МОДЕЛИ РЕЛАКСАЦИИ ДЛЯ ПОСТСЕЙСМИЧЕСКИХ СМЕЩЕНИЙ ГОРНОГО АЛТАЯ

Антон Владимирович Тимофеев

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Коптюга, 3, научный сотрудник, тел. (383) 335-64-42, e-mail: timofeevav@ipgg.sbras.ru

Дмитрий Геннадьевич Ардюков

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Коптюга, 3, кандидат физико-математических наук, старший научный сотрудник, e-mail: ardyukovdg@ipgg.sbras.ru

Елена Валерьевна Бойко

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Коптюга, 3, кандидат физико-математических наук, научный сотрудник, e-mail: boykoev@ipgg.sbras.ru

Владимир Юрьевич Тимофеев

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Коптюга, 3, доктор физико-математических наук, главный научный сотрудник, e-mail: timofeevvy@ipgg.sbras.ru

Релаксацию постсейсмических смещений земной коры можно интерпретировать в рамках линейной реологии. В работе рассматриваются результаты измерений скоростей постсейсмических смещений (2004–2012 гг.) в эпицентральной зоне Чуйского землетрясения (27.09.2003, М = 7.3). Интерпретация проводится в рамках двуслойных моделей, используя значения скоростей в эпицентральной зоне. Полученные оценки эффективной вязкости нижней коры Горного Алтая лежат в интервале $1 \cdot 10^{19} \div 3 \cdot 10^{20}$ Па·с.

Ключевые слова: постсейсмические смещения, космическая геодезия, линейная реология, земная кора Горного Алтая.

RELAXATION MODELS FOR POSTSEISMIC DISPLACEMENT OF GORNII ALTAY

Anton V. Timofeev

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3 Koptyug Prospect, Researcher, tel. (383)335-64-42, e-mail: timofeevav@ipgg.sbras.ru

Dmitrii G. Ardyukov

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3 Koptyug Prospect, Ph. D., Senior Researcher, e-mail: ardyukovdg@ipgg.sbras.ru

Elena V. Boyko

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3 Koptyug Prospect, Ph. D., Researcher, e-mail: boykoev@ipgg.sbras.ru

Vladimir Yu. Timofeev

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3 Koptyug Prospect, D. Sc., Principal Research Scientist, e-mail: timofeevvy@ipgg.sbras.ru

Post-seismic relaxation of crust displacement may be interpreted in frames of linear rheology. The article describes measurements of post-seismic rates (2004-2012 yy.) into epicenter zone of Chuya earthquake (29.09.2003, M =7.3). The interpretation was developed in frames of two-layer models by used of rate's values into epicenter zone. Estimations of effective viscosity of lower crust were $1 \cdot 10^{19} \div 3 \cdot 10^{20}$ Pa·s.

Key words: postseismic displacement, space geodesy, models of linear rheology, crust of Gornii Altay.

Известно, что вследствие асейсмического характера процесса постсейсмической релаксации ее прямое наблюдение представляется возможным только с помощью геодезических методов [1]. Эти эффекты были обнаружены после многих внутриплитных землетрясений [2]. Экспериментальные данные позволяют анализировать процессы затухания постсейсмических смещений и рассмотреть их в рамках вязкой модели среды. Цель работы: получить значения скоростей современных движений, определить количественную связь смещений и реологических параметров земной коры Горного Алтая.

Применение методов космической геодезии дает возможность определять величину смещений земной поверхности с высокой точностью. В ежегодных измерениях (июль–август) использованы двухчастотные GPS-приемники с продолжительностью серии на отдельном пункте от 2 до 4 суток. В результате многолетних измерений GPS-методом для эпохи 2004–2012 гг. после обработки данных получена картина распределения скоростей постсейсмических смещений в эпицентральной зоне Чуйского землетрясения 27.09.2003 года (M = 7.3) [3, 4]. Из смещений на пунктах Горного Алтая, полученных в геоцентрической системе координат, вычитались модельные движения Евроазиатской плиты. Постсейсмические движения повторяют правостороннее смещение в эпицентральной зоне. В таблице представлены значения скоростей на различных расстояниях от сейсмического разрыва (среднее значение вектора – 2.3 мм в год, среднее для вектора в направлении параллельном ориентации сейсмического разрыва – 2.1 мм в год).

В эпицентральной области по данным сейсмологов глубина распределения афтершоков – до 30 км, линейная протяженность зоны – до 130 км. Положение границы Мохо по геофизическим данным здесь 50–55 км, а в работе [5] для Монголии принята мощность упругой коры 20 км и вязко-упругой нижней ее части 25 км. Для процесса постсейсмической деформации обычно рассматриваются несколько механизмов: асейсмическое скольжение в плоскости разрыва с учетом нижней коры [6], эффект нарушения равновесия порового давления [7] и вязкая релаксация в нижней коре [8]. Можно считать, что через год после главного события в зоне Чуйского землетрясения первые два механизма уже реализованы, остановимся на вязкой релаксации.

Таблица

Код марки	Долгота (градус)	Широта (градус)	V _E с ошибкой (мм/год)	V _N с ошибкой (мм/год)	Расстояние до разрыва в км	Вектор ∥ (мм/год)
YAZU	88.851	50.586	$+2.15 \pm 0.58$	$+0.50 \pm 0.62$	84	1.1
BALY	88.002	50.703	$+1.60 \pm 0.30$	-1.41 ± 0.30	61	2.1
ULAG	87.654	50.500	$+2.04 \pm 0.48$	-1.43 ± 0.51	28	2.3
CHAG	88.417	50.068	$+4.23 \pm 0.36$	-0.75 ± 0.31	19	3.4
KURA	87.890	50.245	$+1.92 \pm 0.29$	-2.23 ± 0.27	14	2.8
CHIB	87.503	50.313	$+0.53 \pm 0.35$	-1.04 ± 0.38	5	1.1
Среднее			$+2.07 \pm 0.49$	-1.06 ± 0.37		2.13±0.38

Скорости постсейсмических горизонтальных смещений на различных расстояниях от сейсмического разрыва

Проанализируем существующие модели явления и проведем оценки эффективных параметров, используя скорости и характер затухания горизонтальных смещений. Исходя из известной геометрии сейсморазрыва, остановимся на двумерных моделях явления релаксации. Модель 1 предложена в работе Эльзассера [9]. Эта двухслойная модель содержит упругий слой (мощность H), вязкий слой (мощность h), смещение блока по вертикальному разлому (Δ), скольжение в зоне разлома охватывает границу по глубине H. Используем среднее значение скорости (таблица). В решении исходят из представлений о хрупкоупругом поведении верхней коры (мощностью H) и локализации вязких деформаций в нижней коре (мощностью h). Касательное напряжение на границе упругого верхнего слоя и вязкого нижнего слоя равно:

$$\sigma_E = \eta \cdot \omega'/h \tag{1}$$

где h – толщина нижней коры, ω' – скорость и η – вязкость нижней коры.

Соотношение для касательного напряжения на границе слоев и сброшенного напряжения на вертикальном разрыве (его значение – 4 МПа – получено из анализа величины косейсмических смещений [3, 4]) изменяется от 0.1 до 0.01, скорость смещений $\omega'= 2.1 \div 2.3$ мм в год (среднее для эпохи 2004–2012 гг.), что приводит к величине эффективной вязкости нижнего слоя $1 \cdot 10^{19} \div 1 \cdot 10^{20}$ Па·с.

Модель 2 (рис. 1) включает упругий слой толщиной H, лежащий на вязкоупругом полупространстве [10], при этом субвертикальный сейсмический разрыв простирается по оси Z до глубины z = D.

Для получения значения эффективной вязкости используем величину времени релаксации Максвелла (τ_R). Время релаксации входит в выражении для горизонтальной скорости.

Рис. 1. Модель 2 [9] включает упругий слой (мощность *H*), вязко-упругое полупространство, субвертикальный сейсмический разрыв – простирается по оси Z до z = D; косейсмическое смещение по разрыву ∆и

В этой модели учитываем пространственное распределение скорости (таблица, последний столбец). В момент времени t = 0 сдвиг происходит на разрыве от поверхности до глубины $D \le H$.

Скорость на земной поверхности как функция положения по линии перпендикулярной разрыву (по оси х) и времени *t* записывается как:

$$v(x,t) = \left(\frac{\Delta u}{\pi} \cdot \tau_R\right) \cdot \exp\left(-\frac{t}{\tau_R}\right) \cdot F_1(x,D,H)$$
(2)

В соотношении для скорости (2) временная зависимость связана с безразмерным параметром t/τ_M и временем релаксации τ_M (рис. 2). Тело Максвелла имеет время релаксации $\tau_M = \frac{2\eta}{\mu}$, где η – вязкость и μ – модуль сдвига.

$$F_1(x, D, H) = \tan\{2x \cdot D / [x^2 + (2H)^2 - D^2]\}^{-1},$$
(3)

Пространственная зависимость F₁(*x*, *D*, *H*) является функцией (3): расстояния по линии перпендикулярной разрыву (по оси x), глубины разлома *D* и толщины упругого слоя *H* (рис. 2). По Модели 2 при времени Максвелла $\tau_{\rm M} \ge 100$ (при $\tau_{\rm M}$ от 100 до 300 лет и модуле сдвига нижней коры μ от 41 ГПа до 73 ГПа) мы получаем оценку для вязкости нижнего слоя от 6.10¹⁹ до 3.10²⁰ Па·с.

Известные оценки на основе постсейсмических эффектов в Тибете (08.11.1997, M = 7.6) для вертикально стратифицированной нижней коры лежат в интервале $1.2 \cdot 10^{21} \div 1.6 \cdot 10^{18}$ Па·с, первое значение относится к верху вязкоупругого слоя (глубина 10 км), второе – к границе Мохо (глубина 60 км) [11]. Аналогичное распределение получено [12] при анализе процессов, связанных с землетрясением на Аляске (03.11.2002, M = 7.9). В построенной авторами модели вязкость экспоненциально изменяется в коре от 10^{21} Па·с (20 км) до 10^{19} Па·с (50 км) и в мантии от $2 \cdot 10^{20}$ Па·с (50 км) до $2 \cdot 10^{18}$ Па·с (120 км). При моделировании постсейсмических смещений для землетрясения в Монголии 1905 года (M = 8.4) в работе [5] авторами использованы значения вязкости для нижней коры от $3 \cdot 10^{18}$ Па·с до $3 \cdot 10^{20}$ Па·с. Полученные нами оценки лежат в пределах величин, полученных в сейсмоактивных районах мира, расположенных внутри континентов.

Рис. 2. Затухание скорости смещения в мм/год за 10 лет (время релаксации – 100, 200, 300 и 1000 лет). Для скоростей смещений 2 мм/год, при F₁ = 0.5 получаем оценку времени релаксации т_м от 100 до 300 лет

В результате исследований, исходя из экспериментальных данных в рамках двухслойных моделей, полученные оценки эффективной вязкости нижней коры Алтае-Саянского региона лежат в интервале $1 \cdot 10^{19} \div 3 \cdot 10^{20}$ Па·с. Разброс оценок определяется ошибками определения параметров земной коры, снятых напряжений и скоростей смещений. Оценки мощности верхней упругой части коры лежат в интервале от 20 до 33 км (рис. 3), при среднем значении 25 км. Эти результаты можно использовать для построения и поверки моделей современного деформирования земной коры и моделирования геодинамических процессов. Постсейсмический процесс в эпицентральной зоне Чуйского землетрясения будет продолжаться более 100 лет, скорости смещений изменяться от 1÷ 3 мм/год до 0.5 ÷ 1 мм/год.

