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Abstract 

The mining sector is a major contributor to the Mongolian economy. Many 

ongoing operations are managed in a sub-optimal way leading to significant 

environmental damage and production losses. 

Changes in hydrological regimes remain a significant problem, particularly 

for placer gold. On balance, current mining practices are inefficient and use 

excessive process water, thus overtaxing surface waters and underground supplies, 

and also generate excessive effluent, which is difficult to manage and poses a 

threat of uncontrolled discharges of slurry. In addition, where rivers are illegally 

dredged and where tailings are discharged into surface waters, turbidity of surface 

waters is a major concern. The water pumped from mines of all types and 

discharged into open surface water bodies may also cause flooding, leading to the 

formation of new, transient wetlands, which generally fall dry once the mine ceases 

to operate.  

This paper describes a general overview and some methodologies to use 

remote sensing techniques for change detection in Zaamar gold mining district of 

Mongolia. 
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1. BACKGROUND 

Mongolia is a mineral-rich country. According to the Ministry of Energy, 

Geology, and Mining, about 80 different minerals had been discovered in 

Mongolia. By 2000, 500 deposits (including uranium and rare earths) had been 

identified, of these about 200 were exploited, including 35 of construction 

materials. Since then, more deposits have been identified, and some are of global 

importance. 

Gold mining industries, in particular, have expanded rapidly in the last 

fourteen years. At present, gold mining generates around 70% of total foreign 

currency. Although of great economic importance, it also has serious 

negative  environmental and social impacts. Gold mining is leading to the 

destruction of the environment, consequently making life difficult for the local 

people, especially herders, who must compete for pastureland and water 

resources.(Mongolia,2006) 



Most of the smaller industrial mines are open-cast operations using free 

digging shovels or hydraulic excavators and haul trucks that dump the ore near the 

wash plants. Oversize material remains on the screen and is blasted out via a 

tailgate by high pressure water from the water cannon. To provide process water 

for the placer wash plants, water is pumped from the Tuul River. No chemicals are 

added, gravitation methods being sufficient to recover the gold. The resulting 

effluent is directed to tailings ponds to settle out the coarsest material down to fine 

sand, and the still-turbid water is then recycled back to the wash plant or illegally 

discharged to the Tuul River. Water cannons consume large amounts of water, and 

the pumps are often left running even when the wash plant is idle. The settling 

ponds are unusually large and accordingly vulnerable to uncontrolled discharge by 

overtopping of the earth dam or its collapse. At least two mines discharge all 

effluent directly onto the floodplain, with frequent discharge of dirty water into the 

Tuul River. Overall, water use is very inefficient and is taxing surface water 

supplies and generating excessive volume of effluent that is more and more 

difficult to manage. 

2. STUDY AREA 

 

 

 

 

 

 

 

 

Map 1: Overview of the river basins in Mongolia 

Source: Prepared for the World Water Assessment Programme by AFDEC, 

2006. 

The selected target area, Zaamar soum, is located in one of the biggest gold 

mining regions in the central part of the country. There are a number of different 

sized enterprises involved in mining activities. 

3. METHODOLOGY  

Supervised image classification is a technique that is often applied in analysis 

of remotely sensed data. The result of such a classification is a thematic map with a 

label for each pixel of the class with which it has the highest strength of 

membership. This hard or crisp classification is based on conventional crisp set 

theory. A conventional classification of remotely sensed imagery, models the study 

 



area as a number of unique, internally homogeneous classes that are mutually 

exclusive. 

However, these assumptions are often invalid, especially in areas where 

transition zones and mixed pixels occur. Land cover types are rarely internally 

homogeneous and mutually exclusive, therefore, classes can hardly ever be 

separated by sharp or crisp boundaries, in feature space as well as geographic 

space. Furthermore, complex relationships exist between spectral responses 

recorded by the sensor and the situation on the ground, where similar classes, 

pixels or objects show varied spectral responses and similar spectral responses may 

relate to dissimilar classes, pixels or objects. Moreover, remotely sensed images 

contain many pixels where boundaries or sub-pixel objects cause pixel mixing, 

with several land covers occurring within a single pixel. Finally, classes are often 

hard to define resulting in vagueness and ambiguity in a classification scheme. 

Most, if not all, geographical phenomena are poorly defined to some extent and, 

therefore, fuzzy set theory as an expression of concepts of vagueness is an 

appropriate model for working with remotely sensed imagery (Fisher, 1999; Zhang 

and Foody, 2001). To adapt to the fuzziness characteristic of many natural 

phenomena, fuzzy classification approaches have been proposed (Wang, 1990; 

Foody, 1996; Zhang and Foody, 2001). 

Fuzzy classification is based on the concept of fuzzy sets (Zadeh, 1965). 

Several techniques exist to derive fuzzy memberships. These techniques can be 

divided in two groups (Burrough and McDonnell, 1998): 

 The Similarity Relation Model is data-driven. It involves searching for 

patterns within a dataset similar to traditional clustering. The most wide-spread 

method is the Fuzzy c-means algorithm (Bezdek, 1981). 

 The Semantic Import Model is user-driven. An expert defines the 

membership functions (Evans, 1977). 

The fuzzy c-means classifier (FCM) uses an iterative procedure that starts 

with an initial random allocation of the objects to be classified into c clusters. 

Given the cluster allocation, the centre of each cluster (in terms of attribute values) 

is calculated as the weighted average of the attributes of the objects. In the next 

step, objects are reallocated among the classes according to the relative similarity 

between objects and clusters based on a well-known distance measure: the 

Euclidean, Diagonal (attributes are scaled to have equal variance) or Mahalanobis 

(both variance and covariance are used for distance scaling) metrics are frequently 

used. Reallocation proceeds by iteration until a stable solution is reached where 

similar objects are grouped together in a cluster. Their membership value gives 

their degree of affinity with the centroid of the class (Bezdek, 1981). Membership 

μ of the ith object to the cth cluster of n number of classes in ordinary k-means, the 

membership μ of the i
th

 object to the c
th

 cluster is determined by: 
1

2 ( 1)

1
2 ( 1)

1

q

ic

ic

k q

icc

d

d

    (1) 



Burrough (Burrough et al., 1997) used the value q = 1.5 in this formula 

because stated that: ”appears to result in k-means classes mutually exclusive”.  

For our application the thematic maps included in the stochastic model 

constitutes the attributes and the computation was done using all the pixel values in 

the image, with the exception of the cluster center itself to avoid null distances. 

Then as a difference from the method used by Burrough (Burrough et al., 1997), 

where only a sample of pixels from a large image was used in order to reduce 

computations, the distance calculated in equation 1.5 is simplified to: 
22
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themes to a 8 bit format. 

The PARBAT software developed by Arko Lucieer (2004) was used to 

perform a non supervised fuzzy-c-mean classification. The algorithm used in this 

software complies with the procedures developed by Bezdek (Bezdek.J.C,1995) 

for the fuzzy-c-mean. 

With the resulting images of membership values, confusion index and entropy 

computed with PARBAT, an analysis for the best parameters of overlapping and 

number of classes was carried out in order to obtain a significant classification. 

For a supervised remote sensing classification, reference data is used. An 

important step in a supervised classification of remote sensing imagery is the 

choice of reference pixels for the representation of classes. Usually, reference 

pixels are selected from the image or from external data like aerial photography or 

field data. 

In this study, reference pixels are selected and extracted from the image by 

digitising polygons in the image display. Each polygon depicts a land cover class 

and is displayed in a unique class colour. Class statistics, extracted from the 

selected pixels, are used to classify all unlabelled pixels. Visualisation of class 

information in feature space gives a user valuable information about the location of 

classes and about possible overlap or vagueness between classes. 

4. RESULTS 

In 1994 only one gold mining company-Khailaast worked in Zaamar gold 

mining district. And the east side of Zaamar gold mining district where around 

239.2 million sq.km floodplain.  

But in 2000 worked 15 gold mining company. The floodplain size decreased 

up to 5.7 million sq.km. 

To illustrate the proposed α-shape class visualisation, the Landsat images of 

the selected areas was used. The classification in bands 7,4,2 from the Landsat 7 

images (Figure 1) of the study area are used to test the α-shape based classifier. 

Figure 3 shows that classes.  



             

Figure 2. Landsat image 742  

(Left – image of 12 September 1994; right –image of 20 September 2000) 

     

  

                             

Figure 3: α-shape based fuzzy classification result of  A. – 12 September 1994;  

B. – 20 September 2000 

 

(left) ‘defuzzified’ classification result; (right) image with the confusion 

index. 

Confusion image display shows areas where confusion in classification occurs 

(bright areas). Pasture and shrub’s areas overlap in feature space, as can be seen in 

figures 3. Pixels in this overlap zone show high confusion values in the image 

display (note: high uncertainty = high confusion = bright value). 

Overall, the α-shape classifier gives good results with an overall classification 

average accuracy of 94.35%. Accuracy assessment results in table 1 show that the 

A. 

B. 



α-shape based classifier performs slightly better than standard supervised fuzzy c-

means classifiers. 

 

Table 1. Classification accuracy percent for a classification based on α-shapes 

Data of  

source 
Class 

Reference 

Water Shrub 
Flood 

Plain 
Sand Pasture Total 

1
2
 J

u
ly

 1
9
9
4

 

Water  96.14 0 1.67 0 0 29.14 

Shrub 0 98.65 0.22 0 0 5.99 

Flood Plain 3.86 0 98.11 0 0.19 6.06 

Sand 0 0 0 98.65 0.01 7.49 

Pasture 0 1.35 0 1.35 99.8 51.32 

Total 100 100 100 100 100 100 

2
0
 S

ep
te

m
b
er

 2
0
0
0

 

Water  89.13 0 0 0.61 0 6.78 

Shrub 1.66 95.26 8.87 1.8 0.42 4.48 

Flood Plain 1.01 2.57 86.43 0.47 7.9 10.36 

Sand 7.28 0 0 90.05 0.35 18.24 

Pasture 0.92 2.17 4.7 7.16 91.33 60.15 

Total 100 100 100 100 100 100 

 

5. CONCLUSION AND RECOMMENDATION 

In this research work, multivariate texture segmentation had been successfully 

used for change detection identification. The segmentation accurately identification 

different objects on the images. The average of total accuracy is 94.35% in 

segmented images, using Confusing matrix, which is standards technique to assess 

the classification. It also detect many small objects, which make it difficult to 

compare the segmented image with reference image that does not contain those 

small objects. Uncertainty plays an important role in land cover classification of 

remotely sensed imagery. 
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