные объекты по минералогическим и геолого-структурным признакам; 5 - пополнить базы данных изотопно-геохронологического датирования гранитоидов п-вов Кони и Пьягина.

СТРУКТУРНО-ТЕКТОНИЧЕСКОЕ ПОЛОЖЕНИЕ И ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ ТЕРРИТОРИИ

Район наших исследований находится между Челомджа-Ямским и Кони-Пьягинским глубинными разломами, которые согласно Р. Б. Умитбаеву (1986), служат важнейшими элементами каркаса Охотско-Чаунской металлогенической провинции. Основной структурой выделенной территории является Кони-Пьягинское магматогенное поднятие протяженностью более 200 км при ширине 30– 50 км. Его центральная и южная части сложены

[©] Колова Е. Е., Савва Н. Е., 2008

образованиями триасово-юрско-раннемелового возраста, которые по литолого-фациальным и формационным особенностям похожи на образования Южно-Тайгоносского поднятия (Заборовская, 1978). Здесь же, в осевой части поднятия, обнажается прибрежный ряд интрузий (от Северо-Западного массива через массивы Аргаскич и Средненский до массива Кекурный) (см. рис. 1). Структура территории характеризуется блокововым строением. Нарушения группируются в различно ори-

Рис. 1. Схема геологического строения п-вов Кони и Пьягина (по данным Гос. геол. карты 1 : 50 000, гл. ред. М. Е. Городинский) с геохронологическими данными для Средненского массива, Си-Мо-порфировых руд месторождения Лора и вулканических комплексов (по данным И. Н. Котляра и Т. Б. Русаковой, 2005): 1 – позднетриас-юрские осадочно-вулканогенные комплексы; 2 – раннемеловые вулканогенные комплексы; 3 – гранитоидные массивы; 4 – неоген-четвертичные рыхлые образования; 5–11 – рудные проявления и их геохимические профили (в скобках даны названия рудопроявлений и их номера на схеме): 5 – Си-Мо (1 – Лора, 2 – Прямой, 3 – Рябиновый, 4 – Антаринское, 5 – Павловича (Викинг), 6 – Си-Fe (6 – Япон), 7 – Си-Мо-Zn-Co (7 – Тальниковый), 8 – Аи-As-W-Bi (8 – Южный, 9 – Рыжик), 9 – Аи-Аg-Cu (10 – Крутой, 11 – Горелый), 10 – Pb-Cu-Zn-Co (12 – Гурон), 11 – площадь распространения золотоносных россыпей. На верхней врезке: географическое положение района исследований, на нижней – схема структурного районирования (по Ю. П. Скибину): 12 – Кони-Пьягинский глубинный разлом; 13–16 – границы зон разломов, выделенных по геофизическим данным: 13 – меридиональные (I – Буочахская, II – Средненская, III – Кулькутинская); 14 – субширотные: IV – Одяно-Пьягинская, V – Антаринская; 15 – северо-западная: VI – Бабушкинская; 16 – северо-восточная: VII – Асаткано-Умаринская

Fig. 1. A schematized geology of Koni and Pyaghin Peninsulas (according to geologic map, scale 1 : 50 000, edited by M. Ye. Gorodinsky) and geochronologic data for Srednensky Massif, Lora porphyry Cu-Mo deposit and volcanics (according to I. N. Kotlyar and T. B. Rusakova, 2005): 1 – late Triassic-Jurassic sedimentary-volcanic sequences; 2 – early Cretaceous volcanics; 3 – granitoid rocks; 4 – Neogene-Quaternary loose rocks; 5–11 – mineral occurrences and their geochemistry: 5 – Cu-Mo (1 – Lora, 2 – Pryamoi, 3 – Ryabinovy, 4 – Antarinskoe, 5 – Pavlovich/Viking); 6 – Cu-Fe (6 – Yapon); 7 – Cu-Mo-Zn-Co (7 – Talnikovy); 8 – Au-As-W-Bi (8 – Yuzhny, 9 – Ryzhik); 9 – Au-Ag-Cu (10 – Krutoi, 11 – Gorely); 10 – Pb-Cu-Zn-Co (12 – Guron); 11 – placer deposit areas.

The upper inset map: the study area, the lower inset map – schematized area structure (according to Yu. P. Skibin): 12 – Koni-Pyaghin deep fault; 13–16 – geophysical fault bounds: 13 – NS-trending (I – Buochak, II – Srednenskaya, III – Kulkutinskaya); 14 – EW-trending (IV – Odyan-Pyaghin, V – Antarinskaya); 15 – NW-trending: VI – Babushkinskaya; 16 – NE-trending: VII – Asatkano-Umarinskaya

ентированные линейные системы сближенных разломов (см. рис. 1, нижняя врезка). Наиболее древними считаются зоны разломов меридионального (Одяно-Пьягинская, Антаринская), северовосточного (Асаткано-Умаринская) и субширотного простирания (Буочахская, Средненская, Кулькутинская). Нарушения северо-западного простирания на этой площади выделяются в Бабушкинскую зону разломов и являются по времени зарождения наиболее поздними. Тектонические нарушения контролируют расположение интрузивных тел раннемелового, реже позднемелового возраста, сопровождаются зонами окварцевания, пропилитизации и сульфидизации (Ичетовкин, 1978; Юдин, 1964; Колова, Савва, 2005).

<u>Стратифицированные образования</u>, слагающие территорию п-овов Кони и Пьягина, принадлежат

к трем возрастным комплексам (табл. 1) (Воробьев, 1985; Кошелкина и др., 1984).

<u>Интрузивные образования</u> не только играют существенную роль в геологическом строении района, но и вмещают в себя основную долю рудных проявлений. Площадь их выходов на поверхность составляет около 30% территории (см. рис. 1). По химическому составу и возрастным характеристикам интрузивные образования разделены на четыре интрузивных комплекса (табл. 2) (Белый, Федошин, 1985; Воробьев, 1991; Котляр, Русакова, 2005). Наиболее широко распространены породы магаданского раннемелового габбро-гранитового комплекса. Они слагают значительную часть всех гранитоидных плутонов (см. рис. 1), а также штоки, силлы и дайки, которые прорывают отложения юрского и раннемелового возраста; при

Таблица 1. Характеристика стратифицированных образований п-вов Кони и Пьягина Table 1. Stratified rock sequences over Koni and Pyaghin Peninsulas

Возрастной комплекс	Состав	Мощность, км	Абсолютный возраст, K-Ar, млн лет	Ссылки в литературе
Позднетриасово- раннеюрский	Лавы основного состава, песчаники, алевролиты	1–1,5	186±2–172±2	Воробьев, 1985; Котляр, Русакова, 2005
Позднеюрско-ме- ловой	Лавы с подчиненным количеством туфов основного и среднего состава	7–8	135±6-138±4	То же
Кайнозойский	Ледниковые и водно-ледниковые образования	0,1–0,5	Нет	Воробьев, 1985

Таблица 2. Характеристики интрузивных образований п-вов Кони и Пьягина *Table 2.* Intrusive rock sequences over Koni and Pyaghin Peninsulas

