УДК 552.33:550.4 (470.55)

М.А. Фурина¹, А.В. Тевелев², И.А. Кошелева³, Н.В. Правикова⁴

ОСОБЕННОСТИ ХИМИЧЕСКОГО СОСТАВА ТРИАСОВЫХ ЩЕЛОЧНЫХ ПОРОД В МАГНИТОГОРСКОЙ ЗОНЕ ЮЖНОГО УРАЛА⁵

В статье рассмотрены особенности химического состава и изотопные характеристики щелочных эгирин-рибекитовых пород триасового возраста, слагающих несколько небольших массивов в Восточно-Магнитогорской зоне Южного Урала. Массивы локализованы вдоль двух меридиональных сдвиговых зон. Щелочные породы всех массивов сходны по содержанию петрогенных и рассеянных элементов и разделяются на три фазы внедрения: 1) монцодиориты, 2) щелочные сиениты, 3) щелочные граносиенты и щелочные граниты. Установлено, что породы Восточной зоны отличаются повышенным содержанием калия и большей железистостью.

Ключевые слова: Южный Урал, триас, щелочные сиениты, щелочные граниты, геохимия, редкоземельные элементы.

The main object of the paper is the features of the chemical composition and isotopic characteristics of the alcaline aegirite-riebeckite magmatic rocks of the Triassic age. These rocks form a group of small massives in the East-Magnitogorsk Zone of the Southern Urals. All of them are localized within two meridional simple-shear zones. Alcaline rocks are characterised by the similar composition both of the petrogenic and trace elements. Massives consist of three main magmatic phases: 1) monzodiorite, 2) alcaline syenite and 3) alcaline granitic syenite and alcaline granite. In paper is also shown that rocks of the eastern part of the zone are more enriched in K and Fe than ones of the western part.

Key words: Soutern Urals, Triassic, alcaline syenite, alcaline granite, geochemistry, rare-earth elements.

Введение. Интрузивы малочекинского комплекса расположены в пределах Восточно-Магнитогорской зоны Южного Урала и прорывают в основном вулканогенно-осадочные каменноугольные толщи. Они сгруппированы в две параллельные цепочки меридионального простирания: западную и восточную. Магнитогорскую зону традиционно считают девонской островной дугой, в пределах которой в раннем карбоне формировалась рифтогенная бимодальная вулканическая серия. Плутонические образования каменноугольного возраста — главным образом породы умеренно-щелочного состава. Щелочные гранитоилы в пределах Магнитогорской зоны представлены исключительно малочекинским комплексом, это вызывает к нему особый интерес, что обусловлено редкоземельной металлогенической специализацией комплекса. Пока об этих щелочных породах известно мало. Геологию массивов и петрографию пород изучали главным образом во время крупномасштабных геологических съемок (Г.И. Чайко и др., 1958, 1974 и др.), а геохимию — при тематических работах [Червяковский, 1981], в настоящее время эти материалы существенно устарели. Данные К-Аг-изотопии давали существенный разброс датировок (сводка А.И. Степанова, 1982 г.), поэтому возраст щелочных пород разные исследователи трактовали в диапазоне от раннего карбона до поздней перми. Основные задачи наших исследований можно сформулировать следующим образом: 1) возможность объединить все массивы щелочных пород в единый плутонический комплекс; 2) сравнительная характеристика массивов западной и восточной ветвей; 3) оценка состава источника магм.

Методика изучения. Состав пород изучен при проведении работ по подготовке к изданию листа Государственной геологической карты масштаба 1:200 000. Силикатный анализ методом «мокрой химии» проводили в лаборатории ИМ УрО РАН (г. Миасс), анализ на редкие, рассеянные и редкоземельные элементы выполняли в ЦАЛ ВСЕГЕИ (Санкт-Петербург) по специально разработанной методике. Она основана на разложении проб сплавлением и полном растворении пробы в плавне (флюс — метаборат лития), а затем в переведении образующейся смеси твердых комплексных оксидов в раствор азотной кислотой. Способ хорошо сочетается с атомно-эмиссионным и масс-спектрометрическим методами с индуктивносвязанной плазмой (ИСП), так как допускаются сравнительно низкие отношения плавня к пробе (4:1 и менее). Анализ подготовленных растворов про-

¹ Московский государственный университет имени М.В. Ломоносова, геологический факультет, кафедра региональной геологии и истории Земли, аспирантка, *e-mail:* maria furina@mail.ru

² Московский государственный университет имени М.В. Ломоносова, геологический факультет, кафедра региональной геологии и истории Земли, вед. науч. с., *e-mail:* atevelev@rambler.ru

³ Московский государственный университет имени М.В. Ломоносова, геологический факультет, кафедра региональной геологии и истории Земли, вед. науч. с., *e-mail*: foxalbit@rambler.ru

⁴ Московский государственный университет имени М.В. Ломоносова, геологический факультет, кафедра региональной геологии и истории Земли, ассистент, *e-mail:* npravikova@mail.ru

⁵ Работа выполнена при финансовой поддержке гранта «Научные школы».

водят методом масс-спектрометрии с индуктивносвязанной плазмой на приборе «ELAN-6100 DRC» с использованием компьютерной программы обработки данных TOTALQUANT, включающей автоматический учет изотопных и молекулярных наложений на масс-спектральные аналитические линии определяемых элементов. Использовался многоэлементный калибровочный раствор одной концентрации, что обусловлено широким динамическим диапазоном прибора — принцип линейности зависимости аналитического сигнала от концентрации определяемых элементов выполняется в пределах 8 порядков единиц концентрации.

Содержание элементов вычисляется автоматически путем сравнения сигналов элементов (массспектров) рабочей пробы и калибровочной смеси. Погрешность измерения составляет 3-10% для значений концентрации элементов, в 30-50 раз превышающих пределы обнаружения. Изотопный Rb-Sr- и Sm-Nd-анализы осуществляли в Центре изотопных исследований ВСЕГЕИ (Санкт-Петербург) на многоколлекторном масс-спектрометре «TRITON» (Thermo). Изотопный состав стандарта NIST 987: ⁸⁷Sr/⁸⁶Sr=0,710232±0,000010. Изотопный состав стандарта JNdi-1: ¹⁴³Nd/¹⁴⁴Nd=0,512104±0,000002. Погрешности (2 σ) приведены в табл. 1.

Описание массивов щелочных пород. Малочекинский комплекс слагает пять относительно крупных массивов в Восточно-Магнитогорской зоне Южного Урала: Чекинский, Богдановский, Малочекинский, гор Длинная и Кудрявая, а также их сателлиты [Тевелев и др., 2008]. Интрузивы расположены в виде двух параллельных цепочек меридионального простирания и приурочены к двум региональным взбросо-сдвигам. Западная ветвь — Чекинский и Богдановский массивы, восточная ветвь — Малочекинский массив, массивы гор Длинной и Кудрявой (рис. 1). В плане интрузивы имеют схожую морфологию, вытянуты конформно вмещающим породам каменноугольного возраста. Размеры тел от мелких (1×2 км) до относительно крупных (4×7 км). Восточные контакты массивов, как правило, тектонические, сопровождаются мощными зонами рассланцевания и катаклаза, а западные — преимущественно интрузивные с широкими зонами роговиков. Триасовый возраст гранитоидов установлен Rb-Sr изохронным методом и составляет 237 млн лет [Тевелев и др., 2008]. Малочекинский комплекс сложен породами трех интрузивных фаз. К первой фазе относятся монцодиориты, ко второй — щелочные сиениты, а к третьей — щелочные граносиениты и шелочные граниты.

Щелочные породы малочекинского комплекса петрографически достаточно однородны. Все они содержат шелочные амфиболы ряда арфведсонит рибекит — феррорихтерит и/или шелочные пироксены ряда эгирин — геденбергит, а также большое количество акцессорных (апатит, монацит, ксенотим, циркон, сфен) и рудных (магнетит и ильменит) минералов. Количество шелочных темноцветных минералов варьирует в широких пределах — от нескольких процентов до 20–25%.

Щелочным породам малочекинского комплекса свойственно ярко выраженное бимодальное распределение по кремнекислотности (табл. 2), причем

Таблица 1

Номер образца	Rb, r/t	±2σ, %	Sr, r/t	±2σ, %	⁸⁷ Rb/ ⁸⁶ Sr	±2σ, %	⁸⁷ Sr/ ⁸⁶ Sr	±20, %
9721 wr	67,14	0,401	162,3	0,071	1,19680	0,426	0,708604	0,000006
9721 sr+ab	36,52	0,372	170,5	0,086	0,61956	0,397	0,706898	0,000015
9721 ab+sr	86,92	0,415	138,5	0,096	1,81658	0,436	0,710671	0,000010
9721 amf	14,56	0,371	15,74	0,095	2,67703	0,392	0,713390	0,00008
9722 wr	37,82	0,393	19,52	0,074	5,61335	0,420	0,722826	0,000027
9722 sr	5,664	0,379	31,70	0,063	0,51697	0,406	0,706510	0,000005
9722 ab+sr	7,311	0,373	46,50	0,071	0,45485	0,399	0,706303	0,000012
9722 amf	9,577	0,403	150,7	0,141	0,18378	0,410	0,705270	0,000005
9723 wr	80,91	0,432	22,82	0,066	10,29107	0,455	0,739427	0,000007
9723 sr	34,04	0,369	14,15	0,070	6,98130	0,395	0,728699	0,000010
9723 sr	175,4	0,510	25,08	0,073	20,41386	0,529	0,772596	0,000013
9723 amf	12,07	0,373	61,80	0,100	0,56496	0,393	0,707770	0,000005
9791 wr	54,15	0,431	20,69	0,064	7,58351	0,455	0,730429	0,000011
9791 sr	35,25	0,371	35,65	0,080	2,86393	0,395	0,714949	0,000006
9791 sr	3,223	0,408	4,329	0,075	2,15489	0,431	0,712881	0,000010
9791 amf	5,415	0,403	78,35	0,136	0,19996	0,412	0,706278	0,000016
9792 wr	14,10	0,362	79,49	0,067	0,51330	0,390	0,706588	0,000004
9792 sr+ab	7,063	0,377	27,26	0,088	0,74987	0,400	0,707357	0,000016
9792 sr	4,750	0,386	13,64	0,073	1,00765	0,411	0,708047	0,000020
9792 amf	0,223	0,467	25,04	0,118	0,02575	0,480	0,704741	0,000006

Измеренные параметры Rb-Sr-изотопной системы (Чекинский массив)

Рис. 1. Схема расположения массивов малочекинского комплекса. Цифры в кружках — массивы: 1, 2 — западная ветвь (1 — Чекинский, 2 — Богдановский); 3–5 — восточная ветвь (3 — горы Кудрявой, 4 — горы Длинной, 5 — Малочекинский). Разломы, контролирующие размещение массивов: К — Карабулакско-Богдановский, М — Малочекинский

Рис. 2. Классификационная диаграмма ТАЅ [Классификация..., 1997]. Массивы: 1 — Грязнушинский (сателлит Чекинского массива), 2 — Чекинский, 3 — Богдановский, 4 — горы Кудрявой, 5 — горы Длинной, 6 — Малочекинский. Поля на диаграмме: 1 — кварцевый сиенит; 2 — щелочной сиенит, сиенит; 3 — тешенит, шонкинит; 4 — субщелочные габброиды; 5 — монцодиорит, монцонит, субщелочной диорит; 6 — кварцевый монцодиорит, субщелочной кварцевый диорит; 7 — шелочной гранит; 8 лейкогранит, шелочной лейкогранит; 9 — габбро; 10 — диорит; 11 — кварцевый диорит; 12 — гранодиорит, тоналит; 13 — гранит, плагиогранит, низкощелочной гранит

максимумы соответствуют последним фазам внедрения (60-68% — вторая фаза, 66-74% — третья фаза). Распределение щелочей в целом асимметричное, смещенное в сторону высокощелочных разностей в основном за счет повышенного содержания калия. В гранитоидах отмечается высокое содержание щелочей, причем содержание K_2O с ростом кислотности увеличивается, а Na_2O — уменьшается. На классификационной диаграмме TAS [Классификация..., 1997] практически все фигуративные точки составов попадают в область пород повышенной щелочности (рис. 2).

В целом для комплекса характерно невысокое содержание титана и кальция, высокое — железа и глинозема (рис. 3). На большинстве диаграмм довольно четко выделяются группы пород, соответствующие фазам внедрения (рис. 2, 3). Первая отвечает монцодиоритам; вторая щелочным сиенитам, а третья — щелочным граносиенитам и щелочным гранитам.

Графики распределения нормированных значений концентрации РЗЭ (рис. 4) в породах различных массивов схожи и характеризуются неглубокими европиевыми минимумами и очень пологим трендом, который связан с высокой концентрацией тяжелых РЗЭ (табл. 3).

Спайдерграммы (рис. 5) щелочных пород всех массивов сходны.

В целом конфигурация спайдерграмм нормированных значений содержания рассеянных элементов с большими ионными радиусами и легких лантаноидов для щелочных гранитоидов примерно повторяет график для верхней коры, однако концентрация высокозарядных элементов и тяжелых РЗЭ их существенно превышает. Практически для всех пород характерны слабо выраженный ниобиевый минимум, слегка повышенные значения концентрации тория и резкое обеднение стронцием (табл. 4).

Изотопные исследования (табл. 1) проводились по валовому составу пород (wr) и по отдельным минералам: щелочному амфиболу (amf), плагиоклазу (ab), а также по неразделимым тончайшим сросткам кварца и плагиоклаза (sr). Попытки изучения изотопии калиево-натриевого полевого шпата не дали достоверных результатов из-за трудностей очистки и ураганного содержания рубидия.

Обсуждение материалов. Распределение петрогенных и рассеянных элементов в щелочных породах малочекинского комплекса подчеркивает особенности их минералогического состава в разных ареалах распространения. Так, в породах Чекинского и Богдановского массивов (западный ареал) отношение плагиоклаза и калиево-натриевого полевого шпата несколько выше, чем в породах массивов восточного ареала, что и отражается в содержании оксидов кальСодержания оксидов (мас.%) в породах Чекинского массива

