# ЛАТЕРАЛЬНЫЕ СЕЙСМИЧЕСКИЕ НЕОДНОРОДНОСТИ ВЕРХНЕЙ МАНТИИ ПОД СИБИРСКИМ КРАТОНОМ

### Елена Александровна Мельник

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Коптюга, 3, кандидат геолого-минералогических наук, зав. лабораторией лаборатории глубинных геофизических исследований и региональной сейсмичности, тел. (383)330-60-18, e-mail: MelnikEA@ipgg.sbras.ru

## Владимир Дмитриевич Суворов

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Коптюга, 3, доктор геолого-минералогических наук, главный научный сотрудник лаборатории глубинных геофизических исследований и региональной сейсмичности, тел. (383)330-60-18, e-mail: SuvorovVD@ipgg.sbras.ru

## Евгений Владимирович Павлов

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Коптюга, 3, кандидат технических наук, научный сотрудник лаборатории глубинных геофизических исследований и региональной сейсмичности, тел. (383)330-41-22, e-mail: PavlovEV@ipgg.sbras.ru

Показаны результаты лучевого моделирования верхней мантии Сибири по данным мирных ядерных взрывов по профилям Рифт, Метеорит и Кратон. Используется слоистонеоднородная модель с существенными латеральными вариациями скорости продольных волн. Обсуждаются вопросы разделения вертикальной расслоенности литосферы и ее латеральных неоднородностей совместно с гравитационным моделированием.

Ключевые слова: ядерные взрывы, верхняя мантия, Сибирская платформа, сейсмоплотностное моделирование.

# LATERAL SEISMIC HETEROGENEITIES OF THE UPPER MANTLE BENEATH THE SIBERIAN CRATON

### Elena A. Melnik

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3 Koptyug Prospect, Ph. D., Chief of laboratory of deep geophysical investigations and regional seismology, tel. (383)330-60-18, e-mail: MelnikEA@ipgg.sbras.ru

### Vladimir D. Suvorov

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3 Koptyug Prospect, D. Sc., Principal Research Scientist, Laboratory of deep geophysical investigations and regional seismology, tel. (383)330-60-18, e-mail: SuvorovVD@ipgg.sbras.ru

### Evgeny V. Pavlov

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3 Koptyug Prospect, Ph. D., Research Scientist, Laboratory of deep geophysical investigations and regional seismology, tel. (383)330-41-22, e-mail: PavlovEV@ipgg.sbras.ru

Shows the results of ray tracing modeling of the upper mantle of Siberia according to the peaceful nuclear explosions for the Rift, Kraton and Meteorite. Uses a layered-inhomogeneity mod-

el with significant lateral variations of the velocity of P waves. Discusses the separation of the vertical layering of the lithosphere and its lateral heterogeneities. To narrow the ambiguity of the solution was used seismic gravitational modeling.

Key words: nuclear explosions, upper mantle, Siberian platform, seismic and gravity modeling.

Оценка сейсмической мощности литосферы в Сибири остается дискуссионной, несмотря на имеющиеся уникальные наблюдения подземных ядерных взрывов вдоль сверхдлинных профилей. В работах [3, 4, 8, 11, 13–15] в верхней мантии выделяются протяженные слои с относительно пониженной и повышенной скоростью продольных волн. Вместе с тем при расстояниях между пунктами взрыва около 1000 км нет возможности однозначно разделить изменения скорости вследствие слоистости и/или латеральной неоднородности. В этой связи имеет смысл использовать латерально неоднородные модели, в которых введение протяженных субгоризонтальных, слабо неоднородных слоев рассматривается как вынужденная мера, без которой не удается получить достаточную согласованность наблюденных и теоретических времен пробега волн. При таком подходе модель значительно упрощается, выделяемые аномалии скорости, отчетливо выраженные в изменениях кажущейся скорости, характеризуются размерами более 300 км и поэтому представляются достаточно обоснованными [9, 12, 16].

Построение сейсмических разрезов верхней мантии по профилям Рифт, Метеорит и Кратон (рис. 1) выполнено с применением двумерного лучевого моделирования непосредственно в сферической модели Земли [18].



Рис. 1. Схема расположения профилей Рифт, Метеорит и Кратон. Обозначены области преобладающего распространения траппов (контур точечной линией), туфогенных толщ (штриховой) и развития интрузивных траппов (силлы, дайки, сплошная линия) [5]. Кружки – положение и номера пунктов взрыва в соответствии с [17] Интерес представляет сравнение скоростных неоднородностей литосферы под Сибирской платформой, Западно-Сибирской плитой, Тунгусской и Вилюйской синеклизами. Интерпретационный аспект наших моделей связан с проблемой изучения природы внутриплитного магматизма в Восточной Сибири за счет влияния высокотемпературных плюмов [2].

В качестве примера рассмотрим разрез по профилю Кратон (рис. 2) [16].



Рис. 2. Скоростная модель верхней мантии по профилю Кратон. Тонкими линиями показаны изолинии скорости в км/с, толстыми – со скачком скорости, треугольники – пункты взрыва. Х – хорда сегмента большого круга Земли с длиной дуги L=3570 км. Штриховыми линиями показаны уровни глубин 100, 200, 300 и 400 км, а стрелками – пересечения с профилями Рифт и Метеорит

В верхней мантии выделяются два структурных этажа: наиболее неоднородный верхний и практически однородный до границы «410 км» нижний. Наблюдается исключительно контрастное латеральное изменение скорости в верхней мантии от 8,0 км/с в области сочленения Западно-Сибирской плиты и Сибирской платформы до 8,4 км/с на восточном борту Вилюйской синеклизы. Также скорость 8,4–8,5 км/с характерна для кимберлитовой провинции. Интерес вызывает область повышенной до 8,4 км/с скорости в центральной части Западно-Сибирской плиты. Видно, что для верхнего этажа характерна корреляция латеральных изменений скорости с региональными геологическими структурами фундамента. Пониженные значения скорости под Мохо соответствуют синеклизам, повышенные – выступам фундамента.

На глубине 110–180 км выделена кровля слоя мощностью до 100 км с аномально повышенной до 8,5–8,7 км/с скоростью. Существенно, что он может значительно утоняться или быть прерывистым. Подошва слоя по используемым сейсмическим данным определяется неуверенно, так как ниже залегают породы с пониженной до 8,5 км/с скоростью. Так, на профиле Кратон мощность слоя с аномальной скоростью изменяется от утонения (выклинивания) в области сочленения Западно-Сибирской плиты и Сибирской платформы до 100 км под Тунгусской синеклизой.

Интервал глубины между подошвой литосферы и границей «410 км» характеризуется незначительным нарастанием скорости с глубиной от 8,5 до 8,55 км/с. На границе «410 км» скорость скачком увеличивается до 9,4–9,45 км/с.

В пространственном отношении наибольший интерес в структуре литосферы вызывает рельеф кровли слоя повышенной скорости, который резко меняется по площади. Области максимально глубокого залегания кровли слоя с повышенной скоростью (более 200 км) тяготеют к стабильным районам, включая алмазоносные области Иркутского амфитеатра и западную часть Якутской кимберлитовой провинции. Протяженность на юг может свидетельствовать о перспективах поиска кимберлитов в Красноярском крае и Иркутской области (имеются находки россыпных алмазов). Области минимальной глубины залегания кровли слоя с повышенной скоростью (100-130 км) тяготеют к областям проявления траппового магматизма на Сибирской платформе [10]. Это хорошо коррелируется с распределением в пространстве различных магматических фаций в Восточной Сибири. Так, эффузивы распространены в основном в северо-западной части Тунгусской синеклизы, где максимальная мощность трапповой формации достигает 3,5 км. Уменьшение мощности базальтовых потоков происходит в южном и юго-восточном направлениях, где они выклиниваются, фациально замещаясь туфогенными породами [7].

Двумерное сейсмогравитационное моделирование по программе решения прямой и обратной двухмерной гравитационной задачи ADM-3D [6] по профилям Метеорит и Кратон показывает удовлетворительное соответствие сейсмических и гравитационных данных. Выявленная в работе [1] положительная гравитационная аномалия для подкоровой части верхней мантии коррелируется с аномалией повышенной скорости на глубине 100–200 км на профилях Метеорит и Кратон. Особый интерес вызывает различие в изостатическом состоянии земной коры Вилюйской и Тунгусской синеклиз (профиль Кратон).

#### БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Грачев А.Ф., Кабан М.К. О причинах высокого стояния Сибирской платформы // Физика Земли. – 2006. – № 12. – С. 20–33.

2. Добрецов Н.Л. Пермо-триасовые магматизм и осадконакопление в Евразии как отражение суперплюма // ДАН. – 1997. – Т. 354, № 2. – С. 220–223.

3. Егоркин А.В. Изучение мантии на сверхдлинных геотраверсах // Физика Земли. – 1999. – № 7-8. – С. 114–130.

4. Егоркин А.В. Строение мантии Сибирской платформы // Физика Земли. – 2004. – № 5. – С. 37–46.

5. Золотухин В.В., Альмухамедов А.И. Базальты Сибирской платформы: условия проявления, вещественный состав, механизм образования. Траппы Сибири и Декана: черты сходства и различия. – Новосибирск: Наука. Сиб. Отделение, 1991. – С. 7–39. 6. Кочнев В.А. Адаптивные методы решения обратных задач геофизики: учеб. пособие. – Красноярск: Красноярский госуниверситет, 1993. – 131 с.

7. Оценка объемов и проблема генезиса пермо-триасового траппового магматизма Сибирской платформы / Ю.Р. Васильев, В.В. Золотухин, Г.Д. Феоктистов, С.Н. Прусская // Геология и геофизика. – 2000. – Т. 41, № 12. – С. 1696–1705.

8. Павленкова Н.И., Павленкова Г.А. Строение земной коры и верхней мантии Северной Евразии по данным сейсмического профилирования с ядерными взрывами. – М.: ГЕОКАРТ-ГЕОС, 2014. – 192 с.

9. Сейсмические неоднородности верхней мантии под Сибирским кратоном (профиль Метеорит) / В.Д. Суворов, Е.А. Мельник, З.Р. Мишенькина и др. // Геология и геофизика. – 2012. – Т. 54 (9). – С. 1411–1426.

10. Старосельцев В.С. Тектоника базальтовых плато и нефтегазоносность подстилающих отложений. – М.: Недра, 1989. – 259 с.

11. Структура верхней мантии по профилю Байкал-Ямал (Рифт), полученная с применением мирных ядерных взрывов / А.В. Егоркин, Н.И. Павленкова, Т.В. Романюк, Л.Н. Солодилов // Геология и геофизика. – 1996. – Т. 37, № 9. – С. 66–76.

12. Суворов В.Д., Мишенькина З.Р., Мельник Е.А. Сейсмические верхнемантийные корни структур фундамента Сибирской платформы по профилю Рифт // Геология и геофизика. – 2010. – Т. 51 (8). – С. 1134–1150.

13. Cipar J., Priestley K. Cantal Siberia upper mantle cross-section from deep seismic sounding explosions / Ed. K. Fuchs. Upper mantle heterogeneities from active and passive seismology. – Netherlands: Kluwer Academic Publishers, 1997. – P. 75–87.

14. Pavlenkova G.A., Pavlenkova N.I. Upper mantle structure of the Northern Eurasia from peaceful nuclear explosion data // Tectonophysics. -2006. -N 416. -P. 33–52.

15. Pavlenkova N.I. Seismic structure of the upper mantle along the long-range PNE profiles – rheological implication // Tectonophysics. – 2011. – N 508. – P. 85–95.

16. Seismic and density heterogeneities of lithosphere beneath Siberia: Evidence from the Craton long-range seismic profile / E.A. Melnik, V.D. Suvorov, E.V. Pavlov, Z.R. Mishenkina // Polar Science. – 2015. – Vol. 9. – P. 119–129.

17. Sultanov, D.D., Murphy, J.R., Rubinstein, Kh.D. A seismic source summary for soviet peaceful nuclear explosions // Bull. Seismol. Soc. Am. – 1999. – N 3. – P. 640–647.

18. Zelt C.A., Smith R. Seismic traveltime inversion for 2D crustal velocity structure // Geophys. J. Int. – 1992. – Vol. 108. – P. 183–204.

© Е. А. Мельник, В. Д. Суворов, Е. В. Павлов, 2017