Комплекс	Характеристика пород	Возраст	Абс. воз- раст, К-Аг, млн лет	Форма распространения	Ссылки в литературе
Старицкий	Граниты	J ₃ -K ₁	Нет	Малые штокообразные тела	Андреева и др., 1997
Магаданский	 Габбро, габбронориты, габбро-диориты → диориты, диорит-пор- фириты → кварцевые диориты → гранодиориты, кварце- вые диориты → граниты, гранит-пор- фиры → аплитовидные граниты, аплиты, пегматиты → гранодиорит-порфиры, диорит-порфириты и эруптивные брекчии 	K ₁	136±5- 104±5	Преимущественно массивы – Среднен- ский и Северо-Запад- ный, м. Павловича, Аргаскич, Кирас, Антаринский, час- тично массивы Пьяги- на, Накат и Кекурный, а также штоки, силлы и дайки	Котляр и др., 2001
Светлинский	Габбронориты, диориты, граниты, аплиты, пегма- титы	K ₂	99±2- 65±2	Штоки, дайки в преде- лах массивов – Сред- ненского, м. Павлови- ча и Пьягинского	Котляр, Руса- кова, 2005
Эрикинский	Базальты	K ₂	Нет	Дайки, небольшие штоки	Андреева и др., 1997

этом сами прорваны позднемеловыми образованиями светлинского и эрикинского комплексов. В составе магаданского комплекса выделено шесть гомодромных фаз и седьмая, завершающая, антидромная (см. табл. 2). По соотношению $SiO_2 - K_2O$ гранитоиды магаданского комплекса принадлежат в основном к среднекалиевой известково-щелочной магматической серии и приближаются к типичным островодужным, соответствуя гранитоидам раннеорогенной тоналит-гранодиоритовой формации, что также подтверждает соотношение $(3TiO_2+K_2O)$ и (SiO_2+CaO), которое соответствует островодужному типу. Породы четвертой фазы служат «рамой» для проявлений Си-Мо-порфировой формации, которая пространственно и генетически связана с породами седьмой фазы (гранодиорит-порфиры, кварцевые диорит-порфириты образуют изометричные тела размерами до $0,2 \times 0,02$ км²). С породами четвертой фазы связаны турмалин-мусковит-кварцевые грейзены, к которым приурочено Аи-Те-Ві оруденение. Время формирования пород магаданского комплекса, судя по K-Ar датировкам (см. рис. 1), было длительным. Оно охватывало интервал 136-110 млн лет и завершилось образованием Си-Мо-порфирового (110-95 млн лет) и последовавшего за ним Аи-Ад оруденения (Котляр и др., 2001).

ТИПЫ ОРУДЕНЕНИЯ И ЗОНАЛЬНОСТЬ

Одним из важных свойств медно-порфировых рудообразующих систем считается четкая руднометасоматическая зональность, а также ее неразрывная связь в пространстве и времени с порфировыми интрузивами гранитоидного ряда. Региональные минералогические исследования проявлений рудной минерализации на п-овах Кони и Пьягина позволили выявить несколько отличающуюся от классической металлогеническую зональность (см. рис. 1). В краевой, северо-восточной части Средненского магматогенного свода располагается золотосодержащее Си-Мо-порфировое месторождение Лора. В обрамлении свода, в турмалин-мусковитовых грейзенах, расположены Au-Te-Bi объекты (участок «Южный», «Рыжик»), а также участок «Гурон» с Аи-сульфидной минерализацией. На еще большем удалении размещаются Аи-Ад рудопроявления (участки «Крутой», «Гольцовый»), а в 60 км на северо-запад расположено Au-Ag рудопроявление Горелый.

Золотосодержащее Си-Мо-порфировое оруденение. Наиболее крупным и представительным в минералогическом плане в пределах п-вов Кони и Пьягина является Си-Мо-порфировое месторождение Лора (см. рис. 1). Оно расположено на плосковершинном водоразделе рр. Накхатанджа, Мэлдек, Халанчикан, в 18–20 км к северу от зал. Бабушкина. Его площадь около 10 км². Оруденение приурочено к северной части Средненского интрузивного массива. Рудное поле сложено породами четвертой фазы магаданского комплекса (см. табл. 2), которые, как уже говорилось, служат «рамой» для более поздних продуктивных на Си и Мо штокообразных тел порфировых интрузий и эруптивных брекчий седьмой фазы магаданского комплекса. Содержание полезных компонентов в них, по предварительным данным, колеблется в широких пределах: в гранодиоритах содержания Cu – от 0,07 до 0,6%, в диорит-порфиритах содержания Cu более 1%; содержания Мо колеблются от 0,007 до 0,05%, Ag – от 0,3 до 7 г/т, Au – от 0,01 до 0,2 г/т. Геологическая характеристика месторождения и рудных тел приведена в табл. 3.

В итоге проведения минералогического анализа выявлено около 30 минералов. Медная минерализация на месторождении представлена в основном халькопиритом (см. фототаблицу, 1–3) и незначительно (около 1%) – гипергенными минералами Си. Молибденовая – молибденитом, вульфенитом и повеллитом, обычно тесно ассоциирующими с эпидотом (см. фототаблицу, 1, 4). В рудах весьма убого проявлена галенит-сфалеритблеклорудная минерализация (см. фототаблицу, 5), что для данного месторождения специфично и не является показателем эрозионного среза. Для рудного минералообразования на месторождении Лора установлены четыре последовательно сформировавшиеся минеральные ассоциации (Радченко и др., 2001; Савва, 2001, 2003): I – турмалин + гидрослюда + магнетит + биотит + КПШ; II кварц + пирит + халькопирит + молибденит + пирротин + сфалерит + галенит + самородное золото; III – эпидот + хлорит + биотит + КПШ + халькопирит + молибденит + энаргит + борнит + кубанит + блеклая руда; IV – гидроксиды Fe + халькозин + малахит + азурит.

По ряду признаков руды месторождения Лора являются принципиально золотоносными, на что указывают следующие факты: 1) наличие в 60% различных проб, по данным спектрального и атомно-абсорбционного анализов, Аи на уровне 0,01-0,1 г/т, реже 2-5 г/т, очень редко 8-12,3 г/т, причем содержание Аи напрямую связано с количеством халькопирита и интенсивностью хлоритизации руд; 2) установление самородного Au в парагенезисе с пиритом (в керне скв. № 34 на 70-м метре). В качестве наиболее перспективных на содержание золота можно отметить руды, в которых наблюдаются II и III минеральные ассоциации, условно отвечающие идеализированным: пиритхалькопиритовому и полисульфидному типам руд, выделяемым А. И. Кривцовым для Си-Мо-порфировых месторождений как самые продуктивные на золото (Кривцов, 2001).

Аu-Te-Bi оруденение детально изучено на двух рудопроявлениях (Южный и Рыжик), которые обнаруживают все признаки Au-Te-Bi формации, выделяемой в других металлогенических зонах и поясах Северо-Востока России (Сидоров, 2001).

лото-сульфидный	Гурон Рb-Cu-Zn-Co		ифицированные тол- есчаников, алевроли-	афицированные тол- есчаников, алевроли- еротные	 фицированные тол- lесчаников, алевроли- протные ульфидизации прц-пиритовыми килками (m – 30 м; км) 	 фицированные тол- цесчаников, алевроли- есчаников, алевроли- ротные сульфидизации арц-пиритовыми килками (m – 30 м; км) . 150°C3, . 150°C3, д. 45-50° 	 фицированные тол- цесчаников, алевроли- цотные ульфидизации арц-пиритовыми килками (m – 30 м; км) 150°C3, 240° Ю3, д. 45–50° 150°С3, д. 45–50° 	 фицированные тол- песчаников, алевроли- есчаников, алевроли- протные ульфидизации арц-пиритовыми килками (m – 30 м; км) .150°СЗ, 240° ЮЗ, д. 45–50° .150°СЗ, д. 45–50° .150°СЗ, д. 45–50° .150°СЗ, д. 45–50° .150°СЗ, д. 45–50° .150°СЗ, цевые метасоматиты
ый As-Pb-Zn Cтратиф	– тавы Стратиф	К ₁ рg) щи пео Tob	дные осточные Субшир	варце- Зоны су. с квар 5 см; прожи d – 1 к	150°CЗ, A3. пр. 1 35°ЮЗ, аз. пд. 2. 85° угол пд.	но-по- вкрап- Прожил	ітовые Пирит-г иты, кварце ізация	$\begin{array}{c} Py - 1-3 \\ Py - 5\% \\ Py - 20\% \\ A_{9 \text{ no } 4} \end{array}$
30лото-серебряный Крутой Горелы Au-Ag-Cu-Se Au-Ag?-Sb-A		ные отложения азальтов (К ₁ рр,	Северо-запа, и северо-в	Стволовая ко вая жила (m – 90–95 d – до 1 км	Аз. пр. 140– аз. пд. 230–2 угол пд. 80–	Колломорфн лосчатые, ленные	Кварц-хлори метасомат турмалини	Au - 2, 0-13; Ag - 0, 5-4
		Вулканогенно-осадочн и туфы андезитов, б	Северо-западные и меридиональные	Ветвящиеся, преры- вистые прожилково- жильные зоны (т – до 90 см; d – 780 м)	Аз. пр. 120–190°СЗ, аз. пд. 70–95°СВ, угол пд. 60–80°	-вкрапленные	Березитизация, суль- фидизация	Au - 2,0-28; Ag - 17-266,8
цно-висмутовый	Рыжик Au-As-Te-Bi	Габбро, диориты, граниты, вулка- ногенно-осадоч- ные отложения	идиональные и суб-	Ветвящиеся, пре- рывистые про- жилково-жиль- ные зоны (m – 10–40 см; d – 70–80 м)	Аз. пр. 150–170°СЗ, аз. пд. 20–50°СВ, угол пд. 70–80°	прожилково	и турмалин-кварцевые ирцевые метасоматиты	Аи – 0,2–30; Аg – 3,0–10 (ед. пробы до 105); Вi – то 0 70%
Золото-телиурил Южный Au-As-Te-Bi	Габбро, диориты, граниты Среднен- ского массива	Северо-западные, мер широтные	Кварцевые жилы (m = 9–12 м, с раз- дувами до 43 м, d = 500 м)	A3. пр. C3	Массивная, друзо- видная	Мусковит-кварцевые грейзены, пирит-кв	Au - 0,3-2,5; Ag - 1,8-2,6; Bi - 13,0-15; As - m0 0 12 Mar %	
Медно-молибден- порфировый	JIopa Cu-Mo	Гранитоиды Сред- ненского массива (магаданский комп- лекс)	Северо-западные и меридиональные	Прожилково-вкра- пленная минера- лизация в телах диоритов и экс- плозивных брек- чий (7-я фаза ма- гаданского ком- плекса)	По данным геофизи- ки, рудные тела погружаются на северо-запад	Прожилково-вкрап- ленные	Турмалинизация, грейзенизация, сульфидизация, окварцевание	Аи – 0,2–1; Аg – до 3
Тип	Объект Параметры	Вмещающие породы	Рудоконтро- лирующие разломы	Морфология рудных тел		Текстуры	Околорудные изменения	Средние со- держания Аu и Ag в

Taблица 3 . Геологическая характеристика месторождений и рудопроявлений п-овов Кони и Пьягина Table 3 Coologie eqting of mineral denosite and occurrences over Koni and Dyachin Daninsulae

В то же время вследствие наложения более поздней медной минерализации руда здесь имеет специфические черты и геохимическую специализацию на Cu.

Рудопроявление Южный (рис. 2) расположено на расстоянии 3-4 км от Си-Мо-порфирового месторождения Лора и представляет собой поле развития мусковит-турмалиновых грейзенов (вплоть до турмалинитов) шириной около 800 м, протягивающееся на 2-3 км. В грейзенах отмечается сеть кварцевых жил, где формируются гигантские кристаллы кварца и раухтопаза с включениями волосовидного турмалина. Геологические характеристики рудопроявления и рудных тел приведены в табл. З. В ходе полевых работ на участке «Южный» мы выявили рудную Au-As-Bi минерализацию (Савва, 2003; Савва, Колова, 2005). Она приурочена к участкам грейзенизированных гранодиоритов, где на фоне турмалинитов сохранились реликты первичных пород.

Минералогическим анализом в рудах выявлено около 15 минералов. Они распределены неравномерно и составляют 2-10%. Халькопирит отлагался позже пирита, цементируя его катаклазированные зерна. Изучение самородного Аи из турмалиновых грейзенов показало, что наиболее распространенным минералом в срастании с ним можно считать крупночешуйчатую слюду (мусковит). Травлением самородного золота CrO₂+HCl была выявлена структура мощной гипогенной грануляции полигонально-зернистых агрегатов (см. фототаблицу, 6). Эта структура указывает на то, что первичное золото испытало термальный метаморфизм. На данной площади он может быть связан с более поздним внедрением продуктивных на Си и Мо кварцевых диорит-порфиритов, которые в приконтактовой зоне мощностью 15-20 м воздействуют на турмалиновые грейзены, приводя к их актинолитизации (Савва, 2003).

Рудопроявление Рыжик (см. рис. 2) расположено в истоках р. Халанчига, в 9 км в западном направлении от месторождения Лора, на контакте гранитоидов Средненского батолита с вулканитами раннемеловой поперечненской толщи и диоритами ранней фазы внедрения. Геологические характеристики рудопроявления и рудных тел см. в табл. 3. Значительную роль в формировании облика участка играют северо-западные тектонические нарушения, вдоль которых отмечается вкрапленная пиритовая и халькопирит-пиритовая минерализация, аналогичная рудопроявлению Лора (см. фототаблицу, 7, 8), а также зоны рассланцевания и гидротермально-метасоматических образований. Оруденение локализовано в золотоносных жилах и зонах прожилкования турмалинкварцевого, кварцевого, пирит-хлорит-кварцевого, эпидот-кварцевого, полевошпат-кварцевого, пирит-лимонит-кварцевого, сульфидно-эпидоткварцевого состава. Параметры рудных тел см. в табл. 3. Общая сульфидность руд 5-10%.