Таблица 2

Номер образца	Фаза	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O
1103	I	60.27	1 27	16.13	3 53	2 58	0.14	1 97	4 70	6 97	2 45
2140	1	61.46	1,27	16.63	3,52	2,56	0.14	1,97	3.61	6.93	1.77
2157	II	61,92	1,26	17,07	3,11	2,37	0,24	1,77	2,82	6,44	3,00
1098		62,08	1,12	15,92	2,77	2,76	0,14	1,74	3,71	6,61	3,15
1004/3		62,38	1,32	14,38	2,54	3,64	0,15	1,93	3,99	8,11	1,56
3622		62,98	1,22	16,62	2,76	2,71	0,14	1,95	3,56	5,56	2,08
2187		63,30	1,14	15,77	2,81	2,97	0,18	1,62	3,19	6,17	2,84
2188		64,17	0,96	15,60	2,74	2,42	0,14	1,52	3,11	6,30	3,01
1018		64,54	0,94	15,52	2,71	2,21	0,09	1,08	2,07	7,93	2,91
3618		64,74	1,05	15,93	2,37	2,85	0,13	1,42	3,13	5,80	2,28
9721		64,87	1,29	15,38	2,09	3,01	0,13	1,55	3,05	5,74	2,42
2024/3		64,83	1,12	15,45	3,72	2,14	0,13	1,64	1,88	6,90	2,19
807		65,07	0,72	16,62	5,21	3,89	0,25	1,08	1,79	4,88	0,50
2(1)		65,57	1,24	14,37	2,31	2,56	0,19	1,02	0,88	7,10	1,46
3613		66.06	0,90	13,17	5.75	2,08	0,15	0.81	1.22	7,50	2,37
1037		66.16	0,97	14 40	3.08	3 15	0.14	1.01	2 41	6.21	2,21
3625		66 53	0.94	15 38	2.88	1.92	0.10	1 35	2,41	5.63	2,77
9934		67.06	0.68	13,30	2.98	4.08	0.29	0.26	0.66	7,53	3.03
1439	III	68.40	0.69	11.48	4.01	4.23	0.37	0.61	0.70	5.01	4.52
9055/1		68,60	0,56	14,53	3,45	1,90	0,11	0,23	0,76	6,47	3,37
9792		69,62	0,39	13,74	3,30	1,91	0,22	0,65	1,86	6,54	1,62
2137		70,50	0,56	14,00	1,93	1,80	0,09	0,75	1,51	5,28	3,58
1109		70,55	0,39	14,09	2,30	1,58	0,16	0,39	0,58	6,04	3,92
1097		70,63	0,48	14,46	1,40	1,87	0,10	0,46	0,97	5,89	3,73
2180		70,81	0,42	14,36	2,46	1,24	0,12	0,30	0,64	5,68	3,97
2002		71,01	0,34	14,77	1,09	1,32	0,07	0,44	1,38	4,54	5,03
3621		71,02	0,46	14,18	1,95	1,76	0,10	0,58	0,84	5,90	3,16
1036		71,04	0,32	14,38	2,65	1,38	0,12	0,29	0,84	5,46	3,52
2185		71,07	0,42	14,20	2,06	1,48	0,11	0,34	0,86	5,04	4,41
1014		71,55	0.41	12,09	2,08	1,37	0,14	0,28	1.17	5,09	2.03
3619		71,62	0.43	13.98	2.02	1,45	0.12	0.32	0.79	5.68	3 31
9791		72.13	0.30	13,90	1.88	1,03	0.08	0.20	1.05	5,49	3.62
1019		72.00	0.33	13.91	1.94	1,18	0.04	0.30	0.75	5.23	4.32
2159		72,01	0,42	12,77	3,30	1,55	0,18	0,34	0,64	5,33	3,45
9722		72,27	0,32	12,78	3,32	1,20	0,13	0,18	0,90	5,37	3,42
9723		72,46	0,44	12,67	2,07	1,90	0,10	0,44	0,87	5,11	3,80
1132		72,14	0,26	12,41	1,90	1,69	0,11	0,40	1,53	5,37	4,19
2135		72,32	0,42	10,54	5,70	0,65	0,16	0,27	0,54	5,39	4,00
808		72,44	0,24	15,24	1,93	1,91	0,12	0,10	0,59	5,75	1,68
3617		72,74	0,50	10,36	5,41	0,85	0,08	0,42	0,84	5,06	3,68
1128		72,50	0,29	12,24	2,26	1,32	0,09	0,44	1,86	5,16	3,83
1114		72,73	0,26	13,69	1,55	0,93	0,07	0,22	0,72	5,69	4,15
2003		72,73	0,32	14,44	0,92	1,32	0.14	0,40	0.60	4,33	4,40
2150		72,85	0,40	12.15	3.05	1,93	0.14	0.38	0,09	5 22	3 74
2130		73.12	0.38	13.16	1.84	1,52	0.12	0.28	0,74	5.12	3 76
3611		73.26	0.30	13,10	2.08	0.72	0.04	0.78	1.71	5.06	2.95
3624		73,35	0,44	12,42	2,67	1,43	0,09	0,74	0,91	4,74	3,17
2148		73,39	0,35	12,34	2,48	1,68	0,12	0,30	0,46	4,89	3,98
1090		73,44	0,44	11,05	4,24	1,19	0,12	0,28	0,50	4,90	3,83
2179		73,50	0,34	12,80	2,23	1,56	0,10	0,36	0,46	5,16	3,49
3620		73,67	0,38	12,42	2,15	1,65	0,08	0,61	0,94	4,28	3,78
1006		73,81	0,37	13,08	1,68	2,04	0,12	0,24	0,66	5,02	2,97
841		74,60	0,32	12,22	2,21	1,54	0,00	0,29	0,47	4,21	4,13
3614		74,88	0,41	10,03	4,30	1,85	0,12	0,38		4,00	3,28
2095		75,07	0,35	10,87	4,00	2,01	0,08	0,35	0,75	3,91	2,61
109//1		75 31	0.36	12.83	2,95	1,/4	0.04	0.30	1 1 2	4,12	4,22
5027		10.01	00	12.00	U./7	U.14	U.UH	0	1.14	1.07	1