Рис. 3. Пространственное распределения скорости горизонтальных смещений по направлению ортогональному разрыву (по оси *X* до 100 км). Теоретические кривые, рассчитаны при разной мощности упругого слоя (*H* от 20 км до 50 км),

при времени после события t = 10 лет; при времени релаксации $\tau_R = 100$ лет, относительном смещении на разрыве $\Delta u = 2$ м, при глубине разрыва D = 20 км. Экспериментальные результаты показаны кружками по пунктам слева направо: CHIB, KURA, CHAG, ULAG, BALY, YAZU. Ошибка определения –

от 0.3 до 0.6 мм в год. Для верхней коры (упругий слой) оценка мощности близка значению *H* = 25 км

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Владимирова И.С., Стеблов Г.М., Фролов Д.И. Исследование вязкоупругих деформаций после Симуширских землетрясений 2006–2007 гг. // Физика Земли. – 2011. – № 11. – С. 75–80.

2. Pollitz F.F., Peltzer G., Burgmann R. Mobility of continental mantle: Evidence from postseismic geodetic observations following the 1992 Landers earthquake // J. Geophys. Res. – 2000. – Vol. 105. – P. 8035–8054.

3. Гольдин С.В., Тимофеев В.Ю., Ардюков Д.Г. Поля смещений земной поверхности в зоне Чуйского землетрясения, Горный Алтай // ДАН. – 2005. – Т. 405, № 6. – С. 804–809.

4. Поля смещений Алтае-Саянского региона и эффективные реологические параметры земной коры / В.Ю. Тимофеев, Д.Г. Ардюков, А.В. Тимофеев и др. // Геология и геофизика. – 2014. – Т. 55, № 3. – С. 481–497.

5. Are post-seismic effects of the M = 8.4 Bolnay earthquake (1905 July 23) still influencing GPS velocities in the Mongolia-Baikal area / E. Calais, M. Vergnolle, J. Deverchere et al. // Geophys. J. Int. – 2002. – Vol. 149. – P. 157–168.

6. Brown L.D. Postseismic crustal uplift near Anchorage, Alaska // J. Geophys. Res. - 1977. - Vol. 82. - P. 3369-3378.

7. Poroelastic rebound along the Landers 1992 earthquake surface rupture / G. Peltzer, P. Rosen, F. Roges, K. Hudnut // J. Geophys. Res. – 1998. – Vol. 103, N B12. – P. 30131–30145.

8. Pollitz F.F. Post-seismic relaxation theory on a laterally heterogeneous viscoelastic model // Geophis. J. Int. – 2003. – Vol. 155, N 1. – P. 57–78.

9. Elsasser W.M. Two-Layer Model of Upper-Mantle Circulation // J. Geophys. Res. – 1971. – Vol. 76, N 20. – P. 4744–4753.

10. Segall P. Integrating Geologic and Geodetic Estimates of Slip Rate on the San Andreas Fault System // Intern. Geology Review. – 2002. – Vol. 44. – P. 62–82.

11. Yamasaki Tadashi, Gregory Houseman. The crustal viscosity gradient measured from post-seismic deformation: A case study of the 1997 Manyi (Tibet) earthquake // Earth and Planetary Science Letters. – 2012. – Vol. 351–352. – P. 105–114.

12. Implications of deformation following the 2002 Denali, Alaska, earthquake for postseismic relaxation processes and lithospheric rheology / A.M. Freed, R. Burgmann, E. Calais et al. // Journal of Geophysical Research. – 2006. – Vol. 111, N B01401. – doi: 10.1029/2005JB003894.

© А. В. Тимофеев, Д. Г. Ардюков, Е. В. Бойко, В. Ю. Тимофеев, 2017