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The paper considers failure of a stratum within the framework of a nonlocal elasticity theory
for a plastic flow. Here, the nonlocality is determined by dependence between deformation energy
and metric deformation tensor derivatives. Our study has demonstrated that in case of a stratum un-
der lateral stress, the spatial distribution of shear stress changes periodically. The maximum stress
values are obtained in nonsteady regime. The following rock failures are associated with the zones
of maximum shear loading.
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In the classical elasticity theory, deformations are characterized by a metric tensor

of elastic deformations g'. Plastic deformations also require considering a curvature
tensor. IN their turn, nonelastic deformations take the deformation field out from Euclid-
ean space. In [1] curvature is considered as a parameter of state having effect on defor-
mation energy that makes the theory nonlocal. Unfortunately, the authors have provided
no solid arguments for the introduction of additional degrees of freedom into the first
law of thermodynamics, but still there is a whole class of problems in the failure theory,
where the considered approach can be regarded as a reasonable one.

Let’s consider a thin rod bended in a way its curvature radius at the local bend
point is equal to 1/R. If one draws a line along the rod, the rod’s upper part will be
extended by &I, while the lower part will be compressed by dl, relative to the rod.

The first law of thermodynamics that unambiguously determines the process’s dy-
namics, for a one —dimensional rod can be written as dgy =TdS + fydly + fodl,, Where

E, denotes the inner energy, T, S — temperature and entropy, f,dl,, f,dl, —the forces

affecting the rod while extension and compression. The parameters dl,, dl, can be al-
tered by the length of ‘average’ line and the curvature according to

281 =8, +3l,, 2n-(—8R/R?)=8l,~3l,, so the first law will be expressed as:
dE, =TdS +( f,+ f,)dl +x( f,— f,)dR/R?.

Hence, the assumption that the rod is bended requires a degree of freedom relat-
ed to the curvature to be introduced. At the same time, there are indications that the
classical elasticity theory is not complete in case rock failures in the vicinity of mines
are interpreted [2]. Solving a problem of stress distribution around a radial plane un-
der a given radial centripetal stress gives us the monotonic reduction of the stress ten-
sor’s angular component. The periodic zone of rock failure observed in mines may be
the evidence of periodic stress distribution before the moment when a failure occurs.
The classic solution does not describe such failures.

In [1] the authors suggest the equations describing nonelastic deformations with
account for inner- energy dependence on curvature. In the paper, the curvature has
been considered as a destruction parameter in a steady-state problem of medium de-
formation around a plane. It has been shown that the stress state is periodical in the
radial direction, in other words, the spatial pattern observed around cylindrical mines
has been described [2]. However, the authors have not studied the properties of the
nonsteady solutions. In the current paper demonstrates that it is the nonsteady process
that determines failure zone evolution in time.

Equations of motion for small infinitesimal strains with a destruction parameter
are expressed as [1]:

% =A&,, —0;0,&
Gik =&y, ik +2uejk +B R-Sj 1)

0, =C+(0,, —4AY), B, =a-[(oik—cwe3ik/3)+2(aiaky—Ay5ik/3)] v=Pe +aR.

PoVi = 04O & :(8kvi +aivk)/2_(_p”< ~0ndy /3.~

203



Here p,A,c,& denote the elastic and plastic moduli, R= g”‘Rik— the curvature deter-
mined by the Ricci tensor, and o, B — the parameters of the state equation

Eo/p zconst+T0(S—SO)+k8VV2/2p0 +peik€ik / po +BR-€,, /o +ocR2/2pO.

Alternative equations of destruction with plasticity are written as:

B k+2u/3_R+_ & +k+2u/3 Q_ﬂ B A, )
20+& A+2u 3A+2u

5 At o, 386 O=|u- /2 g
Q AQ+2C (g(?\,-I—ZH)Q {u (k+2p) 2C+7J R

Changing of the density QQ=—p under plastic conditions causes the failure R that
satisfies the parabolic equation. As for the failure rate, it becomes a source in a wave
equation determining the density change. The equations model density wave propaga-
tion and failure parameter diffusion as well as their mutual effect. The correctness of
the parabolic equation is determined by the sign of the coefficient o.—p* /(A +2pu)>0.

The character of the nonsteady stress-strain state under external strength
loading has been analyzed using a 1-D problem. A plate with the thickness
Ze [21,22] was considered. Its left boundary was under the compressive stress c,,,

while its right boundary remained steady (v, =0). It was assumed that at the both
boundaries y=0y/6z=0. The system (1) had additional boundary conditions
6, =—F),y=0y/0z=0 at z=Z, and v,=0, y=0y/oz=0 at z=Z,. The considered
medium had the following material constants: p= 2.2 kg/m3 1=12.63 GPa,
1=4.95 GPa, a=3.11-10"*kg-m?s, B =-5.7-10*kg-mds, £=10"*m-s/kg,
£ =10 m-s/kg. The thickness of the plate was 5 cm. The behavior of R can be seen in
Fig. 1. In the process of reaching a steady state, the heterogeneities of maximum-
amplitude destruction have been concentrated next to the boundary. In the figure its
spatial distribution is given for three moments of time.

The maximum rate of amplitude growth has been achieved at the first maximum
value. Given the considered boundary conditions, an external force application point
formally corresponds to the first destruction boundary. However, it is the value of the
second of destruction extremum that was of our immediate interest (Fig. 2). This do-
main corresponded to the maximum shear stress value associated with the defor-
mation part of strain ¢” =2s,, +2ue;, =y, +|B| R (Fig. 2).

When an external force affects a rock at z=0, the stress o determined by in-
creasing destruction rate R, starts growing until the failure criterion is met (the Ish-
linsky criterion -max|2c|) in the zone where R reaches its maximum.
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Fig. 1. Destruction process at the time moments of 0.6, 3 and 300 us
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Fig. 2. The stress ¢~ the time moments of 0.6, 3 and 300 ps
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Fig. 3. The destruction R and the stress ¢~ the time moments of 0.6, 3 and 300 ps
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In the presented theory, rock failure is preceded by formation of periodic de-
struction zones in a medium. The maximum destruction value corresponds to the
maximum destructing stress related to the deforming part of elastic stresses. The the-
ory enables one to determine the characteristic scale of failure as a domain between
two extreme values of destruction. The said failure scale can be achieved at the non-
steady state of external strength loading put on a system.
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