УДК 549.086.17

Е.И. Ярцев¹, И.В. Викентьев², В.Ю. Прокофьев³

МИНЕРАЛОГО-ГЕОХИМИЧЕСКИЕ СВИДЕТЕЛЬСТВА КОНТАКТОВОГО ПРЕОБРАЗОВАНИЯ РУД ДЖУСИНСКОГО КОЛЧЕДАННО-ПОЛИМЕТАЛЛИЧЕСКОГО МЕСТОРОЖДЕНИЯ (ЮЖНЫЙ УРАЛ)⁴

Джусинское колчеданно-полиметалическое месторождение характеризуется обильной концентрацией даек основного и среднего состава. С процессом внедрения пострудных даек связаны термальный метаморфизм руд и перекристаллизация рудных минералов. Выявлено закономерное увеличение температуры гомогенизации от 156 °С на удалении от дайки до 287–305 °С в контактовой зоне. Обнаруженные высокосоленые (6,4–15,7 масс.%-экв. NaCl) углекислотно-водно-солевые флюиды, имеющие высокое давление (до 1500 бар), могут быть связаны с процессами контактового и регионального метаморфизма.

Ключевые слова: Джусинское месторождение, колчеданные руды, контактовый метаморфизм.

Dzhusa volcanogenic massive sulfide deposit is characterized by a high concentration of dykes of basic and intermediate rocks. Thermal metamorphism of ore and recrystallization of ore minerals were caused by formation of post-ore dykes. It was shown that homogenization temperature regular increased from 156 °C at a distance of the dyke to 287-305 °C in its contact zone. Highly saline (6,4–15,7 wt.% eq. NaCl) water fluids saturated with CO₂ suggest high pressure conditions (up to 1500 bars) and can result from contact and regional metamorphism.

Key words: Dzhusa ore deposit, massive sulfide ore, contact metamorphism.

Ввеление. Большинство колчеданных месторождений Урала несет признаки метаморфического воздействия от слабого (цеолитовая и пренит-пумпеллиитовая фации) до умеренного (зеленосланцевая фация) и сильного (эпидотамфиболитовая и амфиболитовая фации). Среди условий метаморфизма колчеданных месторождений Урала преобладает пренит-пумпеллиитовая фация, которой отвечают заметные преобразования [Ярош, 1973; Vikentyev et al., 2016]. Выделяются следующие типы метаморфизма: региональный (погружения и динамический) и контактовый, который в свою очередь можно подразделить на региональный, связанный с гранитами, и локальный, связанный с дайками. Последний наименее изучен (см. например, [Вахромеев, 1956; Пшеничный, Кулагина, 1968]). В результате метаморфизма руды были перекристаллизованы и в основном утратили тонкозернистый, колломорфный или брекчиевый облик, став массивными, а у контактов рудных тел (включая секущие контакты с дайками) — полосчатыми.

Преобразование колчеданных руд различными термальными процессами приводит к изменению минеральных форм нахождения в них важных

полезных компонентов, в том числе благородных металлов [Викентьев, 2004]. Поэтому изучение таких процессов имеет не только научный, но и практический интерес. Статья посвящена оценке физико-химических параметров термального метаморфизма колчеданно-полиметаллических руд Джусинского месторождения, связанного с процессом внедрения пострудных даек, который сопровождался гидротермальной деятельностью.

Джусинское колчеданно-полиметаллическое месторождение — наиболее крупный рудный объект в Теренсайском рудном районе Южного Урала [Еремин и др., 1968]. К геологическим предпосылкам наличия метаморфизованных руд относится широкое распространение субвулканических и жильных магматических образований. Еще на первых стадиях изучения Теренсайского района была отмечена приуроченность сульфидной минерализации к участкам максимальной концентрации субвулканических тел диабазов и габбро-диабазов [Еремин и др., 1964, 1968]. На месторождении описаны также жильные тела диоритового состава магнитогорского гранодиоритового комплекса. Часть субвулканических тел габбро-диабазового комплекса — дорудные, а другая — пострудные

¹ Московский государственный университет имени М.В. Ломоносова, геологический факультет, кафедра геологии, геохимии и экономики полезных ископаемых, мл. науч. с.; *e-mail*: yar@geol.msu.ru

² Институт геологии рудных месторождений, минералогии, петрографии и геохимии РАН, гл. науч. с.; *e-mail:* viken@igem.ru

³ Институт геологии рудных месторождений, минералогии, петрографии и геохимии РАН, вед. науч. с.; *e-mail:* vpr2004@ igem.ru

⁴ Работа выполнена за счет гранта Российского научного фонда (проект № 14-17-00693).