Рис. 2. Геолого-структурные схемы рудопроявлений п-вов Кони и Пьягина (по данным С. А. Шубина, 2005 г.): *а* – Гурон, *б* – Рыжик, *в* – Крутой, *г* – Горелый. 1-6-раннемеловые вулканогенно-осадочные образования К₁рg₁ - пьягинской толщи, К₁рр₁ - поперечненской толщи: 1 – слои лав андезитов и базальтов; 2 – слои туфов андезитов и базальтов; 3 – слои лав и туфов андезитов; 4 - слои туфов базальтов; 5 - слои лав базальтов; 6 - слои лав и туфов базальтов и андезитов; 7, 8 – позднеюрские осадочные образования J₂um – умаринской и J₂od – одянской свиты: 7 – слои аргиллитов и песчаников; 8 – слои аргиллитов; 9, 10 – четвертичные водно-ледниковые образования: 9 – нивальногляциальные; 10 – аллювиальные; 11, 12 – гранитоиды Средненского массива: 11 – раннемеловые диориты, кварцевые диориты, 12 – граниты; 13, 14 – раннемеловые субвулканические образования: 13 – дациты, 14 – габброиды; 15 – меловые дайки различного состава; 16-заверенные горными выработками жилы лимониттурмалин-кварцевого, эпидот-кварцевого и кварцевого составов; 17 – жильные образования, не заверенные горными выработками; 18 - зоны интенсивного прожилкования разного состава; 19 - зоны пиритизации; 20 – палеогеновая кора выветривания; 21 – зоны рассланцевания; 22 – метасоматоз: *а* – контактовый, *б* – контактовое ороговикование, в - контактовый интенсивно проявленный, г – слабо проявленный, д – региональный; 23 - региональное ороговикование; 24 - грейзенизация; 25, 26 - тектонические нарушения заверенные и предполагаемые; 27 – геологические границы; 28 – шлиховой поток золота; 29 – элементы залегания

Fig. 2. Schematized geologic settings and structures of mineral deposits and occurrences over Koni and **Pyaghin Peninsulas** (according to S. A. Shubin, 2005): *a* – Guron, δ – Ryzhik, e – Krutoi, r – Gorely. 1–6 – early Cretaceous volcanics and sediments K₁pg₁ – Pyaghin rocks, $K_1 pp_1$ – Poperechnenskaya rocks: 1 – andesite and basalt lava; 2 - and esite and basalt tuffs; 3 - and esite lava and tuffs; 4 - basalt tuffs; 5 - basalt lava; 6 - basalt and andesite lava and tuffs; 7, 8 - late Jurassic sediments J₂um -Umarinskaya Suite and $J_2 od - Odyanskaya Suite; 7$ argillite and sandstone beds; 8 – argillite beds; 9, 10 – Quaternary fluvio-glacial sequences: 9-niveoglacial; 10alluvial; 11, 12 - Srednensky Massif granitoids: 11 - early Cretaceous diorite, quartz diorite; 12 - granites; 13, 14 early Cretaceous subvolcanics: 13 - dacite; 14 - gabbroid; 15-Cretaceous dikes of different composition; 16-miningproven limonite-tourmaline-quartz, epidote-quartz, quartz and other veins; 17 - different non-proven veins; 18 different stringer lodes; 19 - pyrite alteration zones; 20 -Paleogene weathering crust; 21 – schist alteration zones; 22 – metasomatic alteration: a – contact metasomatism; δ – contact hornfelsic alteration; e - an intense contact metasomatism; e – an insignificant metasomatism; ∂ regional metasomatism; 23 – regional hornfelsic alteration; 24 – greisen alteration; 25, 26 – proven and inferred tectonic dislocations; 27 - geologic boundaries; 28 - gold in heavy concentration streak; 29 - occurrence pattern

Текстурным анализом руд были выявлены следующие генетические группы: метаморфогенные (пятнисто-полосчатые, линзовидно-полосчатые, брекчиевидные), выполнения (вкрапленные, гнездово-вкрапленные) и коррозионные (кавернозные).

При детальном минералогическом изучении в рудах установлено примерно 30 минералов. Продуктивная минерализация преимущественно располагается по трещинкам и зальбандам жил, заполненных биотит-лимонитовым материалом в ассоциации с гидроксидами железа. Составы самородного Аи (см. фототаблицу, 9) и теллуровисмутита (см. фототаблицу, 10) были изучены рентгеноспектральным анализом, которые отличаются от стехиометричного повышенными концентрациями Рb. Повсеместно наблюдаются гипергенные минералы Cu и Fe. По данным спектрального анализа руд, высокая положительная корреляция установлена для Au, Ag, Bi, несколько ниже с Си. Предположительно это связано с более поздним ее отложением, что наряду с геологическими наблюдениями подтверждает допорфировое образование Аи-Те-Ві оруденения.

Аu-сульфидное оруденение выявлено на <u>ру-</u> <u>допроявлении Гурон (см. рис. 2)</u>. Оно расположено на междуречье Эвкун – Лосиный, в 15–20 км от месторождения Лора.

В районе рудопроявления по берегам ручьев и на редких осыпях обнажаются пласты песчаников и алевролитов средне-позднеюрского времени. Они залегают моноклинально с падением до 30° на юго-запад. Среди них выделяется пласт (мощностью около 50 м) мелкозернистых песчаников, содержащих округлые конкреции размером до 3-5 см, редко до 8-10 см, в которых установлено около 10% пирротина и незначительное количество халькопирита. По разломам северо-западного и субширотного простирания песчаники прорваны дайкоподобными телами диорит-порфиритов и андезитов старицкого и светлинского комплексов (мощность до 150-200 м, протяженность примерно 1 км). В результате литогеохимического опробования по сети 100×20 м (1997 г.) на участке установлены довольно многочисленные, хотя и незначительные по размерам, слабоконтрастные ореолы рассеяния Аи и сопутствующих ему элементов. Они формируют комплексную аномалию площадью 0,164 км², протягивающуюся на 600 м в широтном направлении при мощности 200-250 м. Главными элементами ранжированного по продуктивности ряда являются Au и Pb, второстепенные представлены Co, Ni и Cu, незначительное участие принимают Mo, Zn и Ag. По периферии эта аномалия окаймлена контрастными ореолами рассеяния Мд. При заверочных работах в береговых обрывах руч. Кум (левый приток руч. Эвкун) в песчаниках среднеюрского возраста вдоль северо-западных разломов и зон повышенной трещиновантости установлены зоны пирит-серицит-гидрослюдисто-кварцевых метасоматитов (мощность от 30 до 500 м), вмещающие золотоносную прожилково-вкрапленную и прожилковую кварц-сульфидную минерализацию и образующие две рудные зоны, морфологические особенности которых приведены в табл. 3. Пирит в них образует обильную вкрапленность (до 2-25%; по данным спектрального анализа, от его количества в рудах напрямую зависит содержание Au) и прожилки мощностью от 2-3 мм до 1 см.

В протолочках и шлиховой пробе преобладают зерна амфибола, кварца и гидроксидов Fe, единичные зерна представлены самородным Аu, арсенопиритом, брукитом и другими минералами. Самородное Аи заполняет интерстиции в кварце, пирите, а также образует каплевидные включения внутри идиоморфных кристаллов кварца и развивается по трещинкам в пирите. В самом же самородном Аи повсеместно встречены округлые и овальные мельчайшие включения галенита. В результате структурного травления знаков самородного Аи выявлена мелкая полигонально-зернистая структура с большим количеством полисинтетических двойников, что типоморфно для большинства золоторудных месторождений среднеглубинного типа. Среднее значение пробности равно 862‰, с разбросом значений от 691 до 920‰.

