УДК 549.643(470.62)

П.Н. Граменицкая¹, Е.Н. Граменицкий², О.В. Кононов³

ХИМИЧЕСКИЕ ТИПЫ АМФИБОЛОВ ТЫРНЫАУЗСКОГО МЕСТОРОЖДЕНИЯ

По результатам зондовых анализов выделено 6 групп кальциевых амфиболов Тырныаузского месторождения. В I группу (преимущественно эдениты) объединены амфиболы роговиков и околоскарновых пород. Группы II–VI (ряд актинолит — гастингсит) относятся к послескарновым метасоматитам продуктивной стадии по роговикам (II), комплексу тоналитов и плагиогранитов (III), ультраосновным породам (IV), пироксен-плагиоклазовым околоскарновым породам (V) и скарнам (VI). Группа IV представлена актинолитами, VI — гастингситами, группы II, III и V — разновидностями роговых обманок.

Ключевые слова: амфибол, химизм, актинолит, роговая обманка, гастингсит, эденит, скарны, роговики, околоскарновые породы, продуктивные метасоматиты.

6 groups of Ca amphiboles of the Tyrnyaus deposit have been recognized basing on results of microprobe analisis. Ampiboles of hornfelses and periskarn rocks (mostly edenite) are combined into I group. The groups from II up to VI (related to actinolite-hastingsite series) are formed in productive metasomatic rocks substituting hornfelses (II), tonalite and plagiogranite complex (III), ultrabasic rocks (IV), pyroxene-plagioclase near skarn rocks (V) and scarns (VI). The group IV is represented by actinolites, the VI – by hastingsites, the II, III, and V – by variety hornblendes.

Key words: amphibole, chemism, actinolite, hornblende, hastingsite, edenite, skarn, hornfels, near skarn rock, productive metasomatic rock.

Введение. Эксплуатация крупнейшего в России Тырныаузского Мо–W-месторождения прекращена в начале 90-х гг. прошлого века, несмотря на значительные запасы руд и развитую инфраструктуру. Решение о возобновлении его эксплуатации было принято только в 2012 г. Проекты возрождения Тырныаузского горно-обогатительного предприятия включают безотходность производства и комплексное использование минерального сырья, поэтому актуально детальное изучение не только рудных, но и нерудных минералов месторождения.

Амфиболы относятся к недостаточно изученным породообразующим минералам Тырныауза. Они встречаются во многих горных породах месторождения и в наложенных на них метасоматитах и прожилках. Распространение амфиболов ограничено контурами контактово-метаморфического ореола мощностью около 1,5 км, охватывающего целиком Главную структурную зону с основными запасами молибденвольфрамовых руд и расположенную севернее Аномальную структурную зону с объектами разведки.

В монографиях [Соловьев, 1940; Варданянц, 1940] на основе визуальных наблюдений и по оптическим константам определены повсеместно встречающиеся тремолит и актинолит, обыкновенная роговая обманка, более редкие куммингтонит и антофиллит. В скарнах установлен паргасит [Каленов, 1940, 1948]. С получением химических, а затем первых микрозондовых анализов [Пэк, 1962; Кононов, 1963; Родзянко и др., 1973; Медведкова, Блинов, 1978; Дзагоева и др., 1983; Дзагоева, 1983] список дополнился эденитом, появились данные о неоднородности зерен. Цель работы — восполнить пробелы в изучении одной из групп породообразующих минералов.

Материалы и методы исследования. Систематическое изучение химического состава амфиболов проведено на материале, собранном под руководством О.В. Кононова за 1955-1992 гг. практически на всей территории рудного поля. Выполнено более 100 анализов (табл. 1) на микрозондовом комплексе на базе сканирующего электронного микроскопа «Jeol JSM-6480LV» в лаборатории локальных методов исследования вещества кафедры петрологии МГУ (аналитики Е.В. Гусева и Н.Н. Коротаева); часть анализов продублирована Н.Н. Кононковой на микроанализаторе «Camebax-55» (ГЕОХИ РАН) и в ИЭМ РАН. В табл. 1 приведена часть анализов, достаточная для характеристики состава амфибола каждого образца и его неоднородности. Кроме того, в работе использовано 20 химических анализов амфиболов, заимствованных из литературы и материалов О.В. Кононова. Расчет анализов на кристаллохимические формулы амфиболов проведен в соответствии с номенклатурой, предложенной в работе [Leak, 1978], и согласно рекомендациям ММА [Номенклатура..., 1997], а степень окисления железа — по работе [Шумахер, 1998].

¹ Московский государственный университет имени М.В. Ломоносова, геологический факультет, кафедра минералогии, студентка; *e-mail*: sunnypolinka@mail.ru

² Московский государственный университет имени М.В. Ломоносова, геологический факультет, кафедра петрологии, гл. науч. с., профессор; *e-mail*: engramen@geol.msu.ru

³ Московский государственный университет имени М.В. Ломоносова, геологический факультет, кафедра минералогии, доцент; *e-mail*: okonon2007@yandex.ru

Почти все анализированные амфиболы относятся к подсемейству Са-амфиболов, и только 2 анализа (табл. 1, № 18 и 39) — к магнезиально-железистым амфиболам. Са-амфиболы Тырныауза по химическому составу относятся к изоморфным группам, представленным тремолит-актинолитом, роговой обманкой, эденитом и гастингситом. Закономерности химического состава амфиболов и изоморфизма в них проанализированы в зависимости от принадлежности амфиболов к образованиям разного генезиса в соответствии с [Кононов, Граменицкий, 1972; Граменицкий и др., 1976, 1978].