Т	а	б	л	И	ц	а	3
---	---	---	---	---	---	---	---

												1			
Номер образца	Фаза	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
9721	II	38,84	69,17	11,70	51,71	11,79	2,97	12,50	1,94	12,57	2,59	7,29	1,05	6,78	1,00
9791]	34,57	81,62	14,20	57,18	12,95	1,99	13,82	2,40	16,54	3,60	11,05	1,70	11,63	1,77
9792]	38,74	68,57	12,39	53,24	12,58	2,60	13,78	2,33	15,92	3,33	9,64	1,38	9,07	1,29
1103]	35,60	79,50	11,30	45,60	11,00	2,95	11,70	1,83	11,70	2,53	7,38	1,04	6,41	1,09
2188]	34,20	81,30	10,50	43,70	9,65	2,62	10,80	1,83	11,30	2,28	7,08	1,09	6,54	1,01
2137]	33,80	64,50	8,61	32,30	7,18	1,54	7,74	1,32	8,81	2,07	5,61	0,83	5,85	0,89
1097]	62,70	86,00	15,50	62,90	14,50	2,82	17,20	3,04	20,60	4,52	14,00	1,92	12,60	1,85
2185]	29,70	69,90	9,24	37,70	9,20	1,88	10,80	2,00	13,60	2,93	9,81	1,54	9,37	1,50
2179]	54,70	105,00	14,50	57,10	12,80	1,41	13,80	2,53	17,20	3,72	11,90	1,92	13,50	2,05
2184		56,50	116,00	15,10	56,90	12,50	2,11	14,30	2,44	16,70	3,56	11,60	1,78	11,60	1,78
2140	III	24,90	68,90	8,00	36,00	8,30	2,63	9,71	1,61	9,83	2,05	6,42	0,87	5,89	0,82
2157]	52,30	112,00	14,80	62,60	12,50	3,95	12,90	2,07	12,10	2,43	7,38	1,07	7,11	1,15
1090		86,00	200,00	24,90	96,90	23,40	4,04	26,40	4,50	30,00	6,61	21,70	3,22	21,10	3,19
9722		46,30	117,75	18,01	73,82	17,21	3,42	18,24	3,23	22,43	4,76	13,90	2,06	13,00	1,85
1132	-	43,60	104,00	11,90	45,30	10,20	1,67	12,30	2,16	15,50	3,48	10,80	1,71	11,90	1,77
2148		63,70	124,00	13,50	48,80	9,11	1,44	10,00	1,67	10,80	2,47	8,40	1,24	8,74	1,34
1128		45,30	101,00	12,50	46,70	11,00	1,73	11,90	2,11	15,60	3,47	10,10	1,61	11,20	1,77
2135		65,20	144,00	20,00	78,00	18,90	3,32	21,40	4,01	25,80	5,93	18,30	2,77	18,20	2,70
1109		58,70	126,00	15,90	60,10	13,70	2,50	14,70	2,43	16,00	3,30	10,50	1,57	10,90	1,66

(Fe₂O₃+FeO)/(Fe₂O₃+FeO+Mg)

Содержание РЗЭ (г/т) в породах Чекинского массива

Примечание. Пределы обнаружения Sm, Eu, Tb, Ho, Tm, Lu – 0,005 г/т, остальных элементов – 0,01 г/т.

