УДК 550.812.1:553.3/.8 © С.А.Аксенов, 2017

Основные результаты геологоразведочных работ на твердые полезные ископаемые в 2016 г. и задачи на 2017 г.

С.А.АКСЕНОВ (Федеральное агентство по недропользованию; 125993, г. Москва, ул. Б. Грузинская, 4/6, ГСП-3).

Аксенов Сергей Алексеевич

saksenov@rosnedra.gov.ru

Main results of nonfuel mineral exploration in 2016 and tasks for 2017

S.A.AKSENOV

Основной объем финансирования геологоразведочных работ (ГРР) на твердые полезные ископаемые (ТПИ) в 2016 г. пришелся традиционно на благородные металлы, в меньшей степени на цветные, черные металлы и уран. Работы были сосредоточены преимущественно в Дальневосточном и Сибирском федеральных округах (рис. 1).

Отличительные черты года – снижение финансирования за счет средств федерального бюджета, выпол-

нение работ силами единого подрядчика, а также частичная реорганизация отраслевых НИИ и отдельных производственных организаций.

В 2016 г. геологоразведочные работы завершились на 25 объектах, из них на 12 получены положительные результаты. Приросты ресурсов получены по 8 видам полезных ископаемых, их значения приведены в табл. 1.

1. Результаты ГРР в 2016 г.

	Прирост запасов и прогнозных ресурсов					
Полезное ископаемое	Категория прогнозных ресурсов			Категория запасов		
Угли, млн. т	1311	70				
Уран, тыс. т	14	20		5		
Железо, млн. т	215	532				
Медь, тыс. т	2195	612	7675			
Молибден, тыс. т	9					
Золото, т	65	196				
Серебро, т	311					
Сепиолитовые глины, тыс. т	>1000					
Прирост запасов и прогиметаллов»	нозных ресурсов по	о подпрограмме «Р	азвитие промыш,	пенности редких и р	едкоземельных	
ВеО, тыс. т	5,6					
Nb ₂ O ₅ , тыс. т	1175			465	181	
\sum TR $_2$ О $_3$, тыс. т	6666			2549	1405	
Та ₂ О ₅ , тыс. т				2	8	
Sc ₂ O ₃ , тыс. т	7			4	2	
Y_2O_3 , тыс. т	241			94	47	

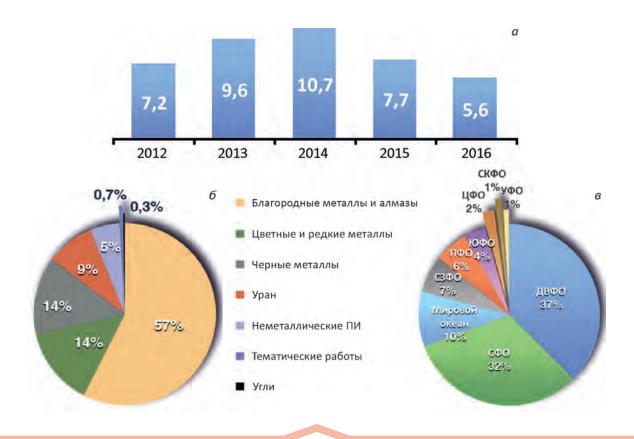


Рис. 1.Структура затрат на проведение ГРР за счет федерального бюджета в 2016 г.:

a — динамика финансирования ГРР за счет федерального бюджета, млрд. руб.; b — по видам ТПИ; b — по федеральным округам

Также с положительным результатом завершены геологоразведочные работы по подпрограмме Минпромторга «Развитие промышленности редких и редкоземельных металлов» (см. табл. 1). Предварительно оценены запасы на трех месторождениях редких металлов.

Плановые показатели государственной программы Российской Федерации «Воспроизводство и использование природных ресурсов» (ГП ВИПР) по состоянию на 01.01.2017 г. уже с учетом завершаемых работ этого года накопительным итогом выполнены по 14 видам ТПИ из 34. Показатели реализованы по основным видам твердых полезных ископаемых, таким как: уголь, золото, серебро, алмазы, свинец, цинк, железные руды, вольфрам, молибден и основным видам нерудных полезных ископаемых (рис. 2).

Остановимся на отдельных положительных результатах геологоразведочных работ в пообъектном разрезе.

В 2016 г. получен прирост ресурсов более 1 млрд. т углей ценных марок, пригодных для открытой отработки на Ундытканской площади в центральной части Токинского района Южно-Якутского бассейна. Здесь выявлены угли особо ценных марок, мощные угольные пласты, что особенно актуально в настоящее время (рис. 3).



Рис. 2. Выполнение показателей ГП ВИПР по приросту прогнозных ресурсов категорий Р,+Р, (накопительным итогом, %)

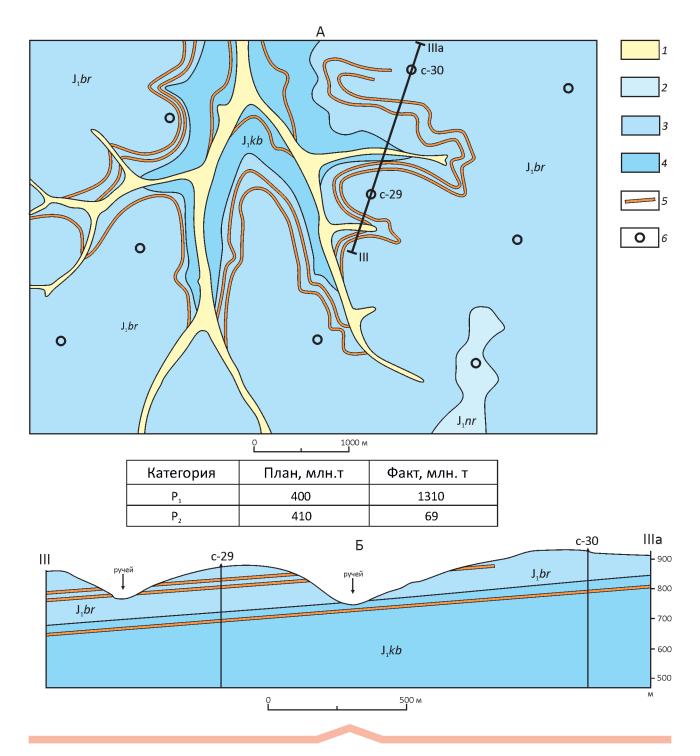


Рис. 3. Фрагмент геологической карты Ундытканской угленосной площади (A) и разрез по линии III-IIIa (Б):

отложения: 1 – четвертичные, Q и 2—4 – юрские, свиты: 2 – нерюнгриканская, J_3 nr, 3 – беркакитская, J_3 br, 4 – кабактинская, J_3 kb; 5 – угольные пласты; 6 – скважины

На Кулариктинском участке Витимского урановорудного района (Республика Бурятия) локализованы значительные ресурсы урановых руд, пригодных для отработки технологией подземного выщелачивания (рис. 4). Следует отметить, что работы на этот тип ура-

нового оруденения в нашей стране практически всегда эффективны.

В результате оценочных работ на Шаргадыкской рудной залежи Ергенинского района (Республика Калмыкия) была разработана и апробирована технология

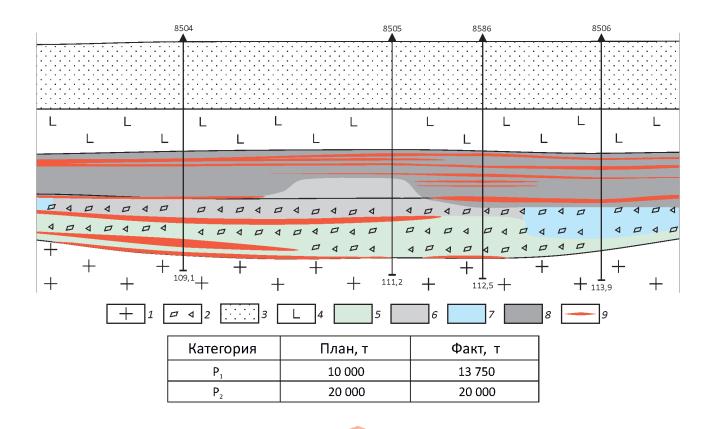


Рис. 4. Фрагмент геологического разреза через палеодолину Эмкэрсэ-5 (Кулариктинский участок):

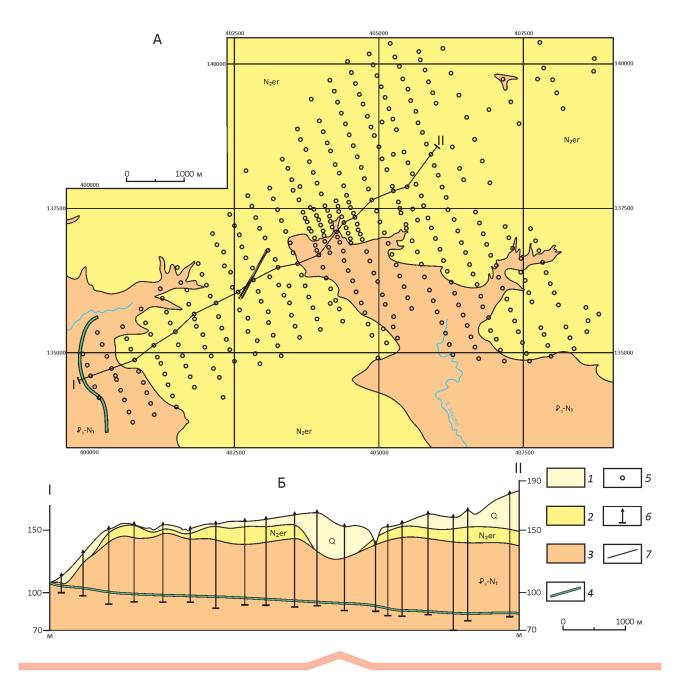
1 — граниты; 2 — делювиальные отложения; 3 — делювиально-пролювиальные отложения с горизонтами озерных отложений; 4 — базальты; 5 — зеленые и первично желтоцветные породы; 6 — светло-серые породы; 7 — белесые породы; 8 — сероцветные породы; 9 — повышенные концентрации урана

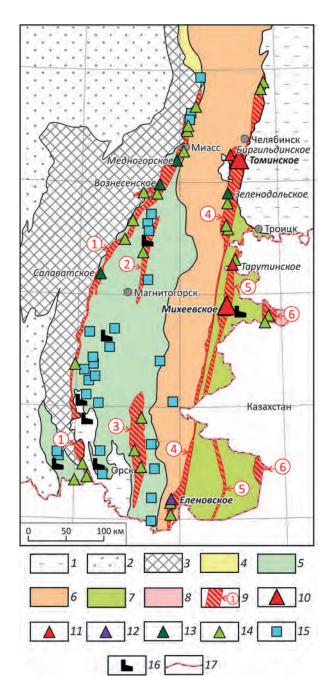
переработки фосфор-редкоземельно-урановых руд нетрадиционного типа с получением уранового и редкоземельного концентратов и суперфосфата способом кучного выщелачивания. Доказана возможность их эффективной отработки в современных условиях (рис. 5, табл. 2). Важно отметить, особенно в связи с урановой проблематикой, что к этому объекту проявляет интерес Росатом.

Важным резервом минерально-сырьевой базы меди Южного Урала, в качестве альтернативы традиционным для этого региона медно-цинково-колчеданным месторождениям, становятся объекты медно-порфирового типа. Примером этого служат промышленные медно-порфировые месторождения Михеевское (запасы меди категорий $A+B+C_1+C_2-1488,4$ тыс. т, среднее содержание 0,44%) и Томинское (запасы меди категорий $A+B+C_1+C_2-1536,5$ тыс. т, среднее содержание 0,47%) (рис. 6).

По инициативе ФГУП ЦНИГРИ в 2014—2016 гг. проведены исследования для наращивания сырьевой базы меди в объектах медно-порфирового типа на Южном Урале. В результате этих работ подготовлена

прогнозная карта Южного Урала масштаба 1:500 000, специализированная на этот тип оруденения, выделены перспективные на медно-порфировое оруденение вулканоплутонические пояса, рудные районы и узлы в их пределах. Суммарная оценка прогнозных ресурсов меди категории Р, по 7 наиболее перспективным районам составила 6,4 млн. т. Исходя из вновь полученных материалов горно-буровых работ, переоценены прогнозные ресурсы категории Р, четырех наиболее изученных рудопроявлений: Салаватского, Зеленодольского, Вознесенского и Медногорского в количестве 1,71 млн. т меди, 34,5 т попутного золота, 264,5 т серебра и 7,9 тыс. т молибдена, и ресурсы категории Р, нижних горизонтов Вознесенского рудопроявления - 53 тыс. т меди, 2 т золота, 26 т серебра, 0,5 тыс. т молибдена. Рекомендованы для лицензирования пригодные по экономическим показателям для открытой отработки Салаватское (990 тыс. т меди, среднее содержание 0,48%) и Зеленодольское (595 тыс. т меди, среднее содержание 0,42%; 27 т попутного золота, среднее содержание 0,21 г/т; 213 т серебра, среднее содержание 1,67 г/т; 7 тыс. т молибдена, среднее содержание 0,006%) (рисунки 7, 8).




Рис. 5. Геологическая карта Шаргадыкского месторождения, со снятыми четвертичными отложениями (A) и разрез по линии I-II (Б):

1 – четвертичные отложения: делювиальные, элювиально-делювиальные супеси, суглинки, аллювиальные пески (только на разрезе); 2 – ергенинский горизонт, пески, N_2 ег; 3 – олигоцен-миоценовый (майкопский) горизонт, глины, P_3 – N_1 ; 4 – рудный пласт; скважины: 5 – на карте и 6 – на разрезе; 7 – геологические границы

2. Основные технико-экономические показатели месторождения Шаргадык

Основные				Производство, тыс. т	
компоненты		содержание, %	Готовая продукция		
U	5,4	0,028	Урановый концентрат	0,25	3,75
P_2O_5	1556,3	8,11	Суперфосфат	157	2355
ΣTR_2O_3	36,9	0,192	Ванкараман ней количантат	1,7	25,5
Y_2O_3	9,5	0,049	Редкоземельный концентрат		

Примечание. Срок обеспеченности рудника запасами – 39 лет.

В 2014—2016 гг. ООО «Железный кряж» совместно с ФГУП ЦНИГРИ выполняли работы по объекту № 630-3(111-4) «Поисковые работы на полиметаллическое оруденение в пределах Александрово-Заводского полиметаллического рудного узла (Забайкальский край)». Работы проводились по Государственному контракту № 129 от 17.02.2014 г.

На основе изучения эталонных месторождений разработаны прогнозно-поисковые параметрические модели. Сопоставление с эталонными моделями показывает, что по особенностям литологического состава и фациальным разновидностям пород разреза, соотношению вулканогенной и вулканогенно-осадочной состав-

Рис. 6. Позиция медно-порфировых месторождений и рудопроявлений в структурно-формационных комплексах Южного Урала:

1 - мезо-кайнозойские впадины; структурно-формационные мегазоны: 2 - Предуральская, 3 - Западно-Уральская, 4 - Тагильская, 5 - Магнитогорская, 6-7 - Восточно-Уральская (структурно формационные зоны: 6 - Алапаевско-Адамовская, 7 - Ильиновско-Марииновская), 8 - Зауральская; 9 - вулканоплутонические пояса с медно-порфировыми месторождениями и рудопроявлениями, их номера на карте: 1 — Ирендыкский, D_{1-2} , 2 — Верхнеуральский, $D_3 - C_1$, 3 — Центрально-Магнитогорский, C_1 , 4 — Увельско-Еленовский, $D_3 - C_1$, 5 – Катенинский, $\hat{D}_3 - C_1$, 6 — Валерьяновский, C_1 ; 10–12 — медно-порфировые месторождения: 10 - эксплуатируемые, 11 - разведанные, 12 – отработанные; 13–14 – рудопроявления: 13 - переоцененные ФГУП ЦНИГРИ в 2016 г. по кат. Р, 14 - требующие доизучения и переоценки; 15 основные месторождения и группы месторождений медно-цинково-колчеданного ГПТ; 16 – действующие горно-обогатительные и перерабатывающие комбинаты; 17 – граница Российской Федерации

ляющей участок наиболее близок к разрезу проявления Талман, что в конечном итоге определяет масштабы зон рудной минерализации участка (рис. 9).

Согласно разработанной прогнозно-поисковой модели, ей в наиболее полной мере отвечает площадь участка Кодак, где проявлены все поисковые критерии и признаки. Практический интерес представляют выявленные в пределах участка 6 пологозалегающих минерализованных зон с золото-серебро-полиметаллическим оруденением и одна крутопадающая, которые отвечают установленным оценочным параметрам. В их пределах оценены и апробированы прогнозные ресурсы категорий $P_1 + P_2$ (табл. 3).

При переработке руд участка на обогатительной фабрике месторождения Нойон-Тологой, расположенного в 40 км юго-восточнее, достигаются довольно высокие экономические показатели. Рентабельность к производственным фондам составила 25%. Рентабельность к эксплуатационным затратам — 14%. Годовая чистая прибыль рудника равна 267 млн. рублей. Срок окупаемости капитальных вложений — 4,1 года.

Полученный прирост ресурсов полиметаллических руд в пределах Александрово-Заводского полиметаллического рудного узла (рудопроявление Кодак) свидетельствует о высоких перспективах расширения минерально-сырьевой базы возрождающейся в Забайкалье полиметаллической промышленности.

Положительные результаты по локализации ресурсов рудного золота в северо-западной части Куруш-Мазинского рудного поля (Республика Дагестан) с учетом ранее полученных результатов позволяют надеяться, что многолетние работы на юге страны приведут к созданию здесь золотодобывающей промышленности (рис. 10).

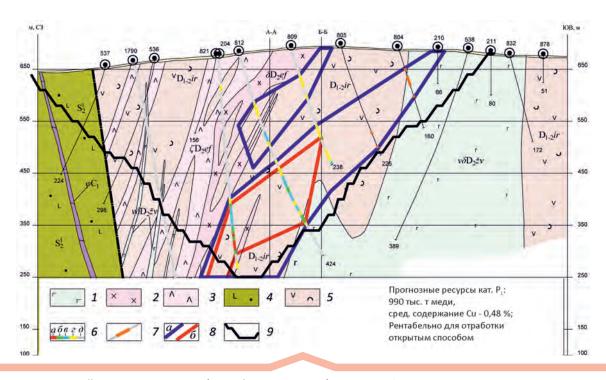


Рис. 7. Геологический разрез Салаватского (Республика Башкирия) медно-порфирового рудопроявления:

1— габбро, кварцевые габбро; 2— диориты, кварцевые диориты, порфировидные диориты; 3— дациты, андезидациты; 4— диабазы, метабазальты и метатуфы основного состава; 5— туфы среднего и средне-кислого составов; 6— интервалы опробования, включаемые в рудные интервалы авторами современной оценки ресурсов (2015) при бортовом содержании (в %): