8

УДК 552.163

ВОЗРАСТ И ПАРАМЕТРЫ МЕТАМОРФИЗМА ГРАНУЛИТОВ КАПРАЛЬСКО-ДЖЕГЕССКОГО СИНКЛИНОРИЯ АНАБАРСКОГО ЩИТА

Л.Ю.СЕРГЕЕВА¹, А.В.БЕРЕЗИН², Н.И.ГУСЕВ¹, С.Г.СКУБЛОВ², А.Е.МЕЛЬНИК²

¹ Всероссийский научно-исследовательский геологический институт им. А.П.Карпинского, Санкт-Петербург, Россия ² Институт геологии и геохронологии докембрия Российской академии наук, Санкт-Петербург, Россия

В работе приводятся результаты комплексного изотопно-геохимического и термобарометрического исследования плагиокристаллосланцев верхнеанабарской серии Анабарского щита. Гранулитовые комплексы древних платформ являются важнейшим объектом исследований для решения фундаментальной проблемы происхождения и состава земной коры. Особый интерес представляют ранние этапы ее становления, которым соответствуют глубоко метаморфизованные породы фундамента платформ, доступные для изучения в пределах щитов. Исследование возраста и параметров метаморфизма гранулитов на примере верхнеанабарской серии позволяет уточнить этапы становления древней коры Анабарского щита.

Проведены изотопно-геохимическое (U-Pb, циркон и Sm-Nd, гранат-амфибол-WR) и термобарометрическое (Theriak-Domino) исследования плагиокристаллосланцев. В результате установлены два этапа палеопротерозойского метаморфизма на территории Анабарского щита с возрастом около 1997 и 1919 млн лет. Параметры пика гранулитового метаморфизма определены как 775 ± 35 °C и $7,5 \pm 0,7$ кбар, параметры рессивного этапа – 700 °C и 7 кбар. Можно предположить последовательность метаморфических преобразований породы: высокотермальный метаморфизм гранулитовой фации ($T \le 810$ °C) и последующее субизобарическое (около 7 кбар) остывание до 700 °C с повышением активности воды и формированием Grt-Amp парагенезиса, отвечающего области перехода из гранулитовой в амфиболитовую фацию. Данные по распределению REE и редких элементов в цирконе и породообразующих минералах, полученные с помощью ионного микрозонда, в значительной мере способствуют интерпретации результатов изотопно-геохимического исследования.

Ключевые слова: гранулиты, геохимия, U-Pb возраст, Анабарский щит

Как цитировать эту статью: Возраст и параметры метаморфизма гранулитов Капральско-Джегесского синклинория Анабарского щита / Л.Ю.Сергеева, А.В.Березин, Н.И.Гусев, С.Г.Скублов, А.Е.Мельник // Записки Горного института. 2018. Т. 229. С. 13-21. DOI: 10.25515/PMI.2018.1.13

Введение. Гранулитовые комплексы древних платформ являются важнейшим объектом исследований для решения фундаментальной проблемы происхождения и состава земной коры. Особый интерес представляют ранние этапы ее становления, которым соответствуют глубоко метаморфизованные породы фундамента платформ, доступные для изучения в пределах щитов. Анабарский щит является примером широкого распространения пород гранулитовой фации метаморфизма. Исследование возраста и параметров метаморфизма гранулитов на примере верхнеанабарской серии позволяет уточнить этапы становления древней коры Анабарского щита.

В настоящей работе приведены результаты комплексного изотопно-геохимического и термобарометрического исследования плагиокристаллосланцев верхнеанабарской серии.

Геологическое строение. На Анабарском щите Сибирской платформы наиболее крупные выходы архейских гранулитовых образований расположены в центральной части, где они залегают в субмеридианально вытянутых Далдынской и Джелиндинской глыбах. Для более изученной Далдынской глыбы отмечается, в целом, антиклинорное строение [2]. В ее осевой части, по выходам гранулитов далдынской серии, выделен Бекелехский антиклинорий, переходящий на западе в Котуйканский синклинорий, на востоке – в Капральско-Джегесский синклинорий (КДС), сложенные гранулитами верхнеанабарской серии. КДС прослеживается на протяжении более 200 км через весь Анабарский щит, на юге от истоков р. Джегес в северо-западном направлении до верховьев р. Котуйкан, далее на севере он скрывается под платформенным чехлом. Верхнеанабарская серия КДС имеет разнообразный состав, основной объем составляют гиперстеновые, двупироксеновые, биотит-роговобманковые плагиогнейсы и гнейсы. Присутствуют прослои высокоглиноземистых и известково-силикатных пород в сочетании с кварцитами, магнетитовыми кристаллосланцами, диоксид-скаполитовыми и графитсодержащими гнейсами. Наиболее мощные (600-800 м) и выдержанные по простиранию пачки приурочены к низам верхнеанабарской серии. В верхней половине разреза пачки парагнейсов наблюдаются реже и мощности их уменьшаются. Значительное место в разрезе верхнеанабарской серии занимают кристаллические сланцы основного состава, образующие линзовидные горизонты мощностью до 600 м. Завер-

Рис.1. Схема геологического строения правого борта р. Бол. Куонамка в районе ее притоков Куогастах и Джегес (по материалам [2] с дополнениями авторов)

1 – двупироксен-плагиоклазовые меланократовые гнейсы, реже кристаллосланцы; 2 – гранатовые, биотит-гранатовые, гиперстен-гранатовые гнейсы и плагиогнейсы; 3 – амфиболиты и амфиболовые кристаллосланцы; 4 – кварциты и кварцитосланцы; 5 – гранатсодержащие кристаллосланцы; 6 – аляскитовые граниты; 7 – точки отбора проб на изотопное датирование
На врезке показан контур Анабарского шита и ареалы гранулитов в его пределах: 1 – Далдынская глыба; 2 – Джелендинская глыба; 3 – ось Джегесского синклинория; 4 – изученный участок

шается разрез серии горизонтом биотит-роговобманковых плагиогнейсов с редкими пачками и прослоями парагнейсов. Горизонт приурочен к ядру Капральского-Джегесского синклинория и особенно хорошо прослеживается на междуречье рек Бол. Куонамка и Джегес. Именно эта ядерная часть синклинория была изучена нами по правому борту р. Бол. Куонамка от устья ее левого притока Куогастах вниз по течению примерно на протяжении 7 км до устья р. Джегес (рис.1).

Изученный участок отличается чрезвычайно однообразным составом слагающих его пород. Практически повсеместно преобладают темно-серые с коричневатым оттенком кварцсодержащие меланократовые двупироксен-плагиоклазовые кристаллосланцы с шлировой текстурой, иногда переходящие в неотчетливо линзовидно-полосчатые основные кристаллосланцы. В мигматизированных разностях отмечается грубая полосчатость, смятая в простые открытые складки, в замках которых присутствуют линзовидные обособления лейкосомы, представленной эндербитами (гиперстеновыми плагиогнейсами), также участвующими в складчатости. Характерны раздувы мощности эндербитовых обособлений в ядерных частях антиформных складок. Изредка встречаются гранатсодержащие разности кристаллосланцев с мелкими выделениями граната и агрегатами до 1,5 см в поперечнике, окруженные лейкократовым кварц-плагиоклазовым материалом, лишенным темноцветных минералов. Кроме того вытянутые зерна граната иногда включены в крупные выделения полисинтетически сдвойникованного плагиоклаза. В гранатсодержащих разностях кристаллосланцев клинопироксен исчезает и гранат сосуществует только с ортопироксеном. В породах повсеместно проявлена наложенная амфиболизация в виде обособленных выделений роговой обманки (коричневато-бурой в шлифах) размером от первых сантиметров до линзовидных обособлений амфиболитов, иногда до 1 м в поперечнике, сложенных среднекристаллической роговой обманкой и плагио-клазом в различном количестве, вплоть до его полного отсутствия. Роговая обманка замещает как пироксены, так и гранат.

По химическому составу основные гранулиты соответствуют магнезиальным и метаглиноземистым основным породам толеитовой серии, низко и умеренно калиевым ($K_2O - 0.36-0.87$ %, mg# 35-51; A/NK = 2.45-3.20; A/CNK = 0.69-0.92).

Методика исследования. Для детального изотопно-геохимического исследования был выбран гранат-ортопироксеновый плагиокристаллосланец верхнеанабарской серии Анабарского щита. Состав породообразующих минералов определен методом SEM-EDS в ИГГД РАН

(аналитик О.Л.Галанкина) на сканирующем электронном микроскопе JEOL JSM-6510LA с энергодисперсионной приставкой JED-2200.

Датирование циркона U-Pb методом проводилось в ЦИИ ВСЕГЕИ на ионном микрозонде SHRIMP-II по стандартным методикам. Содержание REE и редких элементов в цирконе и породообразующих минералах определялось на ионном микрозонде Cameca IMS-4f в ЯФ ФТИАН (аналитики С.Г.Симакин, Е.В.Потапов) по методикам, опубликованным в работах [4, 5, 9]. Циркон был проанализирован в точках, которые ранее были продатированы U-Pb методом. При построении спектров распределения REE состав циркона и породообразующих минералов нормировался на состав хондрита СІ [12]. Обозначения минералов приведены по работе [18].

Результаты исследования.

Состав минералов. Гранат-ортопироксеновый плагиокристаллосланец (обр. 174) сложен Pl (53 %), Amp (32 %), Opx (10 %), Grt (4 %). Плагиоклаз, представленный гипидиоморфными зернами до 0,5 мм в диаметре, по составу отвечает андезину с максимальным содержанием анортитового компонента 43 %. Все зерна калиевого полевого шпата, приуроченные к границам более мелких (до 0,2 мм) зерен плагиоклаза, содержат около 5 % альбитового компонента.

Ортопироксен представлен идиоморфными зернами размером до 0,5 мм и по составу соответствует смеси ферросилитового и энстатитового миналов в равных соотношениях с незначительным присутствием волластонитового компонента. Содержание Al в ортопироксене не превышает 0,1 ф.е. Клинопироксен с магнезиальностью не более 0,6 практически всегда ассоциирует с ортопироксеном и содержит не более 6 % жадеитового компонента.

Гранат в породе представлен мономинеральным ксеноморфным агрегатом, вероятно заполняющим ослабленную зону (трещину) мощностью до 1 мм, а также единичными зернами, развивающимися в плагиоклазовой матрице совместно с амфиболом. Гранат характеризуется пиропгроссуляр-альмандиновым составом с Alm компонентой около 60 % и с повышенным содержанием Sps компонента – 4 %, что

Рис.2. Спектры распределения REE в гранатах (*a*), пироксенах (б) и амфиболах (*в*) из гранат-ортопироксенового плагиокристаллосланца (обр.174) Номера точек соответствуют табл.1

свидетельствует о его формировании на ретроградной стадии метаморфизма. В гранате Grs компонент (17-19%) преобладает над Ру (14-17%). Кристаллы граната в целом гомогенны по распределению CaO, FeO, MnO и MgO. Наблюдается лишь незначительное падение содержания MnO от центра к краям. Зональность данного типа, как правило, характерна для гранатов из высокометаморфических комплексов [1]. Эту зональность считают ретроградной и связывают ее образование с проявлением диафтореза.

Амфибол, замещающий пироксены, характеризуется магнезиальностью около 0,5, относится к кальциевой группе и может быть представлен как смесь 70 % паргаситового, 20 % феррочермакитового и 10 % глаукофанового компонентов. Амфиболы данного состава характерны для амфиболитовой фации метаморфизма, чему не противоречит его парагенезис с гранатом, богатым альмандиновым миналом.

REE в минералах. Графики распределения REE в гранатах из плагиокристаллосланца демонстрируют типичное для граната обогащение в области HREE. Спектры дифференцированы с резким увеличением содержания REE от La к Lu и с присутствием Eu-минимума (Eu/Eu^{*} = 0,63) (рис.2, *a*). В гранатах отсутствует зональность по легким и средним редким землям, но при этом наблюдается повышение содержания HREE от центра к краю зерна.

Распределение REE в ортопироксенах слабо дифференцированное (рис.2, δ). Суммарное содержание REE не превышает 1 ppm. Величина Еu-аномалии в них варьирует вплоть до исчезновения аномалии (Eu/Eu^{*} = 0,51-1,01).

Для амфибола установлены дифференцированные спектры распределения REE $((La/Yb)_N = 5,19-7,59)$ с уменьшением содержания редкоземельных элементов от легких к тяжелым (рис.2, в). Присутствует умеренная отрицательная Eu-аномалия (Eu/Eu^{*} = 0,57-0,71). Амфибол характеризуется повышенными содержаниями Ti (17997-20704 ppm), V (495-700 ppm), Zr (127-172 ppm) (табл.1). Суммарное содержание REE составляет 334-371 ppm с преобладанием вклада LREE (291-327 ppm).

Таблица 1

		Гран	аты		Ортопироксены				Амфиболы			
Компонент	22 центр	23 край	28 край	29 край	26	27	32	33	24	25	30	31
SiO ₂	37,6	38,0	37,7	38,3	51,0	50,8	50,0	50,7	42,1	41,8	42,6	42,0
TiO ₂	-	-	-	-	-	-	_	-	2,59	2,40	2,99	2,81
Al_2O_3	21,9	21,5	21,4	20,8	0,76	1,32	1,28	1,14	13,0	13,2	12,4	12,4
FeO	27,7	27,9	28,5	28,1	30,1	29,9	31,0	30,8	17,9	18,2	17,8	18,9
MnO	1,65	2,03	2,18	1,87	0,71	0,73	0,71	0,69	0,32	0,18	-	0,27
MgO	4,15	3,81	3,99	4,25	16,9	16,8	16,6	16,0	9,29	9,14	9,23	9,29
CaO	6,92	6,80	6,25	6,65	0,47	0,48	0,46	0,60	11,5	11,9	11,6	11,1
Na ₂ O	-	-	-	-	-	-	-	-	1,79	1,67	1,88	1,63
K ₂ O	-	_	_	_	-	_	_	-	1,59	1,55	1,58	1,49
La	0,02	0,05	0,05	0,02	0,02	0,01	0,08	0,02	33,4	36,7	37,9	35,7
Ce	0,29	0,19	0,22	0,19	0,08	0,05	0,06	0,04	109	125	126	122
Pr	0,15	0,11	0,10	0,11	0,01	0,01	0,01	0,01	19,3	21,4	21,8	21,2
Nd	2,78	1,73	2,02	2,29	0,04	0,05	0,09	0,05	102	113	113	107
Sm	3,73	3,33	3,36	3,47	0,04	0,05	0,05	0,04	23,3	24,2	24,1	23,7
Eu	1,42	1,13	1,19	1,24	0,01	0,01	0,01	0,01	4,13	4,20	4,32	4,64
Gd	10,8	9,62	10,3	10,9	0,05	0,04	0,03	0,05	21,1	20,1	18,2	16,7
Dy	21,1	24,1	29,3	26,6	0,09	0,09	0,08	0,08	12,6	13,4	15,1	14,8
Er	18,5	28,1	39,6	28,9	0,08	0,08	0,14	0,10	4,99	6,28	5,94	5,51
Yb	25,6	45,0	66,8	43,9	0,22	0,25	0,31	0,33	2,99	4,80	4,01	4,29
Lu	3,57	6,00	8,99	5,91	0,03	0,05	0,04	0,04	0,87	1,03	0,97	0,87
Ti	508	248	292	354	487	619	515	596	17997	18248	20704	20302
V	120	121	113	123	57,9	83,3	68,9	77,3	658	700	518	495

Содержание петрогенных (мас. %), редких и редкоземельных элементов (ppm) в гранатах, ортопироксенах и амфиболах из плагиокристаллосланца (обр.174)

Окончание	табл. 1	I
Onon nume	140.1.1	Ļ

	Гранаты				Ортопироксены				Амфиболы			
Компонент	22 центр	23 край	28 край	29 край	26	27	32	33	24	25	30	31
Cr	49,5	44,5	68,4	75,9	151	156	146	150	147	161	152	133
Sr	0,38	0,54	0,31	0,28	0,50	0,26	0,57	0,25	141	185	189	211
Y	177	227	288	238	0,59	0,60	0,79	0,82	50,9	61,8	61,4	61,0
Zr	21,8	13,0	15,4	16,6	2,44	4,13	2,53	2,88	127	172	156	171
Nb	0,05	0,04	0,04	0,02	0,03	0,04	0,04	0,04	23,3	25,7	28,9	28,1
Hf	7,05	8,20	9,19	8,00	0,08	0,08	0,12	0,10	7,58	8,98	8,51	8,28
Eu/Eu*	0,68	0,61	0,62	0,61	0,86	0,51	1,01	0,66	0,57	0,58	0,63	0,71
(La/Yb) _N	0,0006	0,0007	0,0005	0,0004	0,06	0,03	0,17	0,04	7,59	5,19	6,42	5,65
(Sm/Nd) _N	4,14	5,96	5,12	4,67	2,53	3,11	1,85	2,50	0,71	0,66	0,66	0,68
(Yb/La) _N	1814	1405	1831	2805	15,6	32,4	5,75	25,1	0,13	0,19	0,16	0,18
∑REE	88,0	119	162	124	0,67	0,68	0,92	0,77	334	370	371	357
∑HREE	79,6	113	155	116	0,47	0,51	0,60	0,60	42,6	45,6	44,1	42,1
∑LREE	8,40	6,54	6,95	7,33	0,20	0,17	0,31	0,18	291	324	327	314

Примечание. Прочерк - содержание элемента ниже порога определения

Sm-Nd изотопные данные. Sm-Nd системы вала породы и монофракций минералов (граната, клинопироксена и амфибола) анализировались с применением метода изотопного разбавления (TIMS) для определения концентраций Sm и Nd (погрешность определения составляет $\pm 0,5$ %) на мультиколлекторном масс-спектрометре TRITON в ИГГД РАН. Для проведения анализа с применением тяжелых жидкостей были выделены монофракции минералов, далее они были дочищены вручную под бинокулярным микроскопом (по ~100 мг граната, клинопироксена и амфибола).

Нередко в гранатах в виде включений находятся минералы с низким Sm/Nd отношением (апатит, монацит и другие), присутствие которых значительно искажает результаты Sm-Nd датирования [15]. Поэтому при селективном растворении возможных включений, имеющих низкое Sm/Nd отношение, для монофракций граната использовался метод сернокислотного выщелачивания, который включает в себя обработку истертых в агатовой ступке кристаллов (зерен) граната в течение 24-25 ч концентрированной (96 %) H₂SO₄ при температуре 180 °C [6]. Применение

данного метода для обработки гранатов позволяет значительно увеличить диапазон вариации отношения ¹⁴⁷Sm/¹⁴⁴Nd и, значит, точность датирования [3]. Построение изохрон, а также вычисление возраста исследованного образца производились в программе К.Людвига Isoplot [11].

В результате датирования Sm-Nd методом гранат-ортопироксеновых плагиокристаллосланцев (обр.174) с применением сернокислотного выщелачивания получена трехточечная изохрона (WR, Amp, Grt) с возрастом 1919 \pm 13 млн лет (СКВО = 0,75, рис.3). Добавление в расчет изохронного возраста изотопных данных для ортопироксена практически не влияет на значение Sm-Nd возраста (1914 \pm 49 млн лет), но повышает величину СКВО до значения 13.

U-Pb возраст метаморфизма и геохимия циркона. Циркон из гранат-орто-

Рис.3. Sm-Nd изохронная диаграмма для гранатортопироксенового плагиокристаллосланца (обр.174) WR – порода (вал); Amp – амфибол; Grt (H) – гранат после процедуры сернокислотного выщелачивания **Л.Ю.Сергеева, А.В.Березин, Н.И.Гусев, С.Г.Скублов, А.Е.Мельник** Возраст и параметры метаморфизма гранулитов...

Рис.4. СL изображения (*a*) и график с конкордией (*б*) для циркона из гранат-ортопироксенового плагиокристаллосланца. Размеры эллипсов в интервале 2σ

пироксенового кристаллосланца (обр.174) представлен зернами со сглаженными ребрами, серыми и темно-серыми в катодолюминесценции (CL) с коэффициентом удлинения 1,3-2,7. В цирконе преобладает секториальная зональность, также присутствует затушеванная тонкополосчатая ростовая зональность (рис.4).

В результате датирования циркона U-Pb методом (10 измерений) был получен конкордантный возраст 1997±10 млн лет (рис.4). Циркон палеопротерозойского возраста характеризуется низким и средним содержанием U (106-394 ppm) и низким Th (в среднем 66 ppm), величина Th/U отношения составляет в среднем 0,31 (табл.2).

Таблица 2

Компонент	Номера точек анализа (рис.4, а)											
Romitoreri	1,1	2,1	3,1	4,1	5,1	7,1	8,1	9,1	10,1			
La	0,03	0,08	0,80	0,15	1,01	0,08	0,04	0,13	1,11			
Ce	2,33	10,5	9,45	4,26	8,10	6,78	5,16	7,52	13,8			
Pr	0,01	0,21	0,51	0,10	0,75	0,35	0,06	0,39	0,32			
Nd	0,07	2,71	4,18	0,79	4,21	4,44	0,70	5,02	2,55			
Sm	0,15	2,88	3,90	1,27	1,29	5,88	1,13	5,95	3,06			
Eu	0,04	0,91	1,11	0,34	0,58	1,53	0,38	1,51	0,86			
Gd	1,28	13,7	17,4	6,05	4,19	23,8	5,32	26,1	14,7			
Dy	6,37	54,2	68,4	24,5	15,3	79,2	23,6	90,8	78,0			
Er	23,2	147	178	64,8	46,3	179	79,2	206	264			
Yb	77,9	398	406	167	129	372	250	430	614			
Lu	17,1	76,6	72,7	31,8	26,8	67,6	54,0	77,8	116			
Li	5,23	2,40	2,63	0,79	4,45	0,39	3,46	0,70	3,58			
Р	22,6	105	191	61,2	75,7	166	72,3	89,0	512			
Ca	0,16	0,39	13,1	0,94	24,0	0,52	1,27	1,03	311			
Ti	13,3	11,7	8,44	14,0	7,65	9,69	11,6	14,5	10,3			
Sr	0,08	0,27	0,67	0,19	0,82	0,41	0,33	0,33	1,81			
Y	121	954	1026	371	260	1056	433	1161	1383			
Nb	145	122	84,7	73,7	95,2	66,3	47,6	46,1	41,1			
Ba	1,35	0,97	1,69	1,02	2,30	1,55	0,54	0,82	0,60			
Hf	7450	8697	6873	6820	8925	6362	7142	7119	6768			
Th	19,2	194	118	29,6	42,3	97,2	64,7	120	163			
U	376	743	426	136	328	266	378	329	668			

Содержание редких и редкоземельных элементов (ppm) в цирконе из гранат-ортопироксенового плагиокристаллосланца (обр.174)

Окончание	табл 2
Окончание	140.1.2

Компонент	Номера точек анализа (рис.4, а)											
	1,1	2,1	3,1	4,1	5,1	7,1	8,1	9,1	10,1			
Th/U	0,05	0,26	0,28	0,22	0,13	0,37	0,17	0,37	0,24			
Eu/Eu*	0,30	0,44	0,41	0,38	0,76	0,39	0,47	0,37	0,39			
Ce/Ce*	28,1	19,8	3,57	8,20	2,26	10,0	25,7	8,17	5,60			
ΣREE	129	707	762	301	237	740	419	852	1109			
ΣLREE	2,44	13,5	14,9	5,30	14,1	11,7	5,96	13,1	17,8			
ΣHREE	126	690	742	294	221	721	412	831	1087			
Lu_N/La_N	5301	9672	871	2002	256	8429	12576	5905	1003			
Lu_N/Gd_N	109	45,3	33,7	42,5	51,8	22,9	82,1	24,1	63,7			
Sm_N/La_N	7,84	60,5	7,77	13,3	2,04	122	43,8	75,0	4,41			
<i>T</i> (Ti), °C	769	757	728	774	720	740	756	777	746			

Спектры распределения РЗЭ в цирконе дифференцированы от легких к тяжелым REE (рис.5, *a*), отношение Lu_N/La_N варьирует в широком диапазоне значений от 871 до 9672 (кроме точек 5,1 и 8,1). Циркон характеризуется положительной Се-аномалией и незначительной отрицательной Eu-аномалией (в среднем Eu/Eu^{*} = 0,43). Суммарное содержание REE в среднем составляет 520 ppm с преобладанием вклада HREE. Циркон характеризуется средним содержание Hf (в среднем 7351 ppm). В цирконе наблюдаются вариации концентраций Y, P и Ca (табл.2).

Содержание Ті достаточно выдержанное (в среднем 11 ppm). Нами была проведена оценка температуры кристаллизации циркона по мономинеральному геотермометру «Ti-in-zircon» [16]. Значение температуры в среднем составляет 755 °C, что соответствует параметрам гранулитовой фации метаморфизма.

Фигуративные точки циркона на диаграмме La- $(Sm/La)_N$ [10, 14] попадают в поля неизмененных магматических и «пористых» цирконов (рис.5, δ). Отличительными особенностями «пористого» циркона являются повышенное содержание La, Fe, Ca, Al и аномально низкое отношение (Sm/La)_N [9]. В точках 3,1 и 5,1 содержание Ca заметно выше, чем в неизмененных цирконах (табл.2), а в точке 10,1 значение достигает 311 ppm. Они также характеризуются низким отношением (Sm/La)_N = 2-8.

Параметры метаморфизма. Для определения параметров метаморфических преобразований наиболее подходит обр.174, так как он содержит гранат – фазу, которая существенно расширяет количество реакций, определяющих температуру. Полученные методом TWQ для позднего парагенезиса Amp-Grt-Pl-Qz параметры температуры 695 ± 15 °C и давления 6 ± 1 кбар (три независимые реакции) соответствуют граничной области амфиболитовой и гранулитовой фаций [13] и, как видно, характеризуются неполным равновесием сосуществующих минералов (рис.6).

Рис.5. Распределение REE (*a*) в цирконе из гранат-ортопироксенового плагиокристаллосланца (обр. 174) и положение фигуративных точек циркона на дискриминационных диаграммах (б)

Рис.6. Поле устойчивости минеральных парагенезисов обр.174 (серая заливка), рассчитанных в программе Theriak-Domino [8] для системы MnNCMFATSH при aH₂O = 0,8. Эллипсами показаны области минимальных P-T параметров (~720 °C и 7 кбар) для ассоциации Grt + Opx + Pl + Amp (черная заливка) и максимальных P-T параметров (~775 °C и 7,5 кбар) для ассоциации Opx + Pl (жирный пунктир). Границы амфиболитовой и гранулитовой фаций показаны по [13]. На врезке показан характер схождения линий минеральных реакций для ассоциации Grt + Opx + Pl + Amp, рассчитанный в программе TWQ [7]

Это обусловлено тем, что амфибол, определяющий барозависимые реакции (например, 3Ab + 2Grs + Prp + 3Ts = 3Prg ++ 6bQtz + 6Anи 3Ab + 2Grs + Prp + 4fTs == 3fPrg + T + 6bQtz + 6An) и гранат, определяющий значение температуры (например, 3Prg + 4Alm = 4Prp + 3fPrg) формировались не синхронно, а с некоторым временным интервалом. Кроме того, существенную неопределенность вносит неточность термодинамических параметров для конечных членов амфиболов. Необходимо отметить, что активность воды в системе составляла не менее 0,8, что вполне соответствует наблюдаемым соотношениям таких фаз, как ортопироксен и амфибол.

Для проверки полученных P-T значений были выполнены расчеты методом псевдосекций и изоплет в программе Theriak-Domino с базой JUN92d.bs, являющейся аналогом согласованной базы термодинамических данных, используемой в TWQ [17]. Поскольку в полиметаморфических комплексах часто встречается локальная неоднородность по положению и составу минералов, наиболее подходящим методом для оценки валового состава породы с равновесными минеральными парагенезисами является его

расчет по реальным соотношениям минералов и их составам. Для рассчитанного таким образом состава породы были построены изоплеты конечных членов составов граната (Alm, Py, Grs), плагиоклаза (An), магнезиальности и содержания Al в ортопироксене (ф.е.). Далее, со сравнением расчетных составов с измеренными, была построена довольно компактная область (черный эллипс на рис.6), где составы минералов наиболее близки. Очевидно, что параметры температуры 720 ± 10 °C и давления 7,0±0,2 кбар практически совпадают с рассчитанными ранее методом TWQ.

Более проблемной являлась оценка параметров ранней, высокотемпературной ветви метаморфизма, поскольку в исследованном образце к минералам данного этапа можно отнести только наиболее основной плагиоклаз и ортопироксен с максимальной глиноземистостью. Используя принцип эффективного состава породы [8] из валового состава, соответствующего ретроградной стадии, были «удалены» гранат и амфибол, а затем рассчитаны изоплеты для анортитовой компоненты в плагиоклазе, чермакитового компонента и магнезиальности – в ортопироксене. Методом, описанным выше, была построена область, отвечающая максимальным P-T параметрам (пунктирный эллипс на рис.6) с температурой 775 ± 35 °C и давлением $7,5\pm0,7$ кбар. Эта приближенная оценка свидетельствует о том, что протолит на ранних стадиях испытал метаморфизм в условиях гранулитовой фации. Область сосуществования реальных минеральных парагенезисов, рассчитанная дополнительно (серая заливка на рис.6), свидетельствует о возможности формирования наблюдаемых парагенезисов в достаточно широком интервале температур, но ограниченном по давлению.

Таким образом, можно предположить последовательность метаморфических преобразований породы: высокотермальный метаморфизм гранулитовой фации ($T \le 810$ °C) и последующее субизобарическое (около 7 кбар) остывание до 700 °C с повышением активности воды и формированием Grt-Amph парагенезиса, отвечающего области перехода из гранулитовой в амфиболитовую фацию [13].

Заключение. Установлено, что протолитом плагиокристаллосланцев верхнеанабарской серии Анабарского щита являются основные породы, не содержащие первичного магматического циркона. Возраст 1997±10 млн лет, полученный U-Pb методом по циркону, отвечает времени проявления гранулитового метаморфизма. Sm-Nd возраст 1919 ± 13 млн лет, полученный по породе, гранату и амфиболу, фиксирует стадию регрессивного амфиболитового метаморфизма. Параметры пика гранулитового метаморфизма определены как 775±35 °C и 7,5±0,7 кбар. Параметры регрессивного этапа метаморфизма, приведшего к формированию Grt-Amph парагенезиса, составляют около 700 °C и 7 кбар.

Благодарности. Авторы благодарят О.Л.Галанкину, Е.С.Богомолова (ИГГД РАН), С.Г.Симакина, Е.В.Потапова (ЯФ ФТИАН) и коллег из ЦИИ ВСЕГЕИ за проведение аналитических работ. Исследование выполнено при финансовой поддержке РФФИ (гранты 17-35-50002, 16-35-60092, 18-35-00229).

ЛИТЕРАТУРА

1. Авченко О.В. Петрогенетическая информативность гранатов метаморфических пород. М.: Наука, 1982. 100 с.

2. Геологическая карта СССР масштаба 1:200 000. Серия Анабарская. Листы R-49-XIX, XX. Объяснительная записка / Под ред. А.А.Потуроева. М., 1984. 82 с.

3. Новые данные о возрасте (U-Pb, Sm-Nd) и P-T параметрах эклогитизации даек Fe-габбро района с. Гридино (Беломорский подвижный пояс) / А.В.Березин, В.В.Травин, Ю.Б.Марин, С.Г.Скублов, Е.С.Богомолов // Доклады Академии наук. 2012. Т. 444. № 6. С. 644-649.

4. Соболев А.В. Мантийные лерцолиты офиолитового комплекса Троодос, о-в Кипр: геохимия клинопироксена / А.В.Соболев, В.Г.Батанова // Петрология. 1995. Т. 3. № 5. С. 487-495.

5. *Федотова А.А.* Геохимия циркона (данные ионного микрозонда) как индикатор генезиса минерала при геохронологических исследованиях / А.А.Федотова, Е.В.Бибикова, С.Г.Симакин // Геохимия. 2008. № 9. С. 980-997.

6. Anczkiewicz R. Improving precision of Sm-Nd garnet dating by H₂SO₄ leaching: a simple solution to the phosphate inclusion problem. Geochronology: Linking the isotopic record with petrology and textures / R.Anczkiewicz, M.F.Thirlwall // Journal of Geological Society London. Special Publications. 2003. Vol. 220. P. 83-91.

7. Berman R.G. Thermobarometry using multi-equilibrium calculations: a new technique, with petrological applications // Canadian Mineralogist. 1991. Vol. 29. P. 833-855.

8. De Capitani C. The computation of equilibrium assemblage diagrams with Theriak/Domino software / C.De Capitani, K.Petrakakis // American Mineralogist. 2010. Vol. 95. P. 1006-1016.

9. *Hinton R.W.* The chemistry of zircon: Variations within and between large crystals from syenite and alkali basalt xenoliths / R.W.Hinton, B.G.J.Upton // Geochimica et Cosmochimica Acta. 1991. Vol. 55. P. 3287-3302.

10. Hoskin P.W.O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia // Geochimica et Cosmochimica Acta. 2005. Vol. 69. P. 637-648.

11. Ludwig K.R. ISOPLOT/Ex – A geochronological toolkit for Microsoft Excel, Version 2.05. Berkeley Geochronology Center Special Publication. 1999. № 1a. 47 p.

12. McDonough W.F. The composition of the Earth / W.F.McDonough, S.S.Sun // Chemical Geology. 1995. Vol. 120. P. 223-253.

13. Oh C.W. A petrogenetic grid for eclogite and related facies under high-pressure metamorphism / C.W.Oh, J.G.Liou // Island Arc. 1998. Vol. 7. P.36-51.

14. On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere / C.B.Grimes, B.E.John, M.J.Cheadle et al. // Contributions to Mineralogy and Petrology. 2009. Vol. 158. P. 757-783.

15. Scherer E.E. Lu-Hf garnet geochronology: closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions / E.E.Scherer, K.L.Cameron, J.Blichert-Toft // Geochimica et Cosmochimica Acta. 2000. Vol. 64. P. 3413-3432.

16. Watson E.B. Crystallization thermometers for zircon and rutile / E.B.Watson, D.A.Wark, J.Thomas // Contributions to Mineralogy and Petrology. 2006. Vol. 151. P. 413-433.

17. Wei C. Calculated phase relations in high-pressure metapelites in the system NKFMASH (Na₂O-K₂O-FeO-MgO-Al₂O₃-SiO₂-H₂O) // Journal of Petrology. 2004. Vol. 45. P. 183-202.

18. Whitney D.L. Abbreviations for names of rock-forming minerals / D.L.Whitney, B.W.Evans // American Mineralogist. 2010. Vol. 95. P. 185-187.

Авторы: Л.Ю.Сергеева, ведущий инженер, Ludmila_Sergeeva@vsegei.ru (Всероссийский научно-исследовательский геологический институт им. А.П.Карпинского, Санкт-Петербург, Россия), А.В.Березин, канд. геол.-минерал. наук, научный сотрудник, berezin-geo@yandex.ru (Институт геологии и геохронологии докембрия Российской академии наук, Санкт-Петербург, Россия), Н.И.Гусев, зав. отделом РГ и ПИ Восточной Сибири, Nikolay_Gusev@vsegei.ru (Всероссийский научноисследовательский геологический институт им. А.П.Карпинского, Санкт-Петербург, Россия), С.Г.Скублов, д-р геол.минерал. наук, главный научный сотрудник, skublov@yandex.ru (Институт геологии и геохронологии докембрия Российской академии наук, Санкт-Петербург, Россия), А.Е.Мельник, канд. геол.-минерал. наук, младший научный сотрудник, aleks@melnik.me (Институт геологии и геохронологии докембрия Российской академии наук, Санкт-Петербург, Россия).

Статья принята к публикации 22.01.2018.