——— ГЕОЛОГИЯ —

УДК 553.411(571.61)

ЛОКАЛЬНЫЙ МЕТАМОРФИЗМ РУДНО-МЕТАСОМАТИЧЕСКИХ ОБРАЗОВАНИЙ БЕРЕЗИТОВОГО МЕСТОРОЖДЕНИЯ

© 2010 г. О. В. Авченко, А. С. Вах, член-корреспондент РАН В. Г. Сахно, В. А. Степанов, Е. А. Ноздрачев, О. И. Шарова

Поступило 19.10.2009 г.

Вопросы генезиса и формационного положения Березитового золото-полиметаллического месторождения, расположенного на северо-восточном фланге Приамурской золоторудной провинции, в бассейне нижнего течения р. Хайкта, до сих пор остаются чрезвычайно запутанными и неясными. Рудовмещающие породы месторождения рассматривались различными исследователями как березиты [1], грейзены [2], либо как новый гранат-турмалин-кварц-мусковитовый тип высокотемпературных калиевых золотоносных метасоматитов [3]. Разные мнения обусловлены главным образом необычным минеральным составом метасоматических пород данного месторождения - распространением в них гранатсодержащих минеральных ассоциаций и своеобразных гранат-биотит-анортит-мусковит-кварцевых парагенезисов.

Ранее было высказано предположение [4], что необычный минеральный состав метасоматитов месторождения, вероятно, обусловлен процессами заключительного термального метаморфизма, наложенного на ранее сформированные сульфидно-силикатные минеральные образования. Полученный авторами в последнее время новый фактический материал позволяет более детально обосновать эту точку зрения и подойти к решению проблемы формационной принадлежности Березитового месторождения.

Золото-полиметаллическое оруденение Березитового месторождения сосредоточено в пределах крупного рудоносного тела, сложенного преимущественно кварц-мусковитовыми породами и расположенного в массиве раннепротерозойских гранитоидов. Более подробно геологическая характеристика месторождения рассмотрена в

Российской Академии наук, Владивосток

ряде публикаций [5. 6]. Следует подчеркнуть характерную морфологическую особенность месторождения. Оно представляет собой сочетание двух перевернутых конусов, расположенных последовательно друг за другом, причем южный конус в 1.5–2 раза больше северного. Предполагается, что такие своеобразные конусообразные крутопадающие структуры могут иметь вулканогенный генезис и представлять собой трубки взрыва или диатремы (?). Разрез южного рудовмещающего тела вдоль короткой оси показан на рис. 1.

Рудовмещающие породы конуса сложены довольно однородными по строению светло-серыми, зеленовато-серыми, массивными мусковиткварцевыми метасоматитами. Местами метасоматиты сильно брекчированы, причем обломочный материал брекчий цементируется сульфидными минералами. Золотосодержащие полиметаллические руды отчетливо наложены на метасоматиты по системе сложных трещин. Основные минералы руд – сфалерит, галенит, пирит, пирротин. Составы пород и основных минералов метасоматических пород месторождения (обр. 2, 3) приводятся в табл. 1 и 2. На контакте с вмещающими гранитоидами рудно-метасоматические образования окаймляются по периферии темно-серыми, плотными метасоматитами более сложного гранат-биотит-анортит-мусковит-кварцевого состава (обр. 1, табл. 1, 2).

Зона метасоматитов рассекается редкими дайками, среди которых выделяются преобразованные разности — гранатсодержащие метапорфириты и неизмененные — спессартиты и диоритовые порфириты. Дайки метапорфиритов не содержат в своем составе золотосодержащих галенит-сфалеритовых руд, широко развитых в метасоматитах основной массы месторождения, однако рассекаются редкими золотоносными кварц-сульфидными и сульфидными прожилками.

Дайки метапорфиритов являются ключевым звеном в правильном понимании генезиса месторождения. Их характерная особенность – отчетливо выраженные признаки термального метаморфизма. Ввиду особой важности следуемых отсюда выводов остановимся более подробно на характеристике этих даек и условий их метамор-

Дальневосточный геологический институт

Дальневосточного отделения

Научно-исследовательский геотехнологический центр Дальневосточного отделения

Российской Академии наук,

Петропавловск-Камчатский

Рис. 1. Разрез южной конусообразной рудовмещающей структуры (диатремы?) Березитового месторождения. *1* – четвертичные рыхлые делювиальные отложения; *2* – раннепротерозойские порфировидные гранодиориты и граниты; *3* – дайки метапорфиритов неустановленного возраста; *4* – турмалин-гранат-мусковит-кварцевые метасоматиты с золото-полиметаллической минерализацией; *5* – гранат-микроклин-биотит-анортит-мусковит-кварцевые метасоматиты и метасоматически измененные граниты с пиритовой минерализацией; *6* – зоны интенсивного дробления пород; *7*, *8* – границы внутренней (*7*) и внешней (*8*) зон метасоматитов; *9* – скважины и их номера; *10* – подземные горные выработки и их номера. На врезке звездочкой показано географическое положение Березитового золото-полиметаллического месторождения.

физма. Метапорфириты представляют собой породы темно-серого цвета с мелкозернистой структурой, с многочисленными идиоморфными порфиробластами граната, размером до 2–4 мм (рис. 2). Основная масса породы состоит из плагиоклаза, биотита, магнетита, ильменита и кварца. Плагиоклаз образует кристаллы двух разновидностей — порфировидные призматические выделения, размером до 1 мм по длинной стороне, и мелкие и мельчайшие бесформенные кристаллы, размером в сотые и десятые доли миллиметра. Магнетит часто содержится внутри кристаллов граната. Биотит развивается в виде мельчайших чешуек по основной массе породы и по порфировидным выделениям плагиоклаза. Рудные минералы представлены преимущественно пиритом, реже арсенопиритом, единичными мелкими агрегатами галенита, шеелита и герсдорфита.

Из непосредственных наблюдений и данных химических анализов пород (обр. 4–6, табл. 1)

ДОКЛАДЫ АКАДЕМИИ НАУК том 432 № 2 2010

ЛОКАЛЬНЫЙ МЕТАМОРФИЗМ

Компонент	1	2	3	4	5	6	7	8	9
SiO ₂	65.47	69.42	67.63	54.64	50.51	54.27	62.68	65.29	63.41
TiO ₂	0.40	0.36	0.32	1.36	1.25	1.36	0.47	0.39	0.48
Al_2O_3	16.94	17.87	18.14	17.73	16.87	17.88	17.07	16.99	17.56
Fe ₂ O ₃ (общ)	4.41	2.31	3.46	10.96	14.02	11.16	5.18	4.52	4.43
MnO	0.96	0.10	1.47	0.59	0.84	0.54	0.09	0.19	0.26
MgO	1.04	0.48	0.42	3.86	5.25	3.88	1.19	1.02	1.01
CaO	2.76	0.22	0.26	5.35	5.19	4.86	4.49	3.42	3.89
Na ₂ O	0.26	0.15	0.18	1.79	1.02	2.03	4.67	1.99	1.20
K ₂ O	5.06	5.93	5.27	3.04	3.41	3.39	2.41	4.35	5.38
P_2O_5	0.14	0.14	0.02	0.44	0.34	0.43	0.20	0.16	0.19
П.п.п.	1.59	2.27	2.17	0.09	0.21	0.36	0.69	0.80	1.00
Сумма	99.03	99.26	99.32	99.84	98.92	100.16	99.15	99.13	98.82
S	0.232	0.017	0.079	0.065	0.099	0.053	0.002	0.007	0.024
Cl	0.005	0.001	0.002	0.011	0.007	0.013	0.004	0.004	0.004
V	30	26	31	165	175	158	40	34	40
Cr	6	1	4	81	245	65	52	12	12
Co	8	1	4	21	31	23	6	3	4
Ba	341	387	217	452	286	424	1043	814	751
Ni	8	5	5	53	120	46	11	9	9
Cu	29	10	7	47	37	35	21	76	64
Zn	1339	75	454	231	407	235	75	385	521
Ga	18	19	21	22	21	21	19	19	19
As	188	271	37	126	164	142	7	54	128
Pb	261	40	159	318	131	317	18	31	37
Th	22	20	4	5	3	5	13	10	13
U	6	4	1	0	0	1	3	2	3
Rb	266	292	274	201	283	242	66	216	260
Sr	117	35	13	259	230	221	757	374	373
Y	25	7	23	22	22	25	23	22	27
Zr	182	178	154	200	180	203	213	169	210
Nb	15	18	13	12	11	13	15	14	16

Таблица 1. Химические составы метасоматических пород (обр. 1–3), метапорфиритов (обр. 4–6) и в разной степени измененных метасоматозом гранодиоритов (обр. 7–9)

Примечание. Анализы пород выполнены Е.А. Ноздрачевым в ДВГИ ДВО РАН на рентгенофлуоресцентном спектрометре S4 Pioneer фирмы "Bruker AXS" (ФРГ).

следует, что метапорфириты не подвергались процессу метасоматоза. На диаграмме де Ля Роша [7] (рис. 3) хорошо видно, что метапорфириты компактно расположены в поле диоритов и резко отличаются по составу от вмещающих их рудоносных метасоматических пород. Вместе с тем граниты и гранодиориты, вмещающие метасоматиты и в разной степени измененные процессом метасоматоза (обр. 7–9, табл. 1), обнаруживают тренд, направленный в сторону поля метасоматических пород (рис. 3). Из данных химических анализов минералов метапорфиритов (обр. 6, табл. 2) видны две особенности. Первая состоит в том, что кристаллы гранатов метапорфиритов обладают отчетливо выраженной прямой зональностью, или зональностью роста, характеризующейся уменьшением концентрации марганца и ростом концентрации магния от ядра кристалла к периферии. Железистость и марганцовистость гранатов при этом остаются высокими (табл. 2). Подобная зональность высокожелезистых и высокомарганцовистых гранатов чрезвычайно характерна для метаморфических комплексов, прогрессивно метаморфизованных в условиях зеленосланцевой и

Kommo- Hehr Gr-c Gr-1 Hehr 1 2 SiO2 36.2 36.59 TiO2 0 0 Al ₂ O ₃ 19.17 20.49 FeO 17.97 20.10 MnO 20.12 17.24		. Цор	_					061). 1				061) . 2	
I 2 SiO2 36.2 36.59 TiO2 0 0 Al ₂ O ₃ 19.17 20.49 FeO 17.97 20.10 MnO 20.12 17.24	r Gr-c	c Bi	PII	P12	Pl3	Gr-c	Gr-r	Gr-c	Bi	ΡΙ	Mus	Gr-c	Gr-c	Bi	Mus
SiO2 36.2 36.59 TiO2 0 0 Al ₂ O3 19.17 20.49 FeO 17.97 20.10 MnO 20.12 17.24	3	4	5	6	7	8	6	10	11	12	13	14	15	16	17
TiO2 0 0 Al ₂ O3 19.17 20.49 FeO 17.97 20.10 MnO 20.12 17.24	36.13	35.64	51.65	54.83	55.60	37.36	38.21	37.51	36.54	44.96	46.27	37.03	36.64	35.76	45.45
Al ₂ O ₃ 19.17 20.49 FeO 17.97 20.10 MnO 20.12 17.24	0	2.27	0	0	0	0	0	0	1.79	0	0.5	0	0	2.74	0.36
FeO 17.97 20.10 MnO 20.12 17.24	19.60	17.64	28.61	29.47	28.87	21.07	21.36	21.06	18.23	36.66	33.28	20.35	20.92	17.79	32.82
MnO 20.12 17.24	17.65	5 17.58	0	0	0.66	15.3	17.1	16.97	20.94	0	4.04	12.91	14.89	22.88	3.61
	1 20.05	0.50	0	0	0	20.98	17.97	19.94	0.65	0	0	26.38	25.68	0.48	0.
MgO 1.23 1.70	1.39	11.37	0	0	0	0.54	0.99	1.27	8.88	0	0.96	0.54	0.57	8.55	0.73
CaO 3.73 2.91	1 3.46	0	10.94	10.51	10.57	5.51	6.16	4.39	0	18.83	0	2.97	2.38	0	0
Na ₂ O 0 θ	0	0	4.72	5.11	5.64	0	0	0	0	0.61	0	0	0	0	0
$K_2 O 0 0$	0	9.84	0.41	0	0.31	0	0	0	10.32	0	11.99	0	0	10.52	11.86
Сумма 98.42 99.05	3 98.32	94.84	96.33	99.92	101.65	100.76	101.8	101.14	97.35	101.06	97.04	100.18	101.08	98.70	94.83
Si 2.995 2.95	33 2.98	36 2.718	2.424	2.465	2.471	3.004	3.021	3.001	2.755	2.05	3.092	3.018	2.964	2.693	3.103
Ti 0 0	0	0.13	0	0	0	0	0	0	0.101	0	0.025	0	0	0.155	0.018
Al 1.869 1.97	75 1.90	99 1.586	1.583	1.561	1.512	1.997	1.99	1.985	1.62	1.97	2.621	1.955	1.994	1.579	2.641
Fe ⁺² 1.103 1.35	36 1.10	1.121	0	0	0	1.029	1.131	1.122	1.32	0	0.226	0.872	0.929	1.441	0.206
Fe ⁺³ 0.141 0.05	0.11	18 0	0	0	0.022	0.	0	0.013	0.	0	0	0.008	0.078	0	0
Mn 1.41 1.15	04 I.40	7 0.032	0	0		1.429	1.203	1.351	0.042	0	0	1.821	1.759	0.031	0
Mg 0.152 0.20	0.13	71 1.293	0	0		0.065	0.117	0.151	0.998	0	0.096	0.066	0.069	0.96	0.074
Ca 0.331 0.25	55 0.30	90 90	0.55	0.506	0.503	0.475	0.522	0.376	0.	0.92	0	0.259	0.206	0	0
Na 0 0	0	0	0.43	0.445	0.486	0.	0	0.	0.	0.054	0	0	0	0	0
K 0 0	0	0.957	0.025	0	0.018	0	0	0.	0.993	0	1.022	0	0	1.011	1.033
$X_{\rm Fe}^{\rm Gr}$ 0.88 0.87	0.87					0.94	0.91	0.88				0.93	0.93		
$X_{\rm Ca}^{\rm Gr}$ 0.11 0.08	0.10					0.16	0.17	0.13				0.08	0.07		
$X_{ m An}^{ m Pl}$			0.55	0.53	0.51					0.94					
$X_{ m Fe}^{ m Bi}$		0.46							0.57					0.60	

АВЧЕНКО и др.

206

амфиболитовой фаций [8]. Вторая особенность выражена в некотором различии состава порфировидных и мельчайших кристаллов плагиоклаза, хотя в целом оно и невелико (обр. 6, табл. 2). По составам минералов (табл. 2) по программе [9] были рассчитаны условия метаморфизма гранатсодержащих метапорфиритов, которые составляют примерно 520°С и 3.5 кбар (табл. 3, 4). Эти РТ-условия близки оценкам, полученным для гранатсодержащих метасоматических пород месторождения (табл. 3, 4), рассчитанным по составам минералов из табл. 2 по программе [9] и гранат-мусковитовому термометру [10]. Таким образом, доказывается важный факт метаморфизма ранее образованных метасоматических пород. Другими словами, гранатсодержащие минеральные ассоциации в метасоматических породах и метапорфиритах образовались вследствие наложенного метаморфизма. Однако специфика данного метаморфизма состоит в том, что он проявился только в породах и рудах, выполняющих упомянутые выше диатремы, а за их пределами метаморфизм пород отсутствует. Таким образом, по характеру проявления метаморфизм является локальным, обусловленным прохождением флюидно-теплового импульса по диатремам на заключительных стадиях формирования месторождения.

Вопрос о том, что собой представляли метасоматические породы до метаморфизма, можно решить на основе физико-химического моделирования минеральных ассоциаций, проведенного на последней версии программного комплекса "Селектор-С". Эта версия включает согласованную термодинамическую базу по конечным миналам, увязанную с термодинамикой минеральных твердых растворов. Моделирование производилось по схеме, опубликованной в [11]. Детальный разбор моделирования предполагается в отдельной работе, а здесь укажем, что модельные парагенезисы хорошо совпадают по набору минералов и их составу с наблюдаемыми ассоциациями при температурах 520–550°С и давлении 3–4 кбар.

Модельный парагенезис метапорфирита представлен гранатом, биотитом, микроклином, плагиоклазом, кварцем и ильменитом, причем железистость, кальциевость граната, железистость биотита и номер плагиоклаза практически совпадают с данными из табл. 2 (обр. 6). Это доказывает полную перекристаллизацию метапорфирита обр. 6 в процессе метаморфизма. Параметры состава флюида: $P_{\rm CO_2}/P_{\rm H_2O} = 2.5$, $\lg f_{\rm O_2} = -20$. При тех же *PT*-условиях и составе флюида хорошо моделируются гранат-биотит-мусковит-анортитовые ассоциации и гранат-мусковит-кварцевые парагенезисы.

Результаты моделирования также показывают, что при более низких *PT*-условиях ($T = 300^{\circ}$ С и P = 1 кбар) рассматриваемые ассоциации место-

Рис. 2. Идиоморфный кристалл граната (серое), с многочисленными включениями магнетита (белое), в кварц-плагиоклаз-биотитовой основной массе дайки метапорфирита (обр. 6, табл. 2). Изображение в обратно рассеянных электронах, получено на микроанализаторе JXA8100.

рождения превращаются в безгранатовые парагенезисы, состоящие из кальцита, хлорита, мусковита, кварца, микроклина и альбита, причем основная доля минералов представлена мусковитом и кварцем. Таким образом, при $T = 300^{\circ}$ С и P = 1 кбар рас-

Таблица 3. Температуры гранат-биотитовых и гранатмусковитовых минеральных равновесий в метасоматических породах (обр. 1, 2) и метапорфиритах (обр. 6). Расчеты выполнены по программе РЕТ [9] и гранатмусковитовому термометру [10]

N⁰	Геотермометр	Температура, °С				
обр.	теотермометр	<i>P</i> = 1 кбар	<i>P</i> =3.5 кбар	P = 5 кбар		
6	Гранат-биотит	515	526	533		
1	То же	564	575	582		
1	Гранат-мусковит	518	520	522		
2	То же	495	497	498		
2	Гранат-биотит	485	495	502		
Среднее		515	523	527		

Таблица 4. Оценки давления в минеральных ассоциациях метапорфиритов (обр. 6) и метасоматических пород (обр. 1). Расчеты выполнены по программе РЕТ [9]

N⁰	Геобарометр	Давление, кбар			
обр.	Теобарометр	450°C	500°C	550°C	
6	Гранат-биотит-плагиоклаз	2.9	3.4	3.9	
1	То же	3.8	4.2	4.6	
1	Гранат-мусковит-плагио- клаз-биотит	2.6	2.8	2.9	
Среднее		3.1	3.5	3.8	

Рис. 3. Положение метапорфиритов (1), метасоматически измененных гранитов (2) и метасоматических пород (3) Березитового месторождения на диаграмме де Ля Роша [7].

сматриваемые ассоциации метасоматических пород по минеральному составу полностью отвечают классическим березитам [12]. С другой стороны, если сравнить между собой составы гранитоидов (обр. 7, табл. 1) и метасоматических пород (обр. 1, табл. 1), которые развиваются несомненно по этим породам, то очевидно, что направленность преобразования состава гранитоидов полностью отвечает процессу березитизации. Из сопоставления данных анализов хорошо виден вынос натрия, кальция, бария и привнос калия, серы, мышьяка и рудных элементов, что типично для процесса березитизации [12].

Таким образом, рассмотрение условий метаморфизма даек и данных физико-химического моделирования условий формирования метасоматитов позволяет полагать, что месторождение Березитовое по формационному положению относится к классическим березитам. Но особенностью месторождения является наложенный локальный метаморфизм, который проявился только в породах и сульфидных рудах, выполняющих трубообразные диатремы, что и привело к перекристаллизации ранних парагенезисов и образованию гранат-мусковит-кварцевых и гранат-биотит-мусковит-анортитовых минеральных ассоциаций. Вероятно, возможно выделить особую формацию метаморфизованных березитов, если в природе будут обнаружены аналоги описанного примера.

Работа выполнена при поддержке РФФИ (грант 08–05–00106–а) и интеграционного проекта СО РАН и УрО РАН № 09–II–СУ-08–00.

СПИСОК ЛИТЕРАТУРЫ

- 1. Калинкин Н.Я. В кн.: Вопросы золотоносности Дальнего Востока. Благовещенск, 1974. С. 117– 118.
- 2. Беляева В.Р., Залищак Б.Л. // Тихоокеан. геология. 1989. № 3. С. 95-102.
- 3. Буряк В.А., Гуменюк В.А., Кайдалова Е.Ф., Шиханов В.В. // ДАН. 1978. Т. 241. № 5. С. 1143—1146.
- 4. *Bax A.C., Хомич В.Г.* В кн.: Закономерности строения и эволюции геосфер. Хабаровск, 1998. С. 190–192.
- 5. *Bax A.C., Моисеенко В.Г., Степанов В.А., Авченко О.В.* // ДАН. 2009. Т. 425. № 2. С. 204–207.

ДОКЛАДЫ АКАДЕМИИ НАУК том 432 № 2 2010

- 6. Степанов В.А., Мельников А.В., Вах А.С. и др. Приамурская золоторудная провинция. Благовещенск, 2008. 232 с.
- 7. De La Roche H., Leterrier P., Grand-Clode P., Marchal M. // Chem. Geol. 1980. V. 29. P. 183–210.
- 8. *Авченко О.В.* Петрогенетическая информативность гранатов метаморфических пород. М.: Наука, 1982. 103 с.
- Dachs E. // Computers & Geosciences. 1998. V. 24. № 3. P. 219–235.
- 10. Chun-Ming Wu, Xin-She Wang, Chong-Hui Yang et al. // Lithos. 2002. V. 62. P. 1–13.
- 11. Чудненко К.В., Авченко О.В., Александров И.А. // ДАН. 2007. Т. 416. № 4. С. 538-542.
- Метасоматизм и метасоматические породы / Под ред. В.А. Жарикова, В.Л. Русинова. М.: Науч. мир, 1998. 490 с.