— ГЕОЛОГИЯ =

УДК 553.463

ГРАНИТОИДНЫЙ МАГМАТИЗМ ВОЛЬФРАМОВЫХ РУДНО-МАГМАТИЧЕСКИХ СИСТЕМ ЛЕРМОНТОВСКАЯ И ВОСТОК-2: U-Pb-(SHRIMP)-ДАТИРОВАНИЕ, ИЗОТОПНАЯ ХАРАКТЕРИСТИКА (³He/⁴He) РУД

© 2012 г. Член-корреспондент РАН В. Г. Сахно, В. И. Гвоздев, А. А. Аленичева, Э. М. Прасолов, Н. В. Зарубина

Поступило 22.09.2011 г.

Для Центрального Сихотэ-Алиня в позднем мезозое характерно проявление плутонического магматизма, сопряженного с геодинамическим режимом фронтального сжатия и скольжения блоков коры, обусловленного встречным движением Азиатского континента и Тихоокеанской плиты [1, 2]. В условиях сжатия и последующего скольжения формировалась система сосдвиговых структур растяжения, уходящих в мантию и являющихся сквозными структурами, которым свойствен восходящий поток глубинных флюидов, способствующих процессам корово-мантийного взаимодействия и генерации гранитных расплавов [2–4].

С Сихотэ-Алинской сосдвиговой системой связаны Лермонтовская, Востоковская (Восток-2), Малиновская, Лазурная и др. рудно-магматические системы (РМС), перспективные на шеелитсульфидное, медно-порфировое с золотом, оловянное и полиметаллическое оруденение большеобъемного типа (рис. 1).

Взаимоотношение и возраст гранитоидных комплексов и оруденения являются предметом дискуссии. Это связано с тем, что имеющееся в настоящее время датирование, главным образом К–Аг- и частично Rb–Sr-методами, недостаточно точное, а чаще всего противоречивое, что не позволяет провести возрастную корреляцию и дать петролого-геохимическую характеристику для прогнозной оценки перспективных массивов. Более надежным является изотопное U–Pb-датирование по цирконам, а для определения характера рудоносности – изучение изотопных систем и выявление доли участия мантийного компонента

Дальневосточный геологический институт

Дальневосточного отделения

на основе определения ${}^{3}\text{He}/{}^{4}\text{He}$ в генерации рудоносных расплавов [5].

Лермонтовская РМС. Всярудная минерализация связана с гранитоидами васильевского комплекса хунгарийской серии. К этому комплексу относятся несколько массивов: Шивкинский, Гобиллийский, Олимпийский и др., а также шток Лермонтовского месторождения. В комплексе выделяют две фазы: первая – меланократовые, биотитовые и биотит-мусковитовые кордиеритовые диориты, гранодиориты и меланограниты; вторая – мелкозернистые биотитмусковитовые граниты и лейкограниты, которые формировались в интервале от 234-115, 130 до 107.2 ± 1.4 млн лет [6, 7]. Для Шивкинского массива и штока Лермонтовского месторождения Rb-Sr-изохронным методом получены близкие возрасты: 127 ± 4.5 и 125 ± 0.9 млн лет соответственно [8].

В данной работе представлены первые результаты U-Pb-датирования гранодиорита Шивкинского массива (обр. 23). U-Pb-определения выполнены в ЦИИ ВСЕГЕИ. Датирование осуществляли локальным U-Pb-методом по цирконам на высокоразрешающем ионном микрозонде SHRIMP-II. Изотопные измерения и все процедуры проводили по методике, описанной в [9] и принятой в ЦИИ ВСЕГЕИ. Петрохимический и геохимический составы представительных магматических пород приведены в табл. 1 и на рис. 2.

Исследованные цирконы гранодиорита (обр. 23) представлены кристаллами различного габитуса и размерности. Встречаются короткопризматические, идоморфные и длиннопризматические с преобладающим коэффициентом удлинения 1:5. В катодолюминесцентном излучении в цирконах наблюдается осцилляционная зональность, свойственная магматическим породам (рис. 3). Всего выполнено одиннадцать измерений в девяти зернах цирконов. В двух кристаллах зонального строения выявлены ксеногенные домены (табл. 2, т. 3.1, 3.2, 3.3, 6.1).