Рис 1. Географическая схема расположения Джусинского колчеданного месторождения. Пунктирные линии — железные дороги, сплошные линии — автомагистрали

дайки. Жильные образования диоритового состава — пострудные, поскольку секут рудные тела. Нами изучены флюидные включения в новообразованных минералах сульфидных руд, связанных с внедрением даек.

Геологическая характеристика месторождения. Джусинское колчеданно-полиметаллическое месторождение расположено в Адамовском районе Оренбургской области, в 70 км на северо-восток от г. Орск (рис. 1). Месторождение приурочено к центральной части Теренсайской антиклинали, входящей в Джусинско-Домбаровский вулканический пояс и сложенной вулканогенными породами карамалыташской свиты [Еремин и др., 1968; Серавкин и др., 1994; Glasby et al., 2008]. Рудные тела находятся в породах андезит-дацитовой вулканогенной формации [Рихтер, 2005; Vikentyev et al., 2016]. По конодонтам в настоящее время Джусинский комплекс датируется ранним эмсом-эйфелем [Артюшкова, 2000; Хан и др., 2007]. Оруденение

1

2

3

4

5

6

7

8

9

10

11

12

11

 \times

×

локализовано среди метосоматически измененных пород среднего состава. Месторождение образовано 18 неправильнолинзовидными рудными телами (рис. 2). Текстуры руд преимущественно массивные, реже полосчатые, брекчевидные и прожилкововкрапленные [Викентьев

Рис 2. Геологическая карта Центрального участка Джусинского месторождения (составил Е.И. Ярцев): 1 — кварц-серицитхлоритовые метасоматиты, 2 -андезиты, 3 -дациты, 4 — субвулканические дациты, 5 — габбро-порфириты, 6 дайки диоритов, 7 — колчеданные и полиметаллические руды, 8 — серноколчеданные руды, 9 — геологические границы (а — установленные, б предполагаемые), 10 — углы падения контактов рудных тел, 11 — границы уступов карьера и высотные отметки, 12 — номера рудных тел

и др., 2007]. Основной рудный минерал представлен пиритом (60–90 об.%). Распространены также халькопирит, сфалерит, галенит, блеклая руда. Как отмечено выше, на месторождении широко развиты дайки основного состава (габбропорфириты), принадлежащие к позднеэйфельскопозднедевонскому габбро-диабазовому комплексу, и среднего состава (микродиориты, кварцевые диориты), принадлежащие к раннекаменноугольному магнитогорскому гранодиоритовому интрузивному комплексу. Мощность, как первых, так и вторых, варьирует от 1-2 м до нескольких десятков метров.

Жильные тела магнитогорского комплекса имеют отчетливо секущее положение по отношению к рудным телам. Соотношения даек габбродиабазового комплекса с рудами сложные, бывают как отчетливо секущие, так и согласные. Во многих случаях интерпретация наблюдаемых соотношений осложняется сильным рассланцеванием, наложенным как на вмещающие андезито-дациты, так и на многие дайки. Региональный метаморфизм соответствует зеленосланцевой фации.

Минераграфические исследования руд из зоны контакта с дайками диоритов показали отсутствие видимых признаков перекристаллизации основных рудных минералов. Текстура руды полосчатая. Под небольшим углом вдоль контакта, на расстоянии 1 см от дайки в руде развит прожилок сфалерита, в котором встречено единичное зерно магнетита. Перпендикулярно контакту с дайкой в руду проникают прожилки карбоната и барита; они пересекают сфалеритовый прожилок, огибая остальные рудные минералы. Кроме того, параллельно контакту с дайкой, на расстоянии 2 мм от него, развита трещина, заполненная мелкозернистой нерудной (породной) массой с кристаллами рутила. Другие отличия руд из контактовой зоны с дайкой диоритов от руд, взятых на удалении от дайки, не наблюдаются.

Ранее [Еремин, 1964] на месторождении были установлены признаки воздействия даек диоритов на руды в виде образования крупнокристаллического магнетита по пириту в узкой зоне контакта руды с дайкой. В исследованных нами образцах

Рис. 4. Флюидные включения в минералах Джусинского колчеданно-полиметаллического месторождения: а-в — двухфазовые газово-жидкие типа 1 (а — в сфалерите, б — в кальците, в — в кварце); г-е — углекислотно-водные типа 2 (г — группа первичных включений, д — +30 °C, е — +15 °C); ж, з — газовые с плотной углекислотой типа 3 (ж — +20 °C, е — +10 °C)