Рис. 3. Диаграммы соотношения оксидов для гранитоидов малочекинского комплекса, римскими цифрами обозначены фазы внедрения. Условные обозначения см. на рис. 2

Рис. 4. Распределение РЗЭ для гранитоидов малочекинского комплекса. Нормировано по хондриту С₁ [Sun, McDonough, 1989]. Римскими цифрами обозначены массивы: І — Чекинский, II — Богдановский, III — горы Длинной, IV горы Кудрявой. Составы пород: 1 — щелочной сиенит; 2 — щелочной граносиенит; 3 — щелочной гранит

Рис. 5. Спайдерграммы для гранитоидов малочекинского комплекса. Нормировано по среднему тоналиту [Sun, McDonough, 1989]. Римскими цифрами обозначены массивы (см. рис. 4). Составы пород: 1 — щелочной сиенит; 2 — щелочной граносиенит; 3 — щелочной гранит. Средние составы: 4 — нижняя кора, 5 — верхняя кора, по [Sun, McDonough, 1989]

ция и калия. Различия в составе пород достаточно хорошо выражены на уровне именно петрогенных элементов и менее заметны в распределении рассеянных элементов. Породы западной и восточной ветвей достаточно хорошо различаются по нескольким петрохимическим характеристикам, причем эти различия особенно четко выражены для пород второй

Га	б	π	ы	т	9	1	
1			и		- 21	4	

Номер образца	Фаза	Rb	Sr	Ba	Th	Zr	Nb	Y
9721	Π	77,19	221,18	447,39	9,91	195,58	13,84	51,89
9791		79,06	46,02	366,95	15,51	384,59	28,88	66,47
9792		20,26	171,62	387,97	9,18	198,33	20,64	59,54
1103		38,00	148,00	258,00	5,06	403,00	14,80	66,30
2188		81,90	165,00	639,00	8,47	476,00	14,70	67,80
2137		76,60	181,00	543,00	10,60	371,00	17,50	54,60
1097		72,30	47,10	403,00	12,60	771,00	30,10	139,00
2185		71,60	40,50	604,00	9,90	688,00	24,50	87,80
2179		62,40	12,00	261,00	14,30	936,00	31,30	108,00
2184		76,50	21,90	428,00	12,40	837,00	29,70	108,00
2140	III	29,30	142,00	250,00	4,62	354,00	15,40	58,30
2157		49,80	266,00	716,00	7,67	506,00	19,60	68,80
1090		86,40	20,50	—	23,90	1680,00	104,00	185,00
9722		53,56	50,25	497,76	15,07	505,54	34,51	93,68
1132		82,70	26,90	217,00	11,70	931,00	28,40	102,00
2148		88,90	20,80	296,00	8,93	626,00	21,00	68,20
1128		56,00	52,40	355,00	11,40	880,00	27,60	99,30
2135		89,40	15,30	366,00	15,00	1250,00	37,10	166,00
1109		73,50	36,70	446,00	10,10	759,00	27,40	94,60

Содержание редких элементов (г/т) в породах Чекинского массива

Примечание. Предел обнаружения Ва-0,5 г/т, остальных элементов — 0,1 г/т.

фазы внедрения. Во-первых, на востоке породы отчетливо более щелочные (рис. 2). Во-вторых, хотя все они относятся к К—Na типу щелочности, породы восточной ветви все-таки ближе к калиевому типу, а западной — к натриевому: фигуративные точки составов пород восточной ветви попадают в поля высококалиевой и частично шошонитовой серии, а западной ветви — в поля известково-щелочной и частично высококалиевой серии (рис. 6). В-третьих, в пределах восточной ветви породы существенно более железистые. Резким преобладанием калиевонатриевого полевого шпата над плагиоклазом объясняется глубокий стронциевый минимум на спайдерграммах практически всех пород.

Несмотря на очевидную близость химического состава пород всех массивов, Чекинский интрузив все же отличается аномально высокой концентрацией тяжелых РЗЭ. Суммарное содержание редких земель в породах часто превышает 300 г/т, иногда достигает 550 г/т. Выделяется Чекинский массив и существен-

Рис. 6. Составы пород малочекинского комплекса на классификационной диаграмме K₂O-SiO₂. Поля на диаграмме: I — низкокалиевая серия; II — известково-щелочная серия; III — высококалиевая серия; IV — шошонитовая серия. Условные обозначения см. на рис. 2

Рис. 7. Дискриминационные диаграммы Nb-Y, Rb-(Y+Nb) Дж. Пирса для гранитоидов (пунктирная линия — граница ORG для аномальных рифтов): поля на диаграммах: 1 — граниты океанических хребтов; 2 — внутриплитные граниты; 3 — граниты вулканических дуг; 4 — коллизионные граниты. Условные обозначения см. на рис. 2

ным циркониевым максимумом (табл. 4), связанным с большим количеством акцессорного циркона.

На дискриминационных диаграммах (рис. 7) фигуративные точки пород малочекинского комплекса целиком попадают в поле внутриплитных гранитов, что отличает их от умеренно-щелочных гранитоидов каменноугольного возраста.

Низкое начальное отношение 87 Sr/ 86 Sr, равное 0,70510 сочетается с обычным для гранитных пород мезозойского возраста начальным отношением 143 Nd/ 144 Nd = 0,512837. Двухстадийный модельный Nd-возраст источника щелочных гранитоидов малочекинского комплекса приходится на границу палеозоя и докембрия — 547 млн л.н.

Выводы. 1. По геохимическим особенностям четко разделяются западная и восточная ветви массивов щелочных пород. Породы восточной ветви относятся к высококалиевой и частично к шошонитовой сериям, а гранитоиды западной ветви — к высококалиевой

СПИСОК ЛИТЕРАТУРЫ

Классификация магматических (изверженных) пород и словарь терминов. М.: Недра, 1997. 246 с.

Тевелев Ал.В., Кошелева И.А., Фурина М.А., Беляцкий Б.В. Триасовая геодинамика Южного Урала в свете новых изотопных данных // Общие и региональные проблемы тектоники и геодинамики. Материалы XLI Тектонического совещания. Т. 2. М.: ГЕОС, 2008. С. 317–321.

Червяковский С.Г. Основные черты геохимической специализации щелочных гранитоидов Магнитогорского

и известково-щелочной сериям, последние отчетливо менее железисты.

2. Несмотря на выявленные различия в составе пород западной и восточной ветвей, все рассмотренные массивы щелочных пород Восточно-Магнитогорской зоны Южного Урала обладают несомненным сходством геологического строения, в том числе схожестью последовательности слагающих их фаз внедрения, а также минералогического и химического состава, что позволяет относить их к одному плутоническому комплексу.

3. Распределение петрогенных, редких и рассеянных элементов, а также изотопные данные свидетельствуют, что щелочные гранитоидные расплавы имели существенно обогащенный источник, который претерпел предварительную флюидную подготовку со значительным привносом калия и высокозарядных элементов.

мегаантиклинория // Редкие элементы в гранитоидах Урала. Свердловск: УНЦ АН СССР, 1981.

Sun S.-S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Magmatism in ocean basins / Geol. Soc. Spec. Publ. 1989. N 42.

Поступила в редакцию 15.09.2009