Российской Академии наук, Владивосток

Всероссийский научно-исследовательский геологический институт им. А.П. Карпинского, Санкт-Петербург

Рис. 1. Схема размещения Плутонического и Восточно-Сихотэ-Алинского вулканических поясов Приморья, по [14] с добавлениями авторов.

1 - фундамент: породы Ханкайского массива, палеозойские и мезозойские складчатые комплексы; 2, 3 – магматические комплексы Центрального Сихотэ-Алиня, плутонический пояс: 2 – хунгарийская серия (габбро, пироксениты, граниты), 3 – татибинская серия (габбро, адамелиты, граниты); 4, 5 – синвулканические трещинные интрузии: лейкогранитов (4), приповерхностные интрузии монцонитоидов (5); 6-9 – магматические комплексы Восточно-Сихотэ-Алинского вулканического пояса: 6 – синанчинский комплекс (андезиты, андезито-базальты), 7 – приморская серия (туфы и игнимбриты риолитов, дацитов), 8 – самаргинский (сияновский) и богопольский комплексы (андезиты, андезито-базальты, дациты, риолиты), 9 – субвулканические фации (граниты, гранит-порфиры, диориты); 10 – платобазальты (суворовские, кизинские, кузнецовские, совгаванские); 11 – глубинные разломы: 1 – Центрально-Сихотэ-Алинский, 2 – Восточный; 12 – левосторонние сдвиги; 13 – поперечные блокоразделяющие разломы: С – Сюркумский, Б – Бикинский, ЮП – Южно-Приморский; 14 – двиговая система Сихотэ-Алиня; 15, 16 – месторождения: 15 – Лермонтовское (1), Восток-2 (2); 16 – Малиновское (3), Лазурное (4).

ДОКЛАДЫ АКАДЕМИИ НАУК том 443 № 1 2012

Таблица 1. Петрохимический (мас. %), микроэлементный (ppm) составы, изотопные отношения представительных магматических пород вольфрамовых месторождений Лермонтовское (обр. 23) и Восток-2 (обр. В-1-2010, D-1-2010, B-520-4)

Компонент	B-1-2010	D-1-2010	23	B-520-4
SiO ₂	66.37	64.59	61.20	67.61
TiO	0.40	0.57	0.87	0.49
AlaQa	17.02	15.23	16.10	16.01
FeaOa			1 75	0.59
FeO	2.84	4.75	4 32	2 31
MnO	0.05	0.09	0.11	0.06
MgO	1.50	2.09	2 50	0.00
CaO	3.04	2.20	2.50	2.90
Va O	2 55	2.90	7.05	2.90
Na ₂ O	2.22	2.01	2.05	5.75 2.47
R_2O	5.22	4.01	3.93	5.47
P_2O_5	0.11	0.15	0.25	0.12
H ₂ O	0.26	0.32	- 25	0.30
	1.42	0.47	0.35	1.4/
Сумма	99.78	99.75	99.40	100.33
Sc	9.45	18.61	н.а.	10.23
V	49.78	130.9	110.0	52.71
Cr	121.0	63.5	110.0	119.0
Со	6.04	11.59	—	6.5
Ni	15.96	12.97	—	18.75
Cu	26.7	1.7	—	35.0
Zn	36.9	53.0	—	41.9
Ga	21.11	17.34	—	20.9
Rb	146.9	198.0	139.0	141.7
Sr	415.8	420.0	422.0	427.0
Y	12.08	17.97	22.5	15.17
Zr	127.4	131.3	233.0	138.1
Nb	11.46	11.02	16.1	10.87
Cd	0.11	0.17	_	0.15
Cs	4.45	5.87	_	5.17
Ba	854.6	520.4	660.0	819.3
La	22.33	15.86	31.1	27.4
Ce	50.93	36.93	63.6	53.7
Pr	5.37	4.26	7.43	6.17
Nd	19.97	18.00	26.2	20.1
Sm	3.64	3.49	5.28	3.57
Eu	0.85	0.96	1.14	0.78
Gd	3.23	3.55	4.95	3.41
Th	0.39	0.52	0.70	0.42
Dv	2.57	3.28	3.92	2.59
Ho	0.41	0.63	0.74	0.50
Fr	1 22	1.87	2 16	1 32
Tm	0.17	0.28	0.33	0.18
Vh	1.06	1.81	2.17	1 12
Iu	0.17	0.29	0.31	0.19
Lu Uf	3.80	4.04	0.51	3 00
	0.72	4.04	—	0.91
ia W	0.72	0.13	_	7.01
Dh	0.30	2.22		17 00
г0 ТЪ	10.05	13.73	10.4	17.00
	10.05	10.70	12.5	2 10
U 87 s = /86 s =	2.29	1.22	2.32	3.1δ 0.70954 + 15
51/~5r 147 Nd/144 Nd	0.70001 ± 10 0.5125090 + 12	0.70478 ± 12 0.5125972 + 15		0.70834 ± 13 0.5124750 + 7
$II_Ph_POPPACT$	104.0 ± 1.3	103123712 ± 13 103 ± 1.5	105.6 ± 2.1	$100 46 \pm 0.01$
δ ¹⁸ О ‰, кварц	11.1–13.4	9.9	103.0 ± 2.1 11.1	11.1–13.4

Примечание. Определение петрогенных, микро- и редкоземельных элементов проводили в аналитическом центре ДВГИ ДВО РАН, изотопные измерения – на Finnigan-262 в СибГеохи (г. Иркутск), определения изотопного кислорода – в аналитическом центре ДВГИ ДВО РАН.

ДОКЛАДЫ АКАДЕМИИ НАУК том 443 № 1 2012

Рис. 2. Мультикомпонентные диаграммы (спайдер-диаграммы) элементов, нормированных к примитивной мантии [10] (номера проб соответствуют табл. 1).

По пяти точкам конкордантный средневзвешенный возраст гранитоидов Шивкинского массива соответствует 105.6 ± 2.1 млн лет (рис. 3), что отвечает возрасту кристаллизации гранитоидов. Полученные по 206 Pb/ 238 U значения 1410 ± 20, 561 ± 8.8 и 119.8 ± 2 млн лет соответствуют ядру, зоне роста (т. 3.2) и краевой оболочке циркон. Они образуют на диаграмме вторичную изохрону (дискордию) (рис. 3), экстраполяция которой в точке верхнего пересечения с конкордией дает возраст 2503 ± 19 млн лет, что соответствует архей-протерозойскому возрасту протолита – древней коры (погруженный Ханкайский массив).

РМС Восток-2 расположена в пределах Центрально-Сихотэ-Алинского разлома южнее Лермонтовской и представлена рядом крупных массивов: Дальнинским, Биссерным и несколькими небольшими штоками, с одним из которых (Центральный) пространственно и генетически связывают шеелит-сульфидную минерализацию месторождения Восток-2.

U-Pb-(SHRIMP-II)-определение возраста по цирконам в гранитоидах РМС Восток-2 проводилось в породах Дальнинского массива (обр. D-1-2010) и штока Центральный. В последнем проведены определения гранодиоритов верхнего (обр. В-1-2010) и нижнего (обр. В-520-4) горизонтов, различающихся как по петрохимическому, так и по минеральному составу, а также по характеру метасоматических изменений и составу профилирующих рудных элементов (W, Cu и др.) (табл. 1). Дальнинские гранитоиды по составу в большей степени соответствуют монцогранодиоритам промежуточного типа (J-S), а гранитоиды Центрального штока относятся к более глиноземистым натрово-калиевым разностям, близким к гранитоидам S-типа [4].

Катодолюминесцентное изучение цирконов обоих массивов показало хорошо выраженную осцилляционную зональность. В Центральном штоке в породах нижнего горизонта (520 м) она проявлена значительно хуже (рис. 2). В гранитоидах Дальнинского массива и верхних горизонтах Центрального штока призматические кристаллы имеют коэффициент удлинения 2.5 и более, а длиннопризматические – более 4 (рис. 3). Для нижнего горизонта Центрального штока характерны короткопризматические кристаллы циркона с удлинением около 2 и меньше (рис. 3).