Номер пробы, расстояние от контакта, м	Минерал, тип включений*	n	T _{гом} , °C	T _{эвт} , °C	<i>Т</i> _{пл. льда} , °С	<i>Т</i> _{пл. со2} , °С	<i>Т</i> _{гом. СО2} , °С	С солей, масс. %-экв. NaCl	<i>Р</i> , бар
Колчеданно-полиметаллические руды на разном расстоянии от дайки									
Дж10; 0	Сфалерит, 1	6	305-287	-3536	-9,04,0	_	_	12,9-6,4	-
	Сфалерит, 2	6	238-228	-34	-5,6	-57,6	14,2 Ж	6,9	-
Дж9; 10	Сфалерит, 1	2	272	-37	-4,9	—	—	7,7	-
Дж8; 20	Сфалерит, 1	5	217	-26	-6,6	—	—	10,0	-
Дж7; 30	Сфалерит, 1	3	156	-37	-6,9	—	—	10,4	-
Кварц-карбонат-халькопиритовая жила в дайке габбро-порфиритов									
Ядж9б	Кальцит, 1	12	203-199	-5148	-11,110,4	-	—	15,1-14,4	-
Кварцевая жила в колчеданно-полиметаллических рудах									
Дж13	Кварц, 1	19	141-137	-5347	-11,78,2	—	—	15,7-12,5	-
Кварцевая жила в серноколчеданных рудах									
Дж17	Кварц, 2	18	254-232	-3635	-6,55,2	-57,258,1	14,5-29,6 Ж	8,9–6,6	1500-1170
	Кварц, 3	5	-	-	-	-57,2	12,1-17,9 Ж	-	

Результаты термо- и криометрических исследований первичных индивидуальных флюидных включений в минералах Джусинского месторождения

Примечания: * — тип флюидных включений: 1 — двухфазовые газово-жидкие, 2 — углекислотно-водные, 3 — газовые; *n* — число исследованных включений; Ж — гомогенизация углекислоты в жидкую фазу; прочерк — отсутствие данных.

воздействие даек магнитогорского комплекса на руды проявлено слабо, только в узкой зоне контакта (несколько сантиметров), и выражено в основном в перекристаллизации руд вдоль контактов даек. Отметим, что в эндоконтактовой зоне дайка сильно рассланцована.

Методы исследований. Геологические наблюдения сделаны в ходе картирования карьера в 2006—2012 гг., которое сопровождалось штуфным опробованием (более 300 проб). Из образцов были изготовлены прозрачные и полированные шлифы, двустороннеполированные пластинки, которые исследовали микроскопическими методами.

Для изучения физико-химических параметров гидротермального метаморфизма руд и химического состава рудообразующих флюидов проведены микротермометрические исследования флюидных включений в маложелезистом сфалерите из проб, отобранных вкрест простирания рудного тела с шагом 10 м от контакта дайки диоритов к периферии рудного тела (рис. 3). Также изучены флюидные включения в кварце из кварцевых жил в серноколчеданных (образец Дж17) и полиметаллических рудах (образец Дж13) и в кальците из кварц-карбонат-халькопиритовой жилы в дайке габбро-порфиритов (образец Ядж9б) (таблица).

Микротермометрические исследования флюидных включений проводились в секторе минераграфии ИГЕМ РАН с использованием измерительного комплекса, созданного на основе микротермокамеры THMSG-600 фирмы «Linkam» (Англия), микроскопа «Amplival» (Германия), снабженного набором длиннофокусных объективов, видеокамеры и управляющего компьютера. Комплекс позволяет в режиме реального времени измерять температуру фазовых переходов внутри включений в температурном интервале от -196 до 600 °С, наблюдать за ними при больших увеличениях и получать электронные микрофотографии. Солевой состав растворов определялся по температурам эвтектик [Борисенко, 1977]. Концентрация солей в растворе включений оценивалась по температурам плавления льда с использованием данных для солевой системы NaCl-H₂O из работы [Bodnar, Vityk, 1994]. Для включений, содержащих плотный углекислотнометановый флюид, вводилась поправка на влияние углекислоты. Давление оценивалось для гетерогенного флюида по пересечению изохоры и изотермы. Концентрацию солей и давлений флюида оценивали с использованием программы FLINCOR [Brown, 1989].

Исследование флюидных включений. При визуальном изучении двусторонне полированных пластин образцов из Джусинского месторождения в сфалерите, кальците и кварце обнаружены многочисленные флюидные включения размером 1–20 мкм, имеющие форму отрицательных кристаллов или неправильную. Иногда встречаются флюидные включения, равномерно распределенные по объему минерала-хозяина. Эти включения отнесены нами к первичным включениям. Группы флюидных включений, приуроченные к трещинам, не выходящим за пределы кристаллов, отнесены нами к первично-вторичному генетическому типу включений. Включения, приуроченные к секущим трещинам, — вторичные.

По фазовому составу можно выделить три типа флюидных включений (рис. 4): 1) двухфазовые газово-жидкие включения; 2) углекислотноводные включения; 3) существенно газовые включения с плотной углекислотой. Газовые включения захватывались синхронно с углекислотно-водными включениями (приурочены к одним и тем же зонам), что свидетельствует о гетерогенном состоянии рудообразующего флюида. Результаты термо- и криометрических исследований 76 индивидуальных флюидных включений представлены в таблице.

Первичные газово-жидкие (тип 1) флюидные включения в сфалерите проб из разреза, перпендикулярного дайке, гомогенизируются в жидкость при температуре 156–305 °С и имеют концентрацию солей 6,4–12,9 масс. %-экв. NaCl. В растворе включений преобладали хлориды натрия и магния (температура эвтектики составила –26...–37 °С). Плотность флюида 0,81–0,99 г/см³.

Первичные углекислотно-водные включения (тип 2) в сфалерите гомогенизируются при температуре 228–238 °С, концентрация солей в растворе составляет 6,9 масс.%-экв. NaCl, углекислоты — 4,6 моль/кг раствора. В растворе флюидных включений преобладают хлориды натрия и магния (температура эвтектики –34 °С). Плотность флюида 1,04 г/см³.

Первичные газово-жидкие (тип 1) флюидные включения в кальците из кварц-карбонатхалькопиритовой жилы в дайке габбро-порфиритов гомогенизируются в жидкость при температуре 199–203 °С и имеют концентрацию солей 14,4– 15,1 масс.%-экв. NaCl. В растворе флюидных включений преобладают хлориды натрия и кальция (температура эвтектики от -51 до -48 °C). Плотность флюида 0,97–0,98 г/см³.

Первичные газово-жидкие (тип 1) флюидные включения в кварце из прожилка в колчеданнополиметаллической руде гомогенизируются в жидкость при температуре 137–141 °С, раствор в них имеет концентрацию солей 12,5–15,7 масс.%-экв. NaCl. В растворе флюидных включений преобладают хлориды натрия и кальция (температура эвтектики от -53 до -47 °С). Плотность флюида 1,02-1,04 г/см³.

Первичные углекислотно-водные включения (тип 2) в кварце из прожилка в серноколчеданной руде гомогенизируются при температуре 232–254 °C, концентрация солей в растворе составляет 6,6–8,9 масс.%-экв. NaCl, углекислоты — 2,3–4,3 моль/кг раствора. В растворе флюидных включений преобладают хлориды натрия и магния (температура эвтектики от –35 до –36 °C). Плотность флюида 1,02–1,03 г/см³.

Углекислота в первичных и первично-вторичных существенно газовых включениях типа 3 гомогенизируется в жидкость при температуре 17,9-12,1 °C, а ее температура плавления составляет -57,2 °C, что не слишком отличается от температуры плавления чистой CO₂ (-56,6 °C) и свидетельствует о небольшой примеси низкокипящих газов. Плотность углекислотного флюида 0,80-0,85 г/см³. Оценка давления по этим двум типам сингенетичных включений составляет от 1170 до 1500 бар для интервала 232-254 °C.

Обсуждение результатов. Судя по данным исследования флюидных включений, в минералах колчеданно-полиметаллических руд обнаружены по крайней мере три типа флюида: углекислотноводно-солевой флюид и два хлоридных водносолевых (натрий-магниевый и натрий-кальциевый). Значения температуры формирования первичных гидротермальных руд колчеданных месторождений Урала составляют 180-390 °С, а концентрация минералообразующих флюидов изменяется от 2 до 8 масс.%-экв NaCl [Викентьев, 2004]. Как видно на диаграмме температура-соленость (рис. 5), большинство полученных нами данных о температуре и солености отличается от таковых для минералообразующих флюидов, формировавших первичные руды.

Рис. 5. Диаграмма температура—соленость для минералообразующих флюидов колчеданно-полиметаллических руд Джусинского месторождения: 1 — сфалерит, 2 — кальцит, 3 — кварц, пунктир — область формирования гидротермально-осадочных руд

Очевидно, изученные нами флюиды связаны с более поздними процессами перекристаллизации и метаморфизма руд месторождения. Вполне вероятно, что некоторые флюиды были связаны с внедрением даек среднего и основного состава, в температурном поле которых могли активизироваться поровые флюиды. Это подтверждается уменьшением температуры гомогенизации флюидных включений с хлоридными натрий-магниевыми флюидами по мере удаления от дайки в изученном нами разрезе (рис. 6). В то же время углекислотно-

Рис. 6. Уменьшение температуры гомогенизации включений по мере удаления от дайки

водно-солевые флюиды, имеющие высокое давление (до 1500 бар), могли быть связаны с процессом регионального метаморфизма. Включения аналогичных флюидов встречены в сфалерите на контакте с дайкой. Это, вероятно, связано с повышенной проницаемостью контактовой зоны в течение продолжительного периода.

Таким образом, проведенное впервые исследование флюидных включений в минералах

СПИСОК ЛИТЕРАТУРЫ

Артюшкова О.В. Конодонтовые комплексы эмса — среднего девона Магнитогорского мегасинклинория и их стратиграфическая приуроченность // Бюлл. МОИП. Отд. геол. 2000. Т. 75, вып. 2. С. 16–23.

Вахромеев И.С. О возрастных взаимоотношениях колчеданной руды Учалинского месторождения с дайками жильных порфиритов // Изв. АН СССР. Сер. геол. 1956. № 5. С. 66–72.

Викентьев И.В. Условия формирования и метаморфизм колчеданных руд. М.: Научный мир, 2004. 344 с.

Викентьев И.В., Шишакова Л.Н., Магазина Л.О., Еремин Н.И. Особенности минерального состава руд Джусинского колчеданно-полиметаллического месторождения (Ю. Урал) // Металлогения древних и современных океанов — 2007. Гидротермальные и гипергенные рудоносные системы. Миасс: ИМин УрО РАН, 2007. С. 135–141.

Еремин Н.И., Коган Б.С. Взаимоотношения даек и оруденения на Джусинском колчеданно-полиметаллическом месторождении (Южный Урал) // Бюлл. МОИП. Отд. геол. 1964. Т. 39, № 6. С. 137–138.

Еремин Н.И., Воробьев В.И., Петрова Г.С., Яковлев Г.Ф. Теренсайский рудный район // Палеозойский вулканизм и колчеданные месторождения Южного Урала. М.: Изд-во Моск. ун-та, 1968. С. 177–208.

Пшеничный Г.Н., Кулагина М.А. Метаморфизм руд Сибайского колчеданного месторождения (Южный Урал) у контактов с дайками габбро-диабазов // Геол. рудных месторождений. 1968. Т. 10, № 2. С. 49–59.

Рихтер Я.А. Современные и древние рудообразующие гидротермально-магматические системы: зоколчеданно-полиметаллических руд Джусинского месторождения позволило получить новые данные о составе флюидов, участвовавших в процессах метаморфизма и гидротермальнометасоматической перекристаллизации богатых колчеданно-полиметаллических рудах, и оценить температуру и давление при их перекристаллизации.

нальность и динамика развития // Геотермальные и минеральные ресурсы областей современного вулканизма: Мат-лы междунар. полевого Курило-Камчатского семинара, 16 июля 2005 г. / Гл. ред. С.Н. Рычагов. Петропавловск-Камчатский: Оттиск, 2005. С. 217–232.

Серавкин И.Б., Знаменский С.Е., Косарев А.М. и др. Вулканогенная металлогения Южного Урала. М.: Наука, 1994. 160 с.

Хан И.С., Серавкин И.Б., Хан Г.Н. О перспективах выявления промышленных залежей медноколчеданных руд в северной части Домбаровского рудного района // Информац. мат-лы ИГ УНЦ РАН. Геол. сб. 2007. № 6. С. 206–214.

Bodnar R.J., Vityk M.O. Interpretation of microterhrmometric data for H_2O -NaCl fluid inclusions // Fluid inclusions in minerals: methods and applications / Ed. by B. De Vivo, M.L. Frezzotti. Siena: Pontignano, 1994. P. 117–130.

Brown P. FLINCOR: a computer program for the reduction and investigation of fluid inclusion data // Amer. Miner. 1989. Vol. 74. P. 1390–1393.

Glasby G.P., Maslennikov V.V., Prozherova I.A., Petukhov S.I. Jusa and Barsuchi Log volcanogenic massive sulfide deposits from the Southern Urals of Russia: Devonian analogs of the Kuroko deposits of NE Honshu, Japan // Res. Geol. 2008. Vol. 58 (3). P. 313–324.

Vikentyev I.V., Belogub E.V., Novoselov K.A., Moloshag V.P. Metamorphism of volcanogenic massive sulphide deposits in the Urals. Ore geology // Ore Geology Reviews. 2016. DOI: 10.1016/j.oregeorev.2016.10.032

Поступила в редакцию 20.10.2016