Ассоциации амфиболов. Амфиболы роговиков. Наряду с наиболее распространенными биотитовыми роговиками среди метаморфизованных терригенных пород встречаются амфиболовые и биотитамфиболовые роговики. Кроме амфибола и биотита они содержат плагиоклаз разной основности, кварц, часто калиевый полевой шпат и акцессорные апатит, циркон, ортит, сфен, который иногда замещает ильменит. Появление тех или иных минеральных разновидностей роговиков связано с метаморфизмом пород разного исходного состава. Метаморфическое происхождение амфиболсодержащих роговиков устанавливается однозначно при их переслаивании с биотитовыми. По слоям разного состава развиваются пироксен-плагиоклазовые околоскарновые породы (рис. 1), образующие секущие метасоматические прожилки, которые из-за разной интенсивности замещения имеют четковидный облик.

Сходные, почти неотличимые амфибол-плагиоклазовые породы иногда закономерно отделяют скарновые тела от роговиков, что впервые установил А.Д. Каленов. Они представляют собой метасоматические околоскарновые породы.

Отличия химизма амфиболов собственно роговиков и амфибол-плагиоклазовых околоскарновых пород несущественны. Те и другие амфиболы рассматриваются вместе и выделяются в *группу I*. По данным 23 анализов из 6 образцов (табл. 1), амфиболы представлены ферроэденитами с постепенными переходами в роговые обманки.

Амфиболы продуктивных метасоматитов по роговикам. В роговиках амфиболы встречаются также в составе метасоматических прожилков, содержащих шеелит, т.е. образуют позднюю по отношению к ороговикованию и формированию скарнов генерацию, относящуюся к апороговиковой фации продуктивных метасоматитов. Пример такого прожилка в биотитовом роговике, имеющего симметрично-зональное строение, представлен на рис. 2. Во внешних зонах биотит исходного биотитового роговика замещается амфиболом, ильменит — сфеном, количество плагиоклаза возрастает. В центральных зонах метасоматита исчезает плагиоклаз, который замещается кварцем. Возрастает пористость породы. В осевой зоне амфибол замещается кварцем, отлагается шеелит. Железистость амфибола по направлению к центральным

зонам сначала возрастает, но в осевой зоне падает. В некоторых амфиболовых прожилках встречаются реликты куммингтонита.

Амфиболы продуктивных метасоматитов по роговикам выделены в *группу II*, они охарактеризованы 22 анализами в 5 образцах. Преобладают железистые роговые обманки. Характерно уменьшение глиноземистости (вплоть до появления актинолитов) и железистости в краевых частях зерен.

Амфиболы в породах тоналит-плагиогранитного комплекса. Афимолы широко распространены в среднепалеозойском комплексе, охарактеризованном в работах [Варданянц, 1940; Дзагоева, 1983; Дзагоева и др., 1983]. Комплекс сложен разнообразными породами тоналит-плагиогранитной серии («трондьемитами», по Л.А. Варданянцу). Ранняя фаза представлена кварцевыми габбро-диоритами, слагающими ксенолиты в породах главной фазы, которые образуют ряд от кварцевых диоритов до тоналитов и лейкократовых плагиогранитов. Здесь установлено несколько генераций амфиболов: 1) вкрапленники амфиболов

Рис. 1. Замещение переслаивающихся кварц-биотит-плагиоклазового (1) и биотит-кварц-амфибол-калишпат-плагиоклазового (2) роговиков пироксен-плагиоклазовой околоскарновой породой (3). Все породы пересечены кварц-плагиоклазовым прожилком (4) с пироксеновой оторочкой. Образец 4818. Фото полированного шлифа

Микрозондовые анализы амфиболов Тырныауза (мас. %)

Таблица 1

	Амфиболовые и биотит-амфиболовые роговики													
Состав	4477	'a***	48	18	48	19	48	5092-1						
	1	2	3	4	5	6	7	8	9					
SiO ₂	44,84	43,96	44,40	43,41	45,14	49,71	49,43	50,79	47,11					
TiO ₂	0,46	0,54	0,42	0,76	0,77	0,26	0,00	0,40	0,25					
Al ₂ O ₃	8,80	9,47	7,77	8,17	7,65	3,88	5,34	4,74	6,96					
FeO	19,86	22,48	21,04	22,12	20,19	18,74	16,03	15,31	19,31					
MgO	8,92	7,42	8,75	7,66	9,29	11,29	12,81	13,22	10,42					
MnO	0,47	0,32	0,43	0,43	0,00	0,43	0,61	0,73	0,29					
CaO	11,92	11,87	11,67	11,46	11,60	12,02	11,90	12,23	11,89					
Na ₂ O	0,87	0,73	1,36	1,39	1,44	0,88	0,74	0,77	1,27					
K ₂ O	0,46	0,55	0,94	1,03	0,90	0,50	0,42	0,33	0,74					
F	0,09**	0,05**												
Cl	0,04**	0,03**												
Сумма*	97,42	97,99	96,94	96,63	96,98	97,71	97,29	98,53	98,24					

Состав	Амф рс	иболон оговики	вые 1	Продуктивные метасоматиты в роговиках							
	5092-1	81	10		190	4136					
	10	11	12	13	14	15	16	17	18		
SiO ₂	46,92	42,50	47,58	49,76	43,57	44,96	49,40	52,85	51,34		
TiO ₂	0,62	0,92	0,47	0,29	0,51	0,26	0,00	0,00	0,00		
Al ₂ O ₃	6,92	10,43	6,09	4,49	9,90	6,34	2,95	1,54	1,71		
FeO	19,87	22,32	19,28	16,29	19,13	27,23	21,73	13,67	24,04		
MgO	10,35	7,99	10,66	12,83	9,21	5,10	9,51	15,40	14,75		
MnO	0,45	0,44	0,55	0,45	0,41	0,65	0,58	0,94	3,24		
CaO	11,83	11,67	11,71	11,82	11,55	11,07	11,28	11,42	0,96		
Na ₂ O	1,23	1,57	1,35	0,67	1,53	0,93	0,55	0,24	0,37		
K ₂ O	0,87	1,52	0,65	0,31	0,70	0,50	0,14	0,12	0,00		
F		0,74	0,68	0,70**	0,57**	0,32**	0,43**				
Cl		0,00	0,14	0,05**	0,08**	0,04**	0,02**				
Сумма*	99,05	99,50	98,33	96,92	96,51	97,31	96,14	96,19	96,40		

	Про	дуктив В	ные м рогови	етас ках	Породы тоналит- плагиогранитного комплекса							
Состав	4477a	4477a	4477a	10077	44//D	4477b		3781 /27	17/1070	3538-12	3538-12	3538-3
	19	20	21	2	2	23		24	L	25	26	27
SiO ₂	45,40	40,93	43,17	45,	10	50,7	'5	52,0	02	7 48,37	52,07	47,89
TiO ₂	0,19	0,76	0,47	0,4	41	0,0	0	0,30		1,28	0,25	0,13
Al ₂ O ₃	7,85	9,68	9,70	9,70 8,51		3,34	4	3,85		5,74	4,01	4,74
FeO	22,05	30,11	23,99	3,99 23,25		16,9	8	18,15		5 15,91	14,83	17,06
MgO	8,23	2,80	6,66	5,66 7,3		12,7	9	12,02		2 13,80	14,53	11,91
MnO	0,31	0,39	0,41	0,4	14	0,22		0,2	1	0,41	0,27	0,53
CaO	11,74	11,11	11,65	11,	48	12,4	1	11,95		5 11,11	12,09	11,73
Na ₂ O	0,53	0,89	0,85	0,1	77	0,3	6	1,11		1,39	0,76	0,86
K ₂ O	0,68	0,84	0,80	0,4	19	0,32	2	0,33		0,21	0,17	0,31
F	0,51**	0,46**		0,5	3**	0,46	**			1,07**	0,84**	1,24**
Cl	0,08**	0,05**		0,1	1**	0,01	**			0,03**	0,06**	0,06**
Сумма*	96,99	97,66	97,78	97,	75	97,1	6	99,9	99	9 98,37	98,98	95,31
Carrow	55	56	Car			55		56][Cassar	55	56
Состав	4485	4485		Tab	4	485 4		485	1	состав	4485	4485
SiO ₂	40,42	36,39	Mg	C	3	,12	0	,92 1		K ₂ O	0,93	1,50
TiO ₂	0,78	0,11	Mn	0	0	,67 0		,59	F		0,07**	

11,12 11,23

1,41

1,25

Cl

2,55**

Сумма* 99,08 95,58

 Al_2O_3

FeO

9,47

11,15

28,61 32,27

CaO

Na₂O

		Породы тоналит-плагиогранитного комплекса												
Состав	3538-3	3538-4a			3538-5B		3538-4 _B	3538-5a						
	28	29	30	31	32	33	34	35	36					
SiO ₂	47,71	49,80	51,59	51,59	49,82	48,23	48,78	45,20	49,14					
TiO ₂	0,22	1,23	0,18	0,18	1,28	0,95	1,21	0,40	1,31					
Al ₂ O ₃	7,53	5,22	2,23	2,23	5,09	6,03	5,22	9,95	5,20					
FeO	17,77	12,18	18,28	18,28	12,54	17,61	13,26	18,74	12,96					
MgO	11,37	16,29	12,57	12,57	15,41	11,85	15,78	9,96	16,05					
MnO	0,52	0,27	0,54	0,54	0,29	0,45	0,27	0,46	0,23					
CaO	11,94	11,16	11,40	11,40	11,67	11,68	10,79	11,84	10,94					
Na ₂ O	1,37	1,40	0,50	0,50	1,32	1,18	1,50	1,46	1,46					
K ₂ O	0,55	0,10	0,14	0,14	0,12	0,29	0,06	0,72	0,12					
F	1,30**	1,06**	0,42**	0,42**	0,79**	0,92**	1,25**	0,90**	1,30**					
Cl	0,10**	0,14**	0,20**	0,20**	0,05**	0,08**	0,18**	0,10**	0,15**					
Сумма*	99,98	99,10	98,05	98,05	98,46	99,33	100,21	99,32	99,09					

Состав	Поро плаги ко	ды тона югранит омплекс	алит- гного са	Продуктивные метасоматиты по ультраосновным породам							
		3538-2a	L	17	64	18	16	1817			
	37	38	39	40	41	42	43	44	45		
SiO ₂	49,14	54,04	53,89	50,95	54,14	54,28	53,86	53,98	53,33		
TiO ₂	1,20	0,00	0,00	0,16	0,12	0,00	0,00	0,00	0,39		
Al ₂ O ₃	5,34	1,97	0,75	3,74	1,67	1,49	2,32	1,96	1,44		
FeO	13,24	10,71	20,94	13,67	9,39	11,59	11,09	9,34	14,62		
MgO	14,91	17,44	17,95	14,17	18,11	16,69	16,92	18,16	14,19		
MnO	0,31	0,39	1,33	0,24	0,23	0,15	0,19	0,32	0,32		
CaO	11,38	11,97	2,23	12,29	12,19	12,53	12,64	12,54	12,10		
Na ₂ O	1,07	0,38	0,25	0,71	0,68	0,39	0,54	0,69	0,47		
K ₂ O	0,45	0,11	0,00	0,14	0,19	0,30	0,09	0,31	0,20		
F	0,59**	0,35**		0,69**	0,66**						
Cl	0,26**	0,25**		0,05**	0,00**		0,07		0,09		
Сумма*	98,19	97,63	97,34	96,89	97,39	97,43	97,71	97,30	97,14		

Состав		Про по с	дуктив Эколос	вные ме карновь	Продуктивные метасоматиты по скарнам				
	3210	1161/2	3849	3849	3856	3856	3317	3317	4485
	46	47	48	49	50	51	52	53	54
SiO ₂	53,97	40,57	53,00	43,75	43,06	42,53	34,62	40,42	34,62
TiO ₂	0,00	1,46	0,00	0,19	0,42	0,65	0,54	0,78	0,54
Al ₂ O ₃	2,33	10,59	0,94	9,31	8,09	8,28	11,55	9,47	11,55
FeO	14,71	28,04	16,60	19,69	27,81	27,29	31,31	28,61	31,31
MgO	15,19	2,91	13,45	9,23	4,82	5,00	1,05	3,12	1,05
MnO	0,00	0,73	0,48	0,50	1,22	1,06	0,59	0,67	0,59
CaO	12,48	11,4	12,26	11,75	10,94	10,95	10,90	11,12	10,90
Na ₂ O	0,20	1,98	0,31	1,36	1,46	1,56	1,36	1,25	1,36
K ₂ O	0,00	1,44	0,12	0,93	0,85	0,89	2,33	0,93	2,33
F				0,97**	1,14**	0,79**	0,31**	0,07**	0,31**
Cl	0,00	0,34		0,03**	0,10**	0,10**	2,18**	2,55**	2,18**
Сумма*	98,87	100,27	97,17	97,78	99,97	99,16	100,40	100,77	96,73

Примечания. В таблице оставлена половина анализов, характеризующих состав и его неоднородность в амфиболах каждого образца; * в сумму многих анализов входят также Cr_2O_3 , P_2O_5 , BaO, SnO₂; ** определены в ГЕОХИ РАН; *** номер образца; 1–56 — номер по порядку.

Рис. 2. Зональный прожилок амфиболсодержащего метасоматита в биотитовом роговике. Образец 1903-5. Фото шлифа

в исходных магматических породах, сохранившие характерную ромбическую форму сечений, но нацело псевдоморфно замещенные мелкозернистым агрегатом амфибола более поздней генерации; 2) реликты куммингтонита среди Са-амфиболов (табл. 1, анализы 17 и 39) обнаружены исключительно вблизи палеозойского интрузива и, вероятно, являются остатками его контактово-метаморфического ореола; 3) амфиболы роговиков, образовавшихся в результате кайнозойского контактового метаморфизма палеозойских магматитов; 4) амфиболы биотит-амфиболкварц-плагиоклазовых метасоматитов с шеелитом и сопряженных с ними прожилков выполнения того же состава, относящихся к продуктивной послескарновой стадии. Анализированные амфиболы комплекса относятся к двум последним генерациям, более

Рис. 3. Линзовидная текстура амфиболового (Am) метасоматита, подчеркнутая расположением молибденита (Mo) и кварца (Qtz) по границам линз. Порфиробласт апатита (Ap). Образец 1816. Изображение в обратнорассеянных электронах (BSE)

детально разделить их не удалось, они объединены в *группу III*. Амфиболы относятся к Mg-роговой обманке, в каймах зерен переходят в актинолит. Гетерогенность группы видна по большой дисперсии f и содержания Ca, Al, (Na+K).

Амфиболы среди ультраосновных пород. Линзовидные тела амфибол-флогопитовых метасоматитов с кварцем, апатитом, шеелитом и молибденитом (рис. 3), прослеженные на несколько десятков метров, приурочены к зоне тектонического контакта биотитовых роговиков и сильноизмененных гипербазитов. В большинстве случаев реликты ультраосновной породы не сохраняются. В зонах слабого изменения из первичных минералов чаще всего сохраняется хромистая шпинель с каймой почти чистого магнетита. Вместо оливина образуются хондродит и клиногумит. Происходит оталькование породы. Амфиболы развиваются преимущественно по направлению к центральным частям тел, на контактах с роговиками преобладает флогопит. Амфиболы образуют четко выраженную группу IV. По данным 27 анализов (табл. 1) из 5 образцов, они представлены исключительно актинолитами. Железистость зерен возрастает от центра к промежуточным частям (кольца повышенной железистости, рис. 4), а к краям снова падает. Увеличение железистости связано с разрастанием метасоматической зональности, а ее снижение с более поздними процессами.

Амфиболы в пироксен-плагиоклазовых околоскарновых породах (группа V) встречаются редко и только в наложенных продуктивных метасоматитах (с шеелитом), прожилковидных или более сложной морфологии. Ассоциирующие минералы представлены плагиоклазом, кварцем, пироксеном, иногда биотитом, 10 имеющихся анализов представляют 3 образца. Преобладают роговые обманки, переходящие в ферроэдениты. Более магнезиальные актинолиты слагают края зерен.

Рис 4. Зональность амфибола в ультраосновных породах с максимальной железистостью в промежуточной зоне («кольцах») каждого зерна. Образец 1764. Изображение в BSE

Амфиболы в пироксеновых и пироксен-гранатовых скарнах (группа VI). В апоскарновых кварц-пироксенплагиоклазовых метасоматитах изредка встречаются секущие и замещающие их амфиболовые прожилки (рис. 5). По 12 анализам из 2 образцов амфиболы группы представляют собой гастингситы, переходящие в железистые роговые обманки.

Рис. 5. Развитие поздней генерации амфибола (Ат), замещающей и наследующей прожилки шеелита (She) в скарнах. Образец 4485. Изображение в BSE

Изоморфные замещения в амфиболах. Наряду с данными индивидуальных анализов (включая литературные) использованы средние значения и дисперсия для каждой группы (табл. 2). Замещения Мg↔Fe и Si↔Al+(Na+K) в Ca-амфиболах Тырныауза — главные схемы изоморфизма, который, однако, не сводится исключительно к ним.

Таблица 2

	Группы пород с амфиболом											
		продуктивные метасоматиты										
Состав	роговики	в роговиках	в тоналитах— плагиогранитах	в ультраоснов- ных породах	в околоскарно- вых породах	в скарнах						
	Ι	II	III	IV	V	VI						
	1-12	13-17, 19-23	24-38	40-46	47-51	52-56						
Si	7,10 (0,23)	7,22 (0,32)	7,30 (0,90)	7,78 (0,15)	7,09 (0,39)	6,38 (0,43)						
Al ^{IV}	0,90 (0,23)	0,78 (0,32)	0,70 (0,90)	0,21 (0,15)	0,91 (0,39)	1,62 (0,43)						
Al ^{VI}	0,38 (0,25)	0,34 (0,23)	0,17 (0,16)	0,20 (0,20)	0,23 (0,14)	0,24 (0,12)						
Mg	2,18 (0,30)	2,15 (0,66)	2,32 (0,61)	3,41 (0,76)	2,08 (0,74)	0,36 (0,18)						
Fe	2,60 (0,30)	2,61 (0,53)	2,10 (0,46)	1,55 (0,75)	2,71 (0,61)	4,38 (0,25)						
Fe ³⁺	0,45 (0,12)	0,65 (0,16)	0,86 (0,23)	0,37 (0,23)	0,53 (0,24)	0,92 (0,21)						
Fe ²⁺	2,15 (0,26)	1,96 (0,56)	1,24 (0,46)	1,18 (0,51)	2,18 (0,57)	3,46 (0,18)						
Fe^{3+}/Fe^{2+}	0,21 (0,06)	0,37 (0,21)	0,94 (0,71)	0,30 (0,06)	0,25 (0,10)	0,27 (0,06)						
<i>f</i> *	55,4 (6,1)	55,2 (12,0)	41,4 (11,9)	31,3 (15,2)	57,0 (14,3)	91,5 (4,0)						
Na+K	0,52 (0,15)	0,31 (0,12)	0,36 (0,49)	0,20 (0,07)	0,47 (0,20)	0,71 (0,22)						
F	0,28 (0,06)	0,22 (0,05)	0,39 (0,16)	0,37 (0,07)	0,50 (0,07)	0,13 (0,05)						
Cl	0,02 (0,01)	0,01 (0,01)	0,03 (0,03)	0,02 (0,01)	0,03 (0,04)	0,53 (0,30)						
Ca	1,94 (0,05)	1,88 (0,12)	1,76 (0,30)	1,93 (0,04)	1,90 (0,04)	2,08 (0,20)						
Ti	0,06 (0,02)	0,09 (0,03)	0,06 (0,13)	0,01 (0,01)	0,04 (0,04)	0,03 (0,03)						
Mn	0,06 (0,02)	0,07 (0,06)	0,06 (0,04)	0,06 (0,08)	0,09 (0,04)	0,09 (0,01)						
Преобладающий тип амфибола	ферроэденит	Fe-роговая обманка	Mg-роговая обманка	актинолит	роговая обманка	гастингсит						