Результаты U-Рb-датирования цирконов Дальнинского массива (обр. D-1-2010), Центрального штока (обр. В-1-2010, В-520-4), вмещающего рудное тело, представлены в табл. 2 и на рис. 3. Возраст цирконов Дальнинского массива определен в узком временном интервале (за исключением точка 9.1) и образует на диаграмме Везерила плотную конфигурацию эллипсов с конкордантной датой 103 ± ± 1.5 млн лет. Возраст цирконов Центрального штока по результатам U-Pb-датирования для верхнего горизонта (обр. В-1-2010) по десяти определениям колеблется в несколько больших возрастных пределах: от 102.9 \pm 2.2 до 107 \pm ± 2.3 млн лет. В цирконе (т. 4) определения показали: в центре 107.1 \pm 2.3, а в краевой зоне 106.2 \pm \pm 2.0 млн лет, что можно трактовать как наиболее ранний этап кристаллизации массива. Средневзвешенный возраст составляет 104 ± 1.3 млн лет (рис. 3).

Гранитоиды Центрального штока на горизонте 520 м (обр. В-520-4) представлены тремя возрастными кластерами (табл. 2, рис. 3). Наиболее представительный соответствует конкордантному возрасту 104.38 ± 0.90 млн лет. Следующий возрастной кластер представлен совокупностью из четырех определений возраста в 108.25 ± 1.5 млн

ДОКЛАДЫ АКАДЕМИИ НАУК том 443

ГРАНИТОИДНЫЙ МАГМАТИЗМ

Точка	²⁰⁶ Pb	U	Th	²⁰⁶ Pb*	²³² Th	Возраст, млн лет	²⁰⁷ Pb*	²⁰⁷ Pb*	²⁰⁶ Pb*	1σ
ана- пиза	%		ppm		²³⁸ U	²⁰⁶ Pb/ ²³⁸ U	²⁰⁶ Ph*	²³⁵ U	²³⁸ U	[pa3]
JINGa			FF		U		10	Ũ	U	
	Образец 23									
1.1	1.34	540	240	7.68	0.46	104.4 ± 2.1	0.0444 ± 15	0.1 ± 15	0.01633 ± 2.1	0.1137
2.1	1.44	236	150	3.67	0.66	114.3 ± 2.9	0.0393 ± 25	0.097 ± 25	0.01788 ± 2.6	0.102
3.1	0.17	730	238	57.1	0.34	561 ± 8.7	0.1457 ± 1.2	1.826 ± 2	0.0909 ± 1.6	0.809
3.2	1.81	1091	575	17.9	0.54	119.8 ± 2.4	0.0398 ± 17	0.103 ± 18	0.01876 ± 2	0.115
4.1	1.97	217	123	3.08	0.58	103.6 ± 3.2	0.041 ± 36	0.091 ± 36	0.01621 ± 3.2	0.087
5.1	0.38	483	571	7.05	1.22	108.2 ± 2.1	0.0517 ± 7.5	0.1208 ± 7.7	0.01693 ± 2	0.258
6.1	0.15	312	166	21.7	0.55	501.6 ± 8.3	0.0556 ± 3.3	0.62 ± 3.7	0.0809 ± 1.7	0.462
6.2	4.00	2015	909	29.3	0.47	103.8 ± 2.1	0.0446 ± 21	0.1 ± 22	0.01624 ± 2	0.095
7.1	0.52	375	386	5.43	1.06	107.2 ± 2.3	0.0447 ± 11	0.103 ± 11	0.01677 ± 2.1	0.193
3.3	-	1025	478	215	0.48	1410 ± 20	0.1595 ± 0.53	5.379 ± 1.7	0.2446 ± 1.6	0.946
8.1	11.45	473	69	9.07	0.15	126.2 ± 3.8	0.068 ± 28	0.186 ± 28	0.01976 ± 3.1	0.108
Образец D-1-2010										
1.1	1.19	309	142	4.34	0.47	103.4 ± 2.4	0.0424 ± 13.0	0.0950 ± 13.0	0.01617 ± 2.3	0.177
2.1	1.85	142	52	2.01	0.38	103.1 ± 2.6	0.0416 ± 19.0	0.0930 ± 19.0	0.01613 ± 2.5	0.129
3.1	0.79	203	88	2.79	0.45	101.5 ± 2.3	0.0495 ± 10.0	0.1080 ± 11.0	0.01587 ± 2.3	0.220
4.1	0.68	413	248	5.72	0.62	102.4 ± 2.2	0.0450 ± 8.1	0.0993 ± 8.4	0.01601 ± 2.1	0.255
4.2	0.70	325	153	4.50	0.48	102.2 ± 2.4	0.0463 ± 8.7	0.1019 ± 9.1	0.01598 ± 2.3	0.259
5.1	1.31	179	77	2.55	0.44	104.5 ± 2.6	0.0443 ± 14.0	0.1000 ± 14.0	0.01635 ± 2.5	0.176
6.1	1.54	169	80	2.39	0.49	103.8 ± 3.0	0.0420 ± 31.0	0.0940 ± 31.0	0.01624 ± 2.9	0.094
7.1	1.08	244	107	3.45	0.45	104.2 ± 2.5	0.0465 ± 12.0	0.1040 ± 13.0	0.01629 ± 2.4	0.193
8.1	0.57	310	137	4.31	0.46	102.9 ± 2.3	0.0505 ± 6.9	0.1119 ± 7.2	0.01609 ± 2.2	0.309
9.1	1.22	192	86	2.62	0.46	100.4 ± 2.5	0.0499 ± 13.0	0.1080 ± 14.0	0.01570 ± 2.5	0.183
	•			•		Образец В-	1-2010			•
1.1	0.35	977	306	13.50	0.32	102.5 ± 2.0	0.0491 ± 4.0	0.1085 ± 4.4	0.01603 ± 2.0	0.446
2.1	0.37	454	206	6.42	0.47	104.8 ± 2.2	0.0456 ± 5.3	0.1030 ± 5.7	0.01640 ± 2.1	0.366
3.1	0.22	1065	361	15.30	0.35	106.5 ± 2.1	0.0477 ± 3.2	0.1096 ± 3.8	0.01666 ± 2.0	0.531
4.1	0.39	412	137	5.95	0.34	107.1 ± 2.3	0.0492 ± 5.3	0.1136 ± 5.7	0.01675 ± 2.1	0.374
4.2	0.17	2027	1044	29.00	0.53	106.2 ± 2.0	0.0482 ± 2.3	0.1104 ± 3.0	0.01661 ± 1.9	0.631
5.1	0.36	844	232	11.90	0.28	104.6 ± 2.1	0.047 ± 6.7	0.1060 ± 7.0	0.01637 ± 2.0	0.289
6.1	0.64	400	176	5.61	0.45	103.6 ± 2.2	0.0472 ± 7.6	0.1054 ± 7.9	0.01620 ± 2.2	0.276
7.1	0.54	469	128	6.48	0.28	102.3 ± 2.2	0.0484 ± 6.7	0.1067 ± 7.0	0.01600 ± 2.1	0.305
8.1	0.05	1995	1103	28.80	0.57	107.3 ± 2.0	0.0472 ± 2.0	0.1092 ± 2.7	0.01679 ± 1.9	0.698
9.1	0.98	672	196	9.47	0.30	103.9 ± 2.2	0.0456 ± 9.4	0.1022 ± 9.6	0.01624 ± 2.1	0.220
			1			Образец В-	520-4		I	1
1.1	0.99	336	105	4.74	0.32	104.2 ± 1.8	0.0466 ± 18	0.105 ± 18	0.0163 ± 1.70	0.097
1.2	_	2366	462	31.9	0.20	100.6 ± 0.69	0.0481 ± 3.3	0.1044 ± 3.4	0.01573 ± 0.69	0.205
2.1	0.27	1958	461	28.4	0.24	107.7 ± 0.8	0.0489 ± 4.9	0.1138 ± 5	0.01686 ± 0.75	0.151
3.1	0.09	3113	628	45.5	0.21	108.7 ± 0.59	0.0463 ± 2.3	0.1085 ± 2.3	0.017009 ± 0.54	0.232
4.1	0.66	1247	478	17.7	0.40	104.7 ± 0.85	0.0456 ± 7.1	0.103 ± 7.2	0.01638 ± 0.82	0.114
5.1		1191	318	16.6	0.28	104.1 ± 0.84	0.0488 ± 6.5	0.1097 ± 6.5	0.01629 ± 0.82	0.125
6.1	0.21	1199	306	16.3	0.26	100.8 ± 0.73	0.0461 ± 4.5	0.1001 ± 4.6	0.01576 ± 0.73	0.161
7.1	0.52	600	176	8	0.30	98.8 ± 1.3	0.0452 ± 10	0.096 ± 10	0.01544 ± 1.30	0.126
8.1	0.53	1451	565	21.2	0.40	108.3 ± 0.78	0.0448 ± 7.7	0.1047 ± 7.8	0.01695 ± 0.73	0.094
9.7	0.09	1498	432	22.3	0.30	110.7 ± 0.8	0.0481 ± 3.1	0.1149 ± 3.2	0.01733 ± 0.73	0.228
10.1	0.26	1264	515	17.8	0.42	104.3 ± 0.73	0.0475 ± 4.0	0.1068 ± 4.0	0.01632 ± 0.71	0.175

Таблица 2. Изотопное U–Pb-датирование цирконов гранитоидов вольфрамоносных PMC

Примечание. Рb_c и Рb* – общий и радиогенный свинец соответственно.

ДОКЛАДЫ АКАДЕМИИ НАУК том 443 № 1 2012

Проба	Не, 10 ⁻⁶ см ³ /г	³ He/ ⁴ He, 10 ⁻⁶ измер.	⁴ He/ ²⁰ Ne, 10 ⁻⁶ измер.	³ He/ ⁴ He, 10 ⁻⁶ корр.	<i>R</i> _А корр.	He _{<i>m</i>} /He, %	⁴ He/ ⁴⁰ Ar [рад]	
Лермонтовское								
ЛБН-1	0.047	1.36	21	1.36	0.97	11	1.4	
Л-2	0.24	1.05	232	1.05	0.75	8.6	2.3	
Восток-2								
B-X	0.088	1.23	34	1.23	0.88	10	1.2	
B-760-8	0.028	0.83	5.7	0.80	0.57	6.5	0.3	

Таблица 3. Гелий и неон в месторождениях вольфрама Лермонтовское и Восток-2

Примечание. Газы выделяли посредством дробления образцов в вакууме. ³He/⁴He 10⁻⁶ корр. – значение изотопного отношения, скорректированное на воздушный компонент гелия, рассчитанный по соотношению ⁴He/²⁰Ne, т.е. изотопный состав "глубинного" гелия; $R_{\rm A}$ – скорректированное отношение изотопов гелия, деленное на таковое в атмосферном гелии (1.4 · 10⁻⁶); He_m/He – доля мантийного гелия, рассчитанная для значений ³He/⁴He в верхней мантии 1.2 · 10⁻⁵ и 2 · 10⁻⁸ в земной коре. Аналитик Э.М. Прасолов (ВСЕГЕИ, Санкт-Петербург).

лет, фиксирующих более ранний этап кристаллизации пород штока. Наиболее поздний кластер представлен тремя измерениями, конкордантный возраст 100.46 ± 0.94 млн лет. Таким образом, учитывая данные катодолюминесцентного изучения цирконов, а также геологическую обстановку (сопряженность во времени магматизма и образования рудных тел), можно полагать, что более молодой возраст соответствует этапу формирования рудной залежи месторождений. Для него характерно, особенно на горизонте штока 520 м, наиболее высокое содержание флюидной фазы (F, P_2O_5) как в породах, так и минералах, близкое по параметрам к рудной зоне: фтор в гранитоидах, минералах и грейзенах до 0.48%, фосфор в породе до 0.30-0.60% [4].

Для решения вопроса о влиянии глубинных флюидов на формирование крупнообъемных месторождений определялся изотопный состав гелия по методике Э.М. Прасолова [5]. Результаты измерений представлены в табл. 3. Для рудоносных комплексов месторождений Лермонтовское и Восток-2 доля мантийного гелия Не_m варьируется в незначительных пределах и не превышает 10%. Ранее на основе Rb–Sr- и Sm–Nd-изотопных характеристик для месторождения Восток-2 предполагалось значительно большее участие мантийного компонента (~50%) в генерации рудных зон [11]. Следует добавить, что влияние глубинных и прежде всего мантийных факторов при генерации подчеркивалось ранее [4, 13 и др.].

На основе изученных материалов представляется возможным сделать следующие выводы.

1. Формирование вольфрамового (Лермонтовское), вольфрамово-медного (Восток-2) и других крупнообъемных месторождений, сопряженных с Центрально-Сихотэ-Алинской сдвиговой зоной [3], проходило в близком временном интервале (103–105 млн лет). Учитывая U–Pb-данные для других крупнообъемных рудопроявлений (Малиновское вольфрамовое и Лазурное меднопорфировое) [12, 13], можно заключить, что татибинская магматическая серия, с которой связаны крупные месторождения вольфрама, вольфрама с медью, медно-порфировые, контролируемые зоной скольжения разлома, представляют собой важнейшую структуру магматизма и оруденения Приморья.

2. Установлено, что один из факторов крупнообъемности рудообразования – участие в их формировании глубинных (мантийных) и коровых процессов. Показателем глубинного процесса являются глубинные флюиды [5], определяемые по изотопным отношениям ³He/⁴He. Результаты изучения изотопного состава гелия в рудных формациях месторождени Лермонтовское и Восток-2 с учетом немногочисленных изотопных данных Sm–Nd-, Sr/Sr- и ¹⁸O и петролого-геохимических исследований позволяют сделать заключение, что формирование литофильного по своей природе вольфрамового оруденения происходило при участии мантийного компонента.

3. Возраст кварц-шеелитовых руд месторождения Восток-2 (102.2 млн лет [15]) и гранитоидов штока Центрального (см. табл. 2, рис. 3) позволяет говорить о возрастном и генетическом взаимодействии процессов рудообразования и магматизма, что было отмечено ранее для вольфрамоносных и медно-порфировых РМС Центрального Сихотэ-Алиня [12, 13].

Авторы благодарят М.И. Розинова за консультации и ценные советы.

Работа выполнена при финансовой поддержке ОНЗ РАН Фундаментальных исследований Президиума РАН и ДВО РАН (проект 09–01–П14) и Роснедра Министерства природных ресурсов и экологии РФ (Росконтракт АЛ–02–06/35).

СПИСОК ЛИТЕРАТУРЫ

- Тихоокеанская окраина Азии. Магматизм / Под ред. С.С. Зимина, В.Г. Сахно, И.Н. Говорова. М.: Наука, 1991. 264 с.
- 2. Сахно В.Г. Позднемезозойско-кайнозойский континентальный вулканизм Востока Азии. Владивосток: Дальнаука, 2001. 338 с.
- 3. *Ханчук А.И*. Рудные месторождения континентальных окраин. Владивосток: Дальнаука, 2000. С. 5–34.
- 4. *Гвоздев В.И.* Рудно-магматические системы скарновых шеелит-сульфидных месторождений Востока России. Владивосток: Дальнаука, 2010. 338 с.
- 5. Петров О.В., Михайлов Б.К., Шевченко С.С. и др. // Регион. геология и металлогения. 2006. № 27. С. 60-76.
- Изох Э.П., Русс В.В., Кунаев В.И., Наговская Г.И. Интрузивные серии Северного Сихотэ-Алиня и Нижнего Приамурья, их рудоносность и происхождение. М.: Наука, 1967. 383 с.

- 7. *Назаренко Л.Ф., Бажанов В.Л.* Геология Приморского края. Интрузивные образования. Препр. Владивосток, 1989. Ч. 2. С. 2–28.
- 8. Герасимов Н.С., Хетчиков Л.Н., Говоров И.Н., Гвоздев В.И. // ДАН. 1994. Т. 334. № 4. С. 473–475.
- 9. Williams J.S. // Rev. Econ. Geol. 1998. V. 5. P. 1-35.
- 10. Wood D.A. // J. Geol. 1979. № 3. P. 499–503.
- 11. Крымский Р.Ш., Павлов В.А., Руб М.Г. и др. // Петрология. 1998. Т. 6. С. 3–15.
- 12. Аленичева А.А., Сахно В.Г., Салтыкова Т.Е. // ДАН. 2008. Т. 420. № 1. С. 70–75.
- 13. *Сахно В.Г., Коваленко С.В., Аленичева А.А. //* ДАН. 2011. Т. 438. № 1. С. 82–90.
- 14. Государственная геологическая карта Российской Федерации 1 : 1000000 (третье поколение). Дальневосточная серия / Под ред. С.В. Коваленко. СПб.: Картограф. фабрика ВСЕГЕИ, 2006.
- 15. Хетчиков Л.Н., Говоров И.Н., Герасимов Н.С., Гвоздев В.И. // Тихоокеан. геология. 1996. Т. 3. № 2. С. 17–28.