—— ГЕОХИМИЯ =

УДК 550.93:551.24 (571.5)

Sm-Nd- И U-Pb-ВОЗРАСТ ДАЕК МЕТАБАЗИТОВ ГРАНУЛИТО-ГНЕЙСОВОЙ ОБЛАСТИ АЛДАНСКОГО ЩИТА (К ПРОБЛЕМЕ ДЛИТЕЛЬНОСТИ ПРОЦЕССОВ ПАЛЕОПРОТЕРОЗОЙСКОГО ТЕРМОТЕКТОГЕНЕЗА)

© 2007 г. М. З. Глуховский, академик М. И. Кузьмин, Т. Б. Баянова, П. А. Серов

Поступило 25.09.2006 г.

Сумма автономных процессов деформаций, магматизма и метаморфизма, наложенных на, казалось бы, консолидированную более древнюю структуру была названа Е.В. Павловским "термотектогенезом" [1]. Самые масштабные тектонотермальные события, которые охватили уже сформированные архейские структуры земной коры, проявлялись в палеопротерозое (2.76-1.65 млрд. лет) и были обусловлены мантийными плюмами [2]. Палеопротерозойский термотектогенез широко проявлен и на Алданском щите. С ним связаны формирование его зональной структуры с центральной гранулитогнейсовой областью и гранит-зеленокаменным окаймлением, внедрение автономных массивов анортозитов [3] и комплементарных им гранитоидов [4], а также мафических даек, которые относятся к одним из индикаторов мантийных плюмов [2]. Все это сопровождалось перестройкой изотопных систем, что затрудняет определение первичного радиологического возраста пород [5–7]. Цель исследования – оценка длительности этих процессов путем анализа геологических и новых изотопно-геохронологических данных по мафическим дайкам, развитым в пределах Суннагинского эндербитового купола, занимающего северную часть многокупольной гранулито-гнейсовой области Алданского щита (рис. 1).

Геологическое строение Суннагинского купола, крупнейшего (380 × 300 км) среди подобных структур Алданского щита, было подробно рассмотрено ранее [8]. Ядро купола образовано низкокалиевыми эндербитами (К₂О менее 2%), насыщенными меланократовыми включениями метабазитов (пирок-

Российской Академии наук, Москва

Апатиты Мурманской обл.

сен-плагиоклазовых кристаллических сланцев), которые рассматривают как фрагменты базитовой протокоры (инфракрустальный комплекс). Эти эндербиты первой генерации сопоставляются с архейскими плагиогранитами, развитыми на западе Алданского щита в ядре Центрально-Алданского купола (Грековский порог на р. Алдан) с возрастом цирконов 3570 ± 60 (классический метод) и 3335 ± 3 (SHRIMP) млрд. лет, в верхнем пересечении конкордии с дискордией, а также 1860 ± 50 и 1935 ± 9 млн. лет - в нижнем [7]. Палеопротерозойские значения возраста отражают, очевидно, процесс нарушения изотопных систем в регенерированных зернах цирконов во время масштабного термального события. Об этом свидетельствует и U-Pb-возраст цирконов как из низкокалиевых эндербитов Суннагинского купола – 1977 \pm 36 и 1985 \pm 2 млн. лет, так и из эндербитов второй генерации – нормальной и повышенной щелочности (K₂O более 2%) – 2044 ± 6 млн. лет [6] (см. рис. 1). Эти гранитоиды повсеместно замещают инфракрустальный комплекс пород, который сохраняется только в теневых реликтах. Значения возраста цирконов в эндербитах первой и второй генерации, не соответствующие их геологическим соотношениям, надо рассматривать как отражение нарушения изотопных систем, связанного с разными импульсами термотектогенеза, о чем будет сказано ниже.

Крылья купола сложены мигматизированными породами супракрустальной гнейсовой серии, представленной глиноземистыми гнейсами и кристаллическими сланцами с редкими прослоями кварцитов, мраморов и кальцифиров.

Помимо метабазитов, входящих в состав инфракрустального комплекса, в пределах ядра и на крыльях Суннагинского купола выделяются меланократовые породы, слагающие силлоподобные тела и дайки, которые были выбраны для исследования как главные показатели плюмовых событий [2]. Они сложены меланократовыми мелко- и среднезернистыми, массивными и грубополосчатыми пироксен-плагиоклазовыми, амфибол-пироксен-пла-

Геологический институт

Институт геохимии им. А.П. Виноградова Сибирского отделения Российской Академии наук, Иркутск

Геологический институт Кольского научного центра Российской Академии наук,

Рис. 1. Геолого-структурная схема строения южной части Суннагинского эндербитового купола: 1 – нерасчлененные отложения платформенного чехла; 2 – мезозойские сиениты; 3 – палеопротерозойские гранитоиды: гиперстеновые гранодиориты массива Емеллели (*a*) и аляскитовые граниты (δ); 4 – мафические дайки типов: A (*a*), $B(\delta)$ и B (*b*); 5, 6 – архейские образования: 5 – нерасчлененная гнейсовая серия (супракрустальный комплекс), 6 – нерасчлененная эндербит-базитовая ассоциация инфракрустального комплекса и эндербитов нормальной щелочности; 7 – концентрические разломы купола (*a*) и Тимптонский надвиг (δ); 8 – оси положительных магнитных аномалий 9 – ориентировка гнейсовидности в эндербитах; 10 – места отбора проб из эндербитов и гранодиоритов (*a*), из метабазитов (δ) с указанием значений радиологического возраста: без скобок – U–Pb-метод по цирконам, в круглых скобках – Sm–Nd-метод, в квадратных скобках – Rb–Sr-метод (см. текст).

гиоклазовыми кристаллическими сланцами, иногда с гранатом и биотитом [8, 9]. Их подразделяют на три разновозрастных морфогенетических типа: *А*, *Б* и *B*.

Отбор проб и их обработку проводили по ранее принятой стандартной методике [5, 6], а петрогеохимические и изотопно-геохронологические исследования осуществляли соответственно в Институте геохимии им. А.П. Виноградова СО РАН и в Геологическом институте КНЦ РАН (результаты анализов см. табл. 1–3).

Метабазиты типа *А* слагают мощные (до 400 м) и протяженные (до первых км) силлоподобные тела и дайки, часто согласно залегающие среди мигматизированных пород супракрустальной гнейсовой серии архея и гранитоидов. Для определения состава и возраста метабазитов этого типа было проведено опробование с интервалом 20–60 м силлоподобного тела мощностью 340 м на западном крыле Суннагинского купола (см. рис. 1).

Силлоподобные тела и дайки метабазитов типа А изофациальны условиям гранулитового метаморфизма [9], что предопределило относительную сохранность Sm–Nd изотопной системы, позволяющую судить о времени этого высокотемпературного (700–800°С) процесса.

Изохронный Sm–Nd-возраст метабазитов типа A по шести образцам породы равен 2247 ± 91 млн. лет, при ε_{Nd} = +1.8 ± 0.3 (табл. 2, рис. 2а). Среднее значение модельного возраста T_{DM} = 2.35 млрд. лет, близкое к Sm–Nd-возрасту внедрения даек, свидетельствует о короткой коровой предыстории этих пород. Изохронный Rb–Sr-возраст метабазитов по тем же образцам, определенный ранее [9] – 1980 ± 33 млн. лет, показывает, скорее всего, время закрытия этой изотопной системы при температурах 500–400°C на завершающем этапе термотектогенеза.

Таким образом, синметаморфические дайки метабазитов типа *A*, которые ранее рассматривали как архейские, имеют палеопротерозойский возраст.

Метабазиты типа *Б* слагают деформированные мафические дайки, подобные докембрийским "гранулитовым" и "амфиболитовым" дайкам Амералик и Мелене Юго-Западной Гренландии [11]. Они контролируются радиальными разломами Суннагинского купола меридиональ-

				n		1	1				
Компонент	Α	Б	В	Элемент	Α	Б	В	Отношение	Α	Б	В
SiO ₂	50.60	45.93	45.26	Ba	380	317	129	Ba/La	16.60	15.85	12.28
TiO ₂	0.70	2.02	0.80	Sr	396	249	346	Rb/La	1.88	1.30	2.00
Al_2O_3	14.55	8.65	13.15	Rb	43	26	21	Rb/Sr	0.11	0.10	0.06
FeO	8.70		3.80	Zr	98	142	73	$(La/Yb)_N$	8.12	10.30	4.60
Fe ₂ O ₃		17.43	9.40	La	22.86	20	10.50	$(La/Sm)_N$	1.86	2.06	2.09
MnO	0.18	0.20	0.20	Ce	49.60	43	22.30	$(Ce/Yb)_N$	6.65	8.42	3.71
MgO	10.45	13.79	12.84	Nd	34.30	26	12.10	Eu/Eu*	0.60	0.89	0.77
CaO	10.25	8.54	10.80	Sm	6.66	6.00	3.10				
Na ₂ O	3.00	1.59	1.99	Eu	1.20	1.70	0.68				
K ₂ O	1.25	1.08	0.90	Gd	5.10	5.60	2.10				
P_2O_5	0.20	0.20	сл	Er	2.20	2.00	1.78				
Сумма	99.88	99.43	99.49	Yb	1.90	1.30	1.53				