Рудопроявление Гурон по отношению к Сu-Мопорфировому оруденению предположительно допорфировое, а высокая сульфидность руд обусловлена повышенной сульфидностью вулканогенноосадочных пород островодужного комплекса. С медно-порфировым этапом оруденения здесь связаны метасоматоз и образование прожилкововкрапленного оруденения.

Au-Ag оруденение было охвачено детальными поисками на участках «Крутой» и «Горелый».

<u>Рудопроявление Крутой (см. рис. 2)</u> расположено в верховьях правых притоков р. Сиглан, в 20 км на запад от месторождения Лора. Территория занимает надынтрузивное положение по отношению к Средненскому массиву и приурочена к сочленению зон глубинных разломов - меридионального и северо-западного направления. Геологические характеристики рудопроявления и рудных тел приведены в табл. 3. Мощность зон пирит-серицит-кварцевого метасоматоза - от первых сантиметров до 100 м, максимальная протяженность до 2 км; они развиты вдоль тектонических нарушений северо-западного направления. Количество сульфидов в них от 5 до 10%. Прожилково-жильные рудные тела сосредоточены среди зон метасоматоза, их морфология освещена в табл. 4. По геохимическим данным среди выявленных химических элементов выделены четыре корреляционные ассоциации: 1) Си – Au - Ag - Bi; 2) Ba - Cr - Fe - Sn - Mo - W; 3) Pb -Li - Al - Ti; 4) Zn - Co - Ni - Ca - Ga - Mg - Ge.

Для руд установлены следующие генетические типы текстур: *метаморфогенные* (будинажа), *выполнения* (гнездово-вкрапленная, гнездово-прожилковая, вкрапленная, прожилковая, массивная, друзовая, гнездовая), *замещения* (массивная, вкрапленная, пятнистая), *катаклаза* (брекчивая, трещиноватая), *коррозионные* (землистые и сажистые налеты).

В рудах Крутого выявлено более 20 минеральных видов. По характеру распределения рудных минералов руды можно отнести к прожилково- и тонковкрапленным, с весьма неравномерным, в пределах рудного тела, распространением полезного компонента, с участками значительного обогащения – бонанцами. Наиболее распространены пирит и халькопирит, причем последний представлен двумя генерациями: I – в виде эмульсионной вкрапленности в пирите; II – цементирующим и корродирующим пиритом (см. фототаблицу, 11). Благороднометалльная минерализация представлена: Аи-Ад сульфидами (см. фототаблицу, 12), селенистым Ац (табл. 4), самородным Ад глобулярной структуры (см. фототаблицу, 13) и акантитом (см. фототаблицу, 14) (Колова, Савва, 2004а, б). Она приурочена к интерстициям пирита и кварца, гнездам гидрослюды либо к пустоткам выщелачивания. Около 40% самородного Аи имеет пробность 751-800‰. Структура самородного Ад и акантита, как правило, глобулярная, губчатая.

Согласно результатам термо- и криптометрических исследований первичных и первично-вторичных включений в кварце рудопроявления Крутой, проведенных в ИГЕМ РАН (Волков и др., 2006), двухфазные газово-жидкие включения гомогенизируются в жидкую фазу при температуре 429–143°С и содержат водный раствор с концентрацией солей 12,7–21,0 мас. % экв. NaCl. В растворе этих включений преобладают хлориды натрия и магния при плотности флюида 0,64–1,08 г/см³. Эти факты указывают на крайне нестабильные условия рудообразования и низкую концентрацию растворов.

N⁰	Содержание химических элементов, мас. %							G	
анализа	Fe	Cu	S	Zn	Se	Ag	Au	Сумма	
Акантит									
1	0,1	0,1	13,9	0,0	0,1	85,4	0,3	99,9	
2	0,1	0,0	13,8	0,0	0,1	86,0	0,4	100,6	
3	0,1	0,0	13,9	0,0	0,0	84,8	0,6	99,4	
4	0,4	0,2	14,0	0,0	0,0	85,2	0,3	100,1	
5	2,6	0,2	14,6	0,0	0,0	84,0	0,2	101,6	
Селенистое золото									
1	1,0	0,0	0,0	0,0	1,2	9,7	87,1	99,0	
2	1,2	0,0	0,1	0,0	1,1	10,4	88,0	100,8	
3	1,4	0,0	0,1	0,0	2,3	7,7	88,0	99,5	
4	0,8	0,0	0,0	0,1	2,1	9,2	87,0	99,2	
5	1,1	0,0	0,0	0,0	1,2	9,7	87,0	99,0	
6	1,8	0,1	0,0	0,0	1,9	8,7	86,7	99,2	
7	1,8	0,0	0,0	0,0	1,7	9,2	86,8	99,5	
Аи-Ад сульфиды									
1	0,9	0,0	7,4	0,0	0,6	60,7	28,9	98,5	
2	1,2	0,1	7,8	0,0	0,0	70,0	19,0	98,1	
3	0,6	0,3	9,3	0,0	0,4	74,5	14,8	99,9	
4	0,4	0,0	6,7	0,0	0,7	62,2	30,8	100,8	
5	4,4	0,1	4,6	0,0	1,1	34,2	54,2	98,6	
6	1,1	0,3	7,8	0,0	0,0	70,0	19,0	98,2	

Таблица 4. Результаты микрозондового анализа Ag- и Au-содержащих минералов участка «Крутой» Table 4. Ag and Au mineral microprobe data for Krutoi area

Примечание. Сатевах, аналитик М. И. Парфенов, СВКНИИ ДВО РАН. Режим проведения анализов, аналитические линии и эталоны: AsL α – эталон – FeAsS (43,49 – As; 34,97 – Fe; 21,54 – S); Cu $K\alpha$ – эталон – CuFeS (34,5 – Cu; 30,5 – Fe; 34,5 – S); Fe $K\alpha$ – эталон – FeS₂ (46,55 – Fe); Pb $M\alpha$ – эталон – PbS (86,6 – Pb); SbL α – эталон – Sb₂S₃ (71,38 – Sb; Zn $K\alpha$ – эталон – ZnS (67,1 – Zn); AgL α – эталоны – сплавы различного состава.

На основании изучения пространственно-временных взаимоотношений минералов в рудах участка «Крутой» установлены следующие продуктивные парагенетические минеральные ассоциации: І – магнетит + эпидот + хлорит + гидрослюда + халькопирит; ІІ – кварц + пирит + халькопирит + пирротин + самородное золото + самородное серебро; ІІІ – самородное серебро + акантит + золото-серебряные сульфиды + самородное золото + гидроксиды Fe + ковеллин + халькозин.

По структурно-геологическим и минералогическим признакам установлено послепорфировое время образования Au-Ag рудопроявления Крутой. Об этом свидетельствуют: 1) рассеянный характер рудных минералов раннего парагенезиса (преимущественно вкрапленная и гнездово-вкрапленная пиритовая минерализация); 2) отсутствие колломорфно-полосчатых текстур, свойственных эпитермальным Au-Ag месторождениям; 3) эпидотхлоритовые метасоматические изменения, аналогичные порфировому этапу на Cu-Mo-порфировом месторождении Лора; 4) высокая геохимическая коррелируемость Au – Ag – Bi – Cu; 5) широкий спектр минералов Cu; 6) отсутствие признаков наложения Си минерализации; 7) отсутствие турмалинизации.

<u>Рудопроявление Горелый (см. рис. 2)</u> расположено в верхнем течении р. Хивач (правый приток р. Сиглан), в 60 км от месторождения Лора. Геологические характеристики рудопроявления приведены в табл. 3. Структура рудного поля блоковая, определена сочетанием радиальных и концентрических тектонических нарушений, осложненных диагональными трещинами, а также наличием нарушений северо-восточного и северо-западного направления. Последние контролируют расположение зон метасоматитов и жильно-прожилковой рудной зоны пирит-гидрослюдисто-кварцевого состава, морфологические характеристики которой показаны в табл. 3. Вдоль радиальных нарушений развиты зоны турмалинизации.

Главными элементами, формирующими геохимические аномалии на рудопроявлении Горелый, являются: Ag и Bi; незначительными – Pb, Cu и Sb (литогеохимическая съемка по сети 100×500 м). По геохимическим данным выделены четыре ассоциации химических элементов: 1) Au – Ag – Bi; 2) Pb – Cr – Sn; 3) Zn – Cu – Fe – Mo; 4) As – Sb – Co.

Минералогическими исследованиями и полевыми наблюдениями при документации расчисток установлен более молодой возраст кварцевых жил по отношению к выявленным зонам кварцполевошпат-турмалиновых метасоматитов.

Текстурным анализом выявлено, что в жильных образованиях наиболее широко распространены ритмичные колломорфно-полосчатые текстуры (см. фототаблицу, **15**), обусловленные чередованием слоев (мощностью 1–3 мм) скрытокристаллического халцедоновидного кварца и халцедона с тонкими (не более 0,5 мм) прослоями гидрослюды. Для полнопроявленных полевошпаткварц-турмалиновых метасоматитов характерна пятнистая, брекчиевидная текстура, образованная обломками халцедона в кварц-полевошпатовом цементе, на фоне которого формируются солнцевидные стяжения турмалина и акантита.

Минералогическими исследованиями руд мы установили около 30 минералов. Рудам присущ осколочный характер пылевидной вкрапленности сульфидов в кварце вблизи прослоев гидрослюды, что, возможно, свидетельствует о чрезвычайно низкотемпературном характере формирования жил и фракционировании раздробленных сульфидов в жидком геле кремнезема.

По результатам термо- и криптометрических исследований первичных и первично-вторичных включений в кварце рудопроявления Горелый, проведенных в ИГЕМ РАН (Волков и др., 2006), двухфазные газово-жидкие включения гомогенизируются в жидкую фаз при температуре 431– 224°С и содержат водный раствор с концентрацией солей 5,3–7,5 мас. % экв. NaCl. В растворе этих включений преобладают хлориды натрия и магния при плотности флюида 0,5–0,88 г/см³.

По текстурным особенностям жильного материала рудопроявление Горелый можно рассматривать как эпитермальный тип Au-Ag минерализации с пониженной сереброносностью и с повышенным фоном Bi вследствие наложения турмалинизации. Предполагается допорфировый возраст колломорфно-полосчатых жильных тел.

УСЛОВИЯ ФОРМИРОВАНИЯ И СООТНОШЕНИЕ РАЗЛИЧНЫХ ТИПОВ ЗОЛОТОРУДНОЙ МИНЕРАЛИЗАЦИИ

Формирование золотого оруденения в вещественном и пространственно-временном отношении проходило последовательно и тесно сопряжено с тремя этапами развития Средненской медномолибден-порфировой системы и по отношению к третьему – порфировому этапу может рассматриваться как допорфировое, синпорфировое и постпорфировое (Колова, Савва, 2006).

Временные взаимоотношения устанавливались в геологических образованиях и минеральных парагенезисах руд.

I этап (140–130 млн лет) – внедрение интрузий диоритов ранней фазы, которое сопровождалось контактовым и автометасоматозом, а возможно, и гидротермальной деятельностью.

В диоритах развита убогая рудная минерализация (тонкая рассеянная пиритизация). В гранитоидах Средненского батолита диориты ранней фазы обнаруживаются в виде многочисленных ксенолитов размером от 5 см до 1,5 м, а на удаленных от него участках иногда имеют самостоятельное площадное развитие.

Со становлением тел ранних диоритов мы связываем время формирования золото-серебряной минерализации рудопроявления Горелый. Возможно, оно связано и со становлением гранодиоритов средней фазы, а так как этот объект находится на значительном удалении от Средненской Си-Мо-порфировой системы, то допустимо, что он имеет отношение к другому очагу вулкано-плутонической деятельности. Тем не менее по отношению к главной порфировой фазе, несущей медное и молибденовое оруденение, Аи-Аg оруденение рудопроявления Горелый мы рассматриваем как *допорфировое*, на это указывают и геохимические данные – Аи и Ад соотносятся с Ві, а не с Си, как мы видим на постпорфировом рудопроявлении Крутой.

II этап (136–125 млн лет) – внедрение интрузии гранодиорит-тоналитового состава с постепенным подъемом и кристаллизацией Средненского плутона. В этот период осуществлялись:

автометасоматоз – альбитизация, окварцевание, гидрослюдизация, пиритизация;

грейзенизация – формирование мощной (300– 800 м) оболочки существенно турмалиновых грейзенов вокруг интрузива и заполнение ими радиальных и концентрических трещин купольной структуры;

вкрапленная магнетитовая и пиритовая минерализация (количество магнетита в гранодиоритах достигает 1–3%, пирита до 5%);

привнос B, Bi, Sn, Au, Ag, Ti, Te;

формирование в зонах грейзенизации золотого оруденения Au-Te-Bi типа (рудопроявления Южный, Рыжик). По отношению к главной порфировой фазе Средненской Cu-Mo-порфировой системы Au-Te-Bi минерализация является *допорфировой*, на что указывают: 1) локализация оруденения в грейзенах, прорванных дайками кварцевых диорит-порфиритов поздней фазы; 2) отчетливо проявленный наложенный характер медной минерализации на все ранние рудные образования (цементация катаклазированных зерен пирита халькопиритом); 3) интенсивная грануляция самородного золота;

формирование в обрамлении интрузива вкрапленного золотого оруденения Аи-сульфидного типа (рудопроявление Гурон и зоны сульфидизации). Оно рассматривается нами как *допорфировое*, на что указывают: 1) тесная парагенетическая связь самородного золота с пиритом; 2) устойчивое преобладание пиритовой минерализации над халькопиритовой; 3) наложенный характер последней. Этот объект является «удаленным» типом минерализации Сu-Мо-порфировой системы. При этом заложение рудолокализующих структур зон сульфидизации и ранние рудные пара-

Рис. 3. Модель формирования оруденения п-вов Кони и Пьягина: 1, 2 – раннемеловые гранитоиды Средненского массива: 1 – граниты, гранодиориты; 2 – кварцевые диорит-порфириты (меденосные); 3 – меловые вулканогенно-осадочные образования среднего и основного состава; 4 – юрские осадочные образования Тайгоносской геосинклинальной зоны с Си-колчеданными залежами; 5 – триасовые островодужные базальты; 6 – зона метасоматических и динамотермальных изменений вмещающих пород (грейзенизация, турмалинизация, рассланцевание); 7 – тектонические нарушения различной кинематики; 8 – направление миграции магматогенных рудообразующих растворов; 9 – вулканическое жерло; 10 – уровень современного эрозионного среза

Fig. 3. A model for mineralization forming over Koni and Pyaghin Peninsulas: 1, 2 – early Cretaceous granitoids of Srednensky Massif: 1 – granites and granodiorites; 2 – quartz diorit-porfiric (Cu-bearing); 3 – Cretaceous intermediate and basic volcanics and sediments; 4 – Jurassic sediments of Taigonoss geosynclinal area hosting Cu-massive sulfide occurrences; 5 – Triassic island arc basalts; 6 – metasomatic and dynamic-thermal alterations of host rocks (greisen, tourmaline and schist alterations); 7 – different tectonic dislocations; 8 – migrations of magmatic ore-forming fluids; 9 – a volcanic neck; 10 – the modern erosion surface

генезисы связаны со всплытием Средненского плутона, а также с его гидротермальной деятельностью.

III этап – порфировый (110–90 млн лет) – внедрение кварцевых диорит-порфиритов завершающей фазы и эруптивных брекчий. С этим этапом связаны:

автометасоматоз вмещающих пород – биотитизация, эпидотизация, хлоритизация, калишпатизация, сульфидизация;

мощный привнос Си и Мо и формирование Си-Мо-порфировых руд месторождения Лора с *синпорфировой* золотой минерализацией, на что указывают: 1) прямая зависимость содержания золота от количества халькопирита и интенсивности хлоритизации руд; 2) установленный в Си-Мо-порфировых рудах парагенезис самородного Au с пиритом;

формирование Аи-Ад рудопроявления Крутой жильно-прожилкового типа. По структурногеологическим и минералогическим признакам мы предполагаем постпорфировое время его образования. Об этом свидетельствуют: 1) пересечение золотоносными кварцевыми жилами тел кварцевых диорит-порфиров поздней фазы; 2) будинирование и цементирование существенно медных руд золотоносным кварцем; 3) отсутствие колломорфно-полосчатых текстур, свойственных многим эпитермальным Au-Ag месторождениям, но характерных для эпитермального Au-Ag оруденения, являющегося элементом зональности медно-порфировых систем; 4) эпидот-хлоритовые метасоматические изменения, сопутствующие также продуктивному на медь порфировому этапу месторождения Лора; 5) коррелируемость Au c Ag, Cu, Ві; 6) широкий спектр минералов Си; 7) отсутствие признаков наложения медной минерализации; 8) отсутствие турмалинизации;

обогащение S, Cu, Mo, Au, Ag рудных объектов и зон динамотермального метаморфизма;

наложение Си-Мо минерализации на Au-Te-Bi, Au-Ag и Auсульфидную (Рыжик, Южный, Гурон).

Таким образом, установлено, что цепь событий рудогенеза

происходила в следующем порядке (рис. 4): *допорфировое оруденение* – Аи-Ад (Горелый), Аи-Те-Ві (Рыжик, Южный), Аи-сульфидное (Гурон), золотоносные зоны сульфидизации *→ синпорфировое* – золотосодержащее Си-Мо-порфировое (Лора, Прямой) *→ постпорфировое* – Аи-Ад (Крутой) *→* гипергенное обогащение Си, Аи, Ад.

Для всех рассмотренных рудных проявлений отмечаются: 1) четкая пространственная связь с порфировыми интрузиями гранитоидного состава; 2) прожилково-вкрапленный характер минерализации; 3) отсутствие на Au-Ag рудопроявлениях, расположенных зонально относительно Си-Мо-порфировой интрузии, текстурных признаков эпитермального оруденения; 4) характерный для Си-Мо-порфировой системы набор главных рудных минералов (пирит, халькопирит, магнетит); 5) повышенные как в рудах, так и во вмещающих породах содержания Си, Мо и Ві.

В целом можно сказать, что в пространственном размещении золотой минерализации и формировании ее минералого-геохимических особенностей большую роль играл Средненский массив.

ЗАКЛЮЧЕНИЕ

Анализ геолого-структурных особенностей территории позволил наметить последовательность развития территории и понять закономерности размещения во времени и пространстве Au и Cu-Mo-порфирового оруденения на п-овах Кони и Пьягина, а также показать, что в расположении Au-рудных объектов основная роль принадлежит Средненскому интрузивному массиву и разломной тектонике, связанной с его формированием.

На основании изучения геолого-хронологической последовательности магматических событий и пространственно-временных отношений минеральных парагенезисов создана принципиальная геолого-генетическая модель формирования Си-Мо-порфировой системы и генетически связанного с ним Аu-оруденения.

Подводя итог проделанной работе, отметим, что потенциал территории п-овов Кони и Пьягина в рудном отношении к настоящему времени окончательно не определен, но довольно высок. Требуют более детальных (тематических) исследований: 1) процессы россыпеобразования самородного Au; 2) гидротермально-метасоматические изменения пород и руд; 3) оценка эрозионных срезов как Си-Мо-порфировых объектов, так и Au(Ag)-содержащих; 4) колчеданного оруденения п-овов Кони и Пьягина. Большой потенциал в плане золотого оруденения могут иметь пока слабо изученные золотоносные зоны сульфидизации с широким площадным развитием на данной территории. Стоит уделить более пристальное внимание рудным объектам Аu-Те-Ві типа. Учитывая масштабность Средненского плутона и генетическую связь с ним Аи-Те-Ві оруденения, среди них возможно выявить промышленно значимые. Стоит уделить более пристальное внимание рудным объектам Аи-редкометалльного типа. Учитывая масштабность Средненского плутона и генетическую связь с ним Аи-редкометалльного оруденения, среди них возможно выявить промышленно значимые.

Выполнено при поддержке гранта РФФИ 08-05-00135.

ЛИТЕРАТУРА

Андреева Н. В., Давыдов И. А., Люскин А. Д. Главный этап интрузивного магматизма Северного Приохотья и его возраст по результатам изотопного датирования // Магматизм и оруденение Северо-Востока России. – Магадан : СВКНИЙ ДВО РАН, 1997. – С. 175–191.

Белый В. Ф. Окраинно-континентальные тектономагматические пояса Тихоокеанского сегмента Земли. – Магадан : СВКНИИ ДВО РАН, 1998. – С. 58.

Белый В. Ф., Федошин Ю. И. Новые данные о гранитоидном магматизме п-ова Кони, предшествовавшем формированию Охотско-Чукотского вулканогенного пояса // Тихоокеан. геол. – 1985. – № 4. – С. 34–38.

Волков А. В., Савва Н. Е., Сидоров А. А. и др. Закономерности размещения и условия формирования Аuсодержащих Сu-Мо-порфировых месторождений Северо-Востока России // Геология рудн. месторожд. – 2006. – Т. 48, № 6. – С. 512–539.

Воробьев Ю. Ю. Триасово-юрский вулканизм п-ова Кони // Тихоокеан. геол. – 1985. – № 4. – С. 39–44.

Воробьев Ю. Ю. Меловые интрузивные комплексы Кони-Пьягинского магматогенного поднятия // Магматические комплексы рудных районов Северо-Востока СССР и их крупномасштабное геологическое картирование. – Магадан : СВКНИИ ДВО АН СССР, 1991. – С. 52–59.

Заборовская Н. Б. Внутренняя зона Охотско-Чукотского пояса на Тайгоносе // Тр. ГИН АН СССР. – М. : Наука, 1978. – Вып. 315. – С. 199.

Ичетовкин Н. В. Глубинные разломы Примагаданского района Охотско-Чукотского вулканогенного пояса и их металлогеническое значение // Материалы по геол. и полезн. ископ. Северо-Востока СССР. – Магадан : СВКНИИ ДВНЦ АН СССР, 1978. – Вып. 24. – С. 13–19.

Колова Е. Е., Савва Н. Е. Самородное серебро из эпитермальных руд Кони-Пьягинской металлогенической зоны // Материалы Х съезда РМО «Минералогия во всем пространстве сего слова». – СПб. : Изд-во СПБУ, 2004. – С. 140–141.

Колова Е. Е., Савва Н. Е. Селенистое золото в рудном проявлении Си-Мо металлогенической зоны : тез. 3-го Всерос. симп. с междунар. участием «Золото Сибири и Дальнего Востока: геология, геохимия, технология, экономика, экология». – Улан-Удэ, 2004. – С. 181–183.

Колова Е. Е., Савва Н. Е. Роль разломной тектоники в размещении золоторудных проявлений на п-ове Кони-Пьягина // Благородные и редкие металлы Сибири и Дальнего Востока: рудообразующие системы месторождений комплексных и нетрадиционных типов руд : материалы науч. конф. (Иркутск, 3–7 окт. 2005 г.). – Иркутск : Изд-во Ин-та географии СО РАН, 2005. – Т. 1. – С. 65–67.

Колова Е. Е., Савва Н. Е. Рудно-магматическая модель медно-порфирового месторождения Лора (Северное Приохотье) // Актуальные проблемы рудообразования и металлогении : тез. докл. междунар. совещ., посвящ. 100-летию со дня рожд. акад. В. А. Кузнецова. – Новосибирск, 2006. – С. 106–108.

Котляр И. Н., Русакова Т. Б. Геолого-геохронологическая модель меловых континентальных вулканических толщ Охотско-Чукотской магматогенной провинции (Северо-Востока России) // Тихоокеан. геол. – 2005. – Т. 24, № 1. – С. 25–44.

Котляр И. Н., Жуланова И. Л., Русакова Т. Б., Гагиева А. М. Изотопные системы магматических и метаморфических комплексов Северо-Востока России. – Магадан : СВКНИИ ДВО РАН, 2001. – С. 319.

Кошелкина З. В., Теплых В. И., Юдина В. Д., Воробьев Ю. Ю. Новые данные по биостратиграфии средней юры района п-ов Кони – п-ов Пьягина // Тихоокеан. геол. – 1984. – № 4. – С. 41–48.

Кривцов А. И. Медно-порфировые месторождения. – М. : ЦНИГРИ, 2001. – С. 232.

Радченко Ю. И., Шубин С. А., Ртищева Л. И., Савва Н. Е. Геологическая позиция и этапы формирования Си-Мо месторождения Лора (примагаданский отрезок Охотской металлогенической зоны) // Проблемы геологии и металлогении Северо-Востока Азии на рубеже тысячелетий : в 3 т. Т. 2. Металлогения : Материалы XI сес. Сев.-Вост. отд-ния ВМО «Регион. науч.-практ. конф., посвящ. 100-летию со дня рожд. Ю. А. Билибина» (Магадан, 16–18 мая 2001 г.). – Магадан : СВКНИИ ДВО РАН, 2001. – С. 70–73.

Савва Н. Е. Этапы формирования нового медномолибден-порфирового месторождения Лора (Северное Приохотье) // Минералогия – основа использования комплексных руд : тез. докл. Годичного собрания Минерал. о-ва РАН, (30.05–01.06.2001). – СПб. : Горн. ин-т, 2001. – С. 87–89.

Савва Н. Е. Соотношение золото-редкометалльной и медно-порфировой рудных формаций Кони-Пьягинской металлогенической зоны // Геодинамика, магматизм и минерагения континентальных окраин Севера

Поступила в редакцию 11.04.2008 г.

Пацифики : в 3 т. : Материалы Всерос. совещ., посвящ. 90-летию акад. Н. А. Шило (XII годичное собрание Сев.-Вост. отд-ния ВМО). Магадан, 3–6 июня 2003 г. – Магадан : СВКНИИ ДВО РАН, 2003. – Т. 3. – С. 74–77.

Савва Н. Е., Колова Е. Е. Минералого-геохимические типы золотого оруденения на п-ове Кони-Пьягина (Кони-Мургальская металлогеническая зона) // Наука Северо-Востока России – начало века : Материалы Всерос. науч. конф., посвящ. памяти акад. К. В. Симакова и в честь его 70-летия (Магадан, 26–28 апр. 2005 г.). – Магадан : СВНЦ ДВО РАН, 2005. – С. 210– 214.

Сидоров А. А. О рудных формациях окраинноматериковых металлогенических поясов северо-востока Азии // Докл. РАН. – 2001. – Т. 376, № 4. – С. 1–5.

Умитбаев Р. Б. Охотско-Чаунская металлогеническая провинция (строение, рудоносность, аналоги). – М. : Наука, 1986. – 286 с.

Шубин С. А. Отчет о поисковых работах в Накхатанджинском рудном узле в центральной части полуострова Кони-Пьягина на площади 5250 км² (Приморская ГПП). – Магадан : ОАО «Дукатская ГГК», 2005. – 460 с.

Юдин С. С. К тектонике северного побережья Охотского моря // Материалы по геол. и полезн. ископ. Северо-Востока СССР. – Магадан : Кн. изд-во, 1964. – Вып. 17. – С. 49–56.

PORPHYRY-COPPER MOLYBDENUM AND GOLD LODE MINERALIZATION TYPES OVER KONI AND PYAGHIN PENINSULAS (THE NORTHERN SEA OF OKHOTSK COASTS)

Ye. Ye. Kolova, N. Ye. Savva

The authors use the results of isotopic and mineralogic studies as a basis to create the porphyry Cu-Mo and Au formation models for Koni and Pyaghin Peninsulas. The geologic and tectonic development dynamics of these both areas are investigated and spatial-temporal relationships between these two mineralization types are explained. As it is established, Au rare metal and sulfide Au are pre-porphyry deposit types whereas Au-Ag are post-porphyry ones. Srednensky magmatic dome also produced its effects on Au distribution.

Key words: gold mineralization, porphyry-copper molybdenum system, ore-magmatic model, mineralization, occurrence.