Средние химические характеристики и среднеквадратичные отклонения кальциевых амфиболов Тырныауза

Примечания. Приведены средние значения коэффициентов в кристаллохимических формулах и производных от них величин; в скобках — среднеквадратичное отклонение; в выборки включены все анализы, в том числе заимствованные из литературы и из неопубликованных материалов O.B. Кононова; $f = \text{Fe} \cdot 100/(\text{Fe} + \text{Mg})$ — общая железистость, %; ** — номера анализов в табл. 1.

Рис. 6. Диаграмма Si-(Na+K) для Ca-амфиболов Тырныауза (в величинах коэффициентов в кристаллохимических формулах). Нанесены аппроксимированные к линейным зависимостям тренды для всех данных и групп амфиболов I-VI

Величины формульных коэффициентов (ф.к.) Мд и Fe для всей выборки связаны линейным уравнением, причем наилучшее соответствие теоретической формуле и наименьшая дисперсия получены для суммарного железа (Fe²⁺+Fe³⁺): Mg = 5,02–1,08 Fe; $R^2 = 0,98$. Наибольшие отклонения от теоретической суммы (Mg+Fe), равной 5, отмечены у гастингситов, имеющих самое высокое содержание Fe и Al^{VI}. Этот тип изоморфизма характеризуется общей железистостью f == Fe·100/(Fe + Mg), %. По средним значениям эта величина минимальна у продуктивных метасоматитов по ультраосновным породам (группа IV) и максимальна по скарнам (группа VI). К группе IV близки амфиболы, развитые среди тоналит-плагиогранитного комплекса (группа III). Остальные три группы имеют близкие средние значения железистости. Самый узкий интервал ее изменения отмечен у роговиков (группа I).

Для второго главного типа изоморфизма общий тренд зависимости изменения суммы щелочных металлов от Si (рис. 6) аппроксимируется уравнением (Na + K) = 3,21-0,39·Si; $R^2 = 0,81$. Учитывая, что при расчете кристаллохимической формулы принято $Al^{IV} = 8-Si$, получаем (Na + K) $\approx 0.4Al^{IV}$. Следовательно, более чем наполовину компенсация замены Si на Al происходит по иным схемам: 3Si↔3Al^{IV}+Al^{VI} или Si+Fe²⁺↔Al+Fe³⁺. Линия общего тренда расположена на рис. 6 в промежутке между соединяющими составы миналов линиями паргасит (гастингсит) — актинолит (тангенс угла наклона -0,5) и алюминиевый паргасит — актинолит (-0,33). Тренды каждой выделенной группы амфиболов несколько различаются, причем для них значение R^2 выше, чем для усредненного. С линией паргасит — актинолит почти совпадает тренд амфиболов групп III, V и VI. Фигуративные точки

амфиболов групп IV и II находятся близко к линии актинолит — алюмопаргасит. Амфиболы всех этих групп относятся к продуктивным метасоматитам. В отличие от них поле фигуративных точек амфиболов роговиков (группа I) расположено на диаграмме Si — (Na+K) ближе к линии актинолит — эденит, линия их тренда примерно параллельна общему усредненному тренду и большинству частных трендов (рис. 6). Поля точек разных групп амфиболов большей частью перекрываются. Наиболее отчетливо выделяются три обособленных поля. Кроме эденита группы I это актинолит группы IV метасоматитов по ультрабазитам (минимум Al^{IV} и Na+K), а также гастингсит группы VI по скарнам (максимум Al^{IV} и Na+K).

В формулах большинства Са-амфиболов атомное отношение Ca:(Mg+Fe) почти точно равно 2/5 (рис. 7). Отклонение части фигуративных точек амфиболов, которые развиваются по породам тоналитплагиогранитного комплекса (группа III), в сторону уменьшения этого отношения может быть связано только с замещением Са на Na или с неполным заполнением структурной позиции В, поскольку сумма (Mg+Fe) в формулах амфиболов всей выборки близка к 5. Действительно, для этой группы средний коэффициент Са в кристаллохимической формуле наименьший (табл. 2). Противоположное отклонение отношения Ca:(Mg+Fe) от значения 2/5 выявлено в некоторых анализах амфиболов, развитых с замещением скарнов (группа VI). В них некоторая часть Са, по-видимому, входит в кристаллохимическую позицию А.