Таблица 1. Содержание петрогенных (в %), редких и редкоземельных элементов (в г/т) в мафических дайках типов *A*, *Б* и *B*

Примечание. Дайки типов: А – среднее из 8 анализов; Б – 1 анализ, В – среднее из 6 анализов.

Таблица 2.	Изотопные	Sm–Nd-данные для	метабазитов из даек ти	па А (№ п/п 1	–6) и типа Б	Б (№ п/п 7–	-10)
------------	-----------	------------------	------------------------	---------------	--------------	-------------	------

	Magnanua	Содержа	ние, ррт	Изотопные	Модельный		
JN≌ 11/11	л≌ ооразца	Sm	Nd	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	т _{DM} , млн. лет	
1	2/1	6.503	36.686	0.107160	0.511402 ± 16	2329	
2	2/2	4.201	21.585	0.117650	0.511555 ± 14	2374	
3	2/4	7.792	37.920	0.124218	0.511647 ± 9	2386	
4	2/5	5.861	31.164	0.113687	0.511513 ± 10	2306	
5	2/6	5.607	23.901	0.141806	0.511921 ± 10	2348	
6	2/8	3.663	18.026	0.122845	0.511634 ± 9	2354	
7	5/3 Amf	61.329	270.377	0.137120	0.511660 ± 20		
8	5/3 Px	7.204	30.416	0.143176	0.511741 ± 12		
9	5/3 Pl	4.994	30.205	0.099943	0.511195 ± 15		
10	Γ-5/3	5.5	23.8	0.14021	0.511699 ± 13	2296	

Примечание. Amf – амфибол, Рх – пироксен, Pl – плагиоклаз, Г – 5/3-образец породы.

№ п/п	Навеска, мг	Содержание, ррт		Изотопный состав свинца			Изотопные отношения и возраст, млн. лет			
		Pb	U	$\frac{{}^{206}\text{Pb}}{{}^{204}\text{Pb}}$	$\frac{{}^{206}\text{Pb}}{{}^{207}\text{Pb}}$	$\frac{{}^{206}\text{Pb}}{{}^{\overline{208}}\text{Pb}}$	$\frac{\frac{207}{Pb}}{\frac{235}{U}}$	$\frac{{}^{206}\text{Pb}}{{}^{238}\text{U}}$	$\frac{\frac{207}{Pb}}{\frac{206}{Pb}}$	Rho
1	0.50	53.0	135.0	3825	7.5527	8.5862	6.46752	0.363763	2084	0.91
2	0.30	35.6	88.0	962	7.0036	6.7297	6.38045	0.358582	2085	0.92
3	0.50	29.4	68.4	843	6.2841	5.1653	6.28613	0.352578	2089	0.85

Таблица 3. Изотопные U–Pb-данные для цирконов из метабазитов дайки типа Б (Г-5/3)

ДОКЛАДЫ АКАДЕМИИ НАУК том 412 № 6 2007

Рис. 2. Sm–Nd-изохроны для метабазитов типов A (а) и E (в) и U–Pb-изохрона для метабазитов типа (E) (б).

ного (протяженностью 500 км) и северо-западного (200 км) направлений, которые скрыты под платформенным чехлом, но отчетливо отражаются в аномальном магнитном поле [8] (см. рис. 1). На южном фланге меридионального роя, на левом берегу реки Алдан и вдоль русла ее правого притока р. Суннагин, где происходит выклинивание роя, среди эндербитов повышенной щелочности обнажаются тела метабазитов разнообразной конфигурации. Это фрагменты даек мощностью до 2 м и более, которые имеют четкие контакты с эндербитами второй генерации. Кроме того, среди эндербитов наблюдаются меланократовые будины или протяженные изгибающиеся "ленты" шириной до первых и более метров и длиной до

табл. 1) центральной части дайки мощностью 1.3 м, вскрытой на левом берегу р. Алдан, против устья р. Суннагин (см. рис. 1). Определение U-Pb изохронного возраста цир-

кона проведено по трем его разновидностям (см. табл. 3). Первая – это длиннопризматические кристаллы гиацинтово-циркониевого типа с чет-кой огранкой размером 0.225×0.05 мм, $K_{ygn} = 4.5$. Зерна бледно-желтого цвета со слегка окатанными вершинами. Зерна прозрачные, блеск стеклянный. Вторая – это подобный же тип кристаллов темно-желтого цвета. Размер 0.275×0.1 мм, $K_{ygn} = 2.8$. Третья – это короткопризматические

нескольких десятков метров. Было проведено

сколковое опробование (проба Г-5/3, масса 10 кг,

ДОКЛАДЫ АКАДЕМИИ НАУК том 412 № 6 2007

кристаллы темно-желтого цвета размером 0.15×0.075 мм, $K_{\rm удл} = 2.0$. Зерна прозрачные, блеск стеклянный. Поверхности зерен цирконов всех разновидностей корродированы, а в иммерсии наблюдается четкая тонкая зональность.

Изохронный Sm–Nd-возраст метабазитов определяли по сосуществующим минералам – амфиболу, пироксену и плагиоклазу, а также по образцу породы (см. табл. 2).

Теоретически [10], если изохронный U–Pb-возраст циркона 2077 ± 10 млн. лет (см. рис. 2б) определяет палеопротерозойское время магмогенерации и внедрения даек метабазитов типа *Б*, которые ранее считали архейскими [8], то изохронный Sm–Nd-возраст 1909 ± 52 млн. лет с $\varepsilon_{Nd} = -3.30 \pm 0.20$ (см. рис. 2в) отвечает времени метаморфизма и деформации этих даек. При T = 2100 млн. лет возраст протолита $T_{DM} = 2996$ млн. лет при $\varepsilon_{Nd} = -3.12 \pm 0.25$.

Дайки метабазитов типа B выделяются внутри куполообразного (диаметр 17 км) массива Емеллели, сложенного высокотемпературными (710– 840°С) гиперстеновыми гранодиоритами с возрастом 2007 ± 7 млн. лет (U–Pb-метод по циркону) [5]. Их мощность 20–50 м. Они выполняют синкинематические трещины, которые, как и ориентировка магматической полосчатости, согласны с формой массива (см. рис. 1). Петрогеохимический состав метабазитов типа B приведен в табл. 1. Тесная пространственная и структурная связь этих даек и палеопротерозойских гранодиоритов позволяет предполагать их близкий возраст.

Выделение трех морфогенетических типов мафических даек подтверждается полихронностью и различной морфологией их залегания. Генезис даек, по всей вероятности, связан с действием мантийного плюма. Об этом свидетельствует ряд петрогеохимических показателей [2, 12, 13] (см. табл. 1). Так, все дайки обогащены литофильными элементами, в первую очередь K, Rb, Sr, Ba. В них также отмечается некоторое обогащение легкими РЗЭ (см. отношения La/Yb, La/Sm и Се/Yb, табл. 1) при высокой магнезиальности пород и железистости. Кроме этого, отношения Ba/La, Rb/La и Rb/Sr оказались выше в сравнении с примитивной мантией, где эти параметры равны 9.27, 1.0 и 0.03 соответственно. В то же время можно отметить, что высокое содержание TiO_2 (более 2%), типичное для плюмовых базальтов [12], имеют только метабазиты типа Б с отрицательным є_{Nd} (обогащенная мантия) и неоархейским возрастом протолита. По сравнению с ними дайки типа A содержат меньше TiO₂ и характеризуются положительным ϵ_{Nd} (истощенная мантия) и палеопротерозойским возрастом протолита. Все эти различия могут быть связаны как с разной глубиной магмогенерации и степенью частичного плавления, что отражено в спектрах распределения РЗЭ (см. табл. 1), так и с составом

архейской субконтинентальной мантии, подвергнутой метасоматической переработке мантийными флюидами в процессе палеопротерозойского термотектогенеза [14].

Итак, мафические дайки палеопротерозоя в гранулито-гнейсовой области Алданского щита являются индикаторами мантийного плюма. Его подъем был импульсивным, сопровождался высоким тепловым потоком и значительным напряжением в головной части, которое могло достигать 800 МПа [13]. Это привело к неоднократному региональному метаморфизму гранулитовой фации инфра- и супракрустальных комплексов архея (первоначально метаморфизованных в амфиболитовой фации), их ремобилизации и перестройке изотопных систем. Эти термальные импульсы фиксируются временем закрытия Rb-Sr- и Sm-Ndсистем в дайках типов A и Б, а также U–Pb-системы в регенерированных цирконах из архейских гранитоидов (1950-2050 млн. лет, округленно). Термальные импульсы могли опережать, сопровождать и завершать этапы магматической активности, когда по мере подъема плюма осуществлялось частичное плавление в начале метасоматически измененной архейской литосферной мантии, в которой формировались очаги материнских магм для синметаморфических мафических даек первых двух этапов термотектогенеза с возрастом 2247 ± 91 и 2077 ± 10 млн. лет. Дайки внедрялись в концентрические и радиальные трещины и разломы эндербитового купола. На третьем этапе $(2007 \pm 7 \text{ млн. лет})$, в ходе частичного плавления литосферной мантии и нижней коры образовывались очаги расплавов кварцево-диоритового состава, в результате чего произошло внедрение гранодиоритов массива Емеллели [5] и связанных с ними мафических даек.

Таким образом, процессы палеопротерозойского термотектогенеза на Алданском щите осуществлялись дискретно в течение примерно 250 млн. лет. Можно выделить три главных магмо-метаморфических импульса (округленно) – 2.25, 2.08, 2.00 млрд. лет, укладывающихся в промежуток между двумя самыми доминантными суперплюмовыми эрами в истории Земли – 2.4 и 1.8 млрд. лет [2]. Такая длительность и сосредоточенность в пределах многокупольной гранулито-гнейсовой области Алданского щита проявлений палеопротерозойского термотектогенеза, очевидно, связаны с зарождением и развитием докембрийской континентальной коры в ходе ее стадийной и необратимой тектонической эволюции в палеопротерозое в субэкваториальном поясе мантийных плюмов ранней Земли [15].

Авторы признательны В.В. Ярмолюку и В.А Макрыгиной за конструктивные замечания, сделанные в ходе подготовки статьи к печати.

ДОКЛАДЫ АКАДЕМИИ НАУК том 412 № 6 2007

Работа выполнена при финансовой поддержке РФФИ (проекты 04–05–64554 и 04–05–64179).

СПИСОК ЛИТЕРАТУРЫ

- 1. Павловский Е.В., Глуховский М.З. // Геотектоника. 1982. № 6. С. 38–56
- Abbot D.H., Isley A.E. // J. Geodyn. 2002. № 34. P. 265– 307.
- 3. Богатиков О.А. Анортозиты. М.: Наука, 1979. 231 с.
- 4. Глуховский М.З., Моралев В.М., Суханов М.К. // Геотектоника. 1993. № 3. С. 69–81.
- Глуховский М.З., Баянова Т.Б., Левкович Н.В. // ДАН. 2005. Т. 404. № 4. С. 524–528.
- Глуховский М.З., Баянова Т.Б., Моралев В.М., Левкович Н.В. // ДАН. 2004. Т. 396. № 6. С. 782– 789.

- 7. Frost B. R., Avchenko O.V., Chamberlain K.R., Frost C. D. // Precambr. Res. 1998. V. 89. № 1–2. P. 1–23.
- 8. Глуховский М.З., Моралев В.М. // Геотектоника. 2003. № 2. С. 57–74.
- Глуховский М.З., Моралев В.М., Банковская Э.В., Петрова З.И. // Геология и геофизика. 1992. № 2. С. 53–58.
- 10. Баянова Т.Б. Возраст реперных геологических комплексов Кольского региона и длительность процессов магматизма. СПб.: Наука, 2004. 174 с.
- 11. *Chadwick B*. // Precam. Res. 1981. V. 14. № 3/4. P. 221–259.
- 12. *Грачев А.Ф.* // Петрология. 2003. Т. 11. № 6. С. 618– 659.
- 13. Hofmann A.W. // Nature. 1997. V. 385. P. 219-229.
- 14. Griffin W.L., O'Reillly S.Y., Abe N. et al. // Precambr. Res. V. 127. № 1/2. P. 19–41.
- 15. Глуховский М.З., Моралев В.М., Кузьмин М.И. // Геотектоника. 1994. № 6. С. 3–15.