Все рассмотренные амфиболы относятся к низкотитанистым разновидностям. Для всех групп установлена обратная зависимость содержания Ti и Si: Ti =

Рис. 7. Положение фигуративных точек составов амфиболов групп I–VI на диграмме (прямоугольный треугольник) Al–Ca–(Mg+Fe) (в атомных долях)

= 0,56-0,07Si, что позволяет предположить изоморфное замещение Si на Ti в тетраэдрах. Отметим, что корреляция Fe и Mg становится менее достоверной, если в сумму с Fe ввести Ti, что косвенно подтверждает вхождение Ti в IV, а не в VI координацию. Содержание Ti достигает максимума в эдените роговиков, минимума в апоскарновом гастингсите, а также в актинолите разных групп.

Содержание фтора в амфиболах выделенных групп снижается в ряду V \rightarrow III, IV \rightarrow I \rightarrow II \rightarrow VI. Содержание хлора в них близко к пределу определения, за исключением апоскарновых гастингситов VI группы, в которых оно резко возрастает (табл. 2). Эта группа резко отличается от других по низкому отношению F/Cl.

У подавляющего большинства амфиболов отмечено устойчиво низкое содержание марганца (0,06 ф.е.). Выделяются лишь роговые обманки и гастингситы продуктивных метасоматитов по околоскарновым породам и скарнам групп V и VI (0,09 ф.е.).

Содержание Fe^{3+} , Fe^{2+} в амфиболах и их отношение, т.е. степень окисления Fe, оценены путем пересчета зондовых анализов [Шумахер, 1998]. Из 113 анализов только 2 дают при пересчете таким методом абсурдный результат — отрицательное содержание Fe^{3+} . Для остальных наблюдается прямая корреляция Fe^{2+} и Fe^{3+} , величина соотношения Fe^{3+}/Fe^{2+} в подавляющем большинстве случаев составляет около 0,25, колеблясь от 0,1 до 0,5. Близкие цифры получены для 12 химических анализов амфиболов, в которых определены FeO и Fe_2O_3 . Величина отношения Fe^{3+}/Fe^{2+} в них колеблется от 0,14 до 0,43, в среднем 0,26. Совпадение результатов, полученных независимо, не может быть случайным. Судя по

всему, метод пересчета дает хорошие результаты для массивов данных, но для отдельных анализов к нему следует относиться с осторожностью. Как особенность группы из 11 пересчитанных анализов образцов из тоналит-плагиогранитного комплекса можно принять высокую степень окисления железа ($Fe^{3+}/Fe^{2+}>0,5$). В то же время единичные случаи таких окисленных амфиболов в других группах, так же как и 2 забракованных анализа, пока рассматриваются в качестве случайных отклонений. Оценка содержания Fe^{3+} позволяет отнести амфиболы группы VI к гастингситам, а не к паргаситам ($Fe^{3+}/Al^{VI}>1$).

Для всей выборки анализов установлена обратная корреляция Са и Fe³⁺, близкая к зависимости Fe³⁺ = 7,00 – 0,35Са (рис. 8). Намечается также прямая корреляция между Fe³⁺ и (Na+K). С учетом указанных закономерностей окисление железа в амфиболах с постоянной глиноземистостью сопровождается увеличением их щелочности.

Заключение. Таким образом, выделено шесть групп Са-амфиболов Тырныаузского месторождения, каждая из которых характеризуется особенностями химизма.

К группе I относятся амфиболы роговиков и сходные с ними амфиболы околоскарновых пород, образовавшихся в дорудный этап контактового метаморфизма и скарнообразования. Амфиболы групп II, IV, V и VI относятся к формации продуктивных (несущих Мо- и W-оруденение) послескарновых метасоматитов, фациям, развивающимся по роговикам, ультрабазитам, околоскарновым породам и скарнам соответственно. Группа III гетерогенна, в нее входят амфиболы как ороговикованных пород тоналитплагиогранитной серии, так и развивающихся по ним продуктивных метасоматитов. Уверенно разделить их пока не удается.

Амфиболы *группы* I роговиков и амфибол-плагиоклазовых околоскарновых близки к ряду актинолит — эденит, в то время как всех остальных групп — к ряду актинолит — паргасит (гастингсит). Для группы I характерно наименьшее содержание Fe^{3+} и значение отношения Fe^{3+} / Fe^{2+} , а также компактность (наименьшее стандартное отклонение) большинства характеристик.

Химические параметры *группы II* (апороговиковые продуктивные метасоматиты) по большей части перекрываются с таковыми других групп, отличаются они самым высоким содержанием Ti и низким (близким к пределу определения) Cl.

Особенность химизма амфиболов *группы III* (амфиболы в породах тоналитплагиогранитного комплекса) — самое низкое содержание Al^{VI} , Fe^{2+} , Са и самое высокое значение содержания Mg и сте-

пени окисления Fe при наибольшей дисперсии всех величин, подтверждающей неоднородность группы. Очевидно также влияние вариаций состава замещаемых диабазов, тоналитов, плагиогранитов.

По ультраосновным породам (*группа IV*) развиваются исключительно актинолиты (до тремолитов). Они характеризуются наибольшими коэффициентами Si и Mg в кристаллохимических формулах и наименьшими AI^{IV} , (Na+K), Fe_{общ} и Ti. На всех диаграммах они образуют обособленные поля. Некоторое перекрытие с другими группами продуктивных метасоматитов связано с тем, что поздние генерации амфиболов в них обычно представлены актинолитами.

Главные характеристики амфиболов по пироксенплагиоклазовым околоскарновым породам (*группа V*) перекрываются с характеристиками амфиболов II и III группы. Они отличаются самым высоким содержанием F и Mn и самой низкой степенью окисления железа среди продуктивных метасоматитов.

СПИСОК ЛИТЕРАТУРЫ

Варданянц Л.А. Молодые интрузивные породы Тырныауза // Сов. геология. 1940. № 2-3. С. 43-54.

Граменицкий Е.Н., Аранович Л.Я., Кононов О.В. Скарны Тырныауза, минеральные ассоциации и физико-химические условия образования // Вестн. Моск. ун-та. Сер. 4. Геология. 1976. № 1. С. 51–62.

Граменицкий Е.Н., Зиновьева Н.Г., Кононов О.В., Нестеров И.В. Основные черты минералогии и зональности послескарновых продуктивных метасоматитов Тырныауза // Очерки физико-химической петрологии. 1978. Т. 7. С. 13–26.

Дзагоева Е.А. Минералогия молибден-вольфрамового оруденения нового типа в палеозойских интрузивах Тырныауза: Автореф. канд. дисс. М., 1983.

Дзагоева Е.А., Кононов О.В., Спиридонов Э.М. Геологическое строение тоналит-плагиогранитного массива Тыр-

Рис. 8. Корреляция Са и Fe³⁺ (атомные количества) в группах амфиболов II–V. В группах I и VI корреляция отсутствует

Наиболее обособленны и имеют наименьший разброс значений химические характеристики *группы* VI — апоскарновых гастингситов и близких к ним роговых обманок. В них выявлено максимальное содержание Al^{IV} , (Na+K), закисного и окисного Fe, f, Ca, Cl и Mn; минимальное — Mg и F. Такие особенности амфиболов этой группы связаны, по-видимому, с кристаллической структурой гастингситов.

Приведенные данные о составе и принадлежности амфиболов к определенным минеральным формациям вместе с результатами изучения сосуществующих минералов представляют материал для генетических построений, которые авторы надеются развить в последующих публикациях.

Авторы благодарны Е.В. Гусевой, Н.Н. Коротаевой и Н.Н. Кононковой за выполненные анализы, а также Я.О. Алферьевой за помощь в подготовке иллюстраций.

ныауза (Северный Кавказ) // Вестн. Моск. ун-та. Сер. 4. Геология. 1983. № 3. С. 45-57.

Каленов А.Д. Генезис молибденового оруденения в скарнах месторождения Тырныауз: Автореф. канд. дисс. М., 1940.

Каленов А.Д. Очерк минералогии Тырныауза // Уч. зап. КабНИИ. Т. 3. Нальчик, 1948. С. 47–74.

Кононов О.В. Процессы молибдено-вольфрамового оруденения в скарнах Тырныаузского месторождения (Кабардино-Балкарская АССР): Автореф. канд. дисс. М., 1963.

Кононов О.В., Граменицкий Е.Н. Зональность молибденовольфрамового оруденения Тырныауза (Северный Кавказ) // Геология рудных месторождений. 1972. Т. 14, № 1. С. 6–18.

Медведкова А.А., Блинов Ю.И. Некоторые особенности метасоматического преобразования гипербазитов // Минерал. сб. Львовского ун-та. 1978. № 32, вып. 2. С. 44–52. Номенклатура амфиболов: Доклад подкомитета по амфиболам Комиссии по новым минералам и названиям минералов Международной минералогической ассоциации (КНМНМ ММА) // Зап. ВМО. 1997. № 6. С. 82–102.

Пэк А.В. Геологическое строение рудного поля и месторождения Тырныауз. М.: Изд-во АН СССР, 1962 (Тр. ИГЕМ АН СССР; Вып. 56). 168 с.

Родзянко Н.Г., Нефедов Н.К., Свириденко А.Ф. Редкометалльные скарны Тырныауза. М.: Недра, 1973. 214 с. Соловьев С.П. Рудоносный район Тырныауз // Петрография СССР. Сер. 2, вып. 6. М.: Изд-во АН СССР, 1940. 157 с.

Шумахер Дж.К. Оценка соотношения двух- и трехвалентного железа в амфиболах по результатам микрозондовых анализов // Зап. ВМО. 1998. № 1. С. 101–109.

Leak B.E. Nomenclature of amphiboles // Miner. Mag. 1978. Vol. 42, N 324. P. 533-563.

Поступила в редакцию 18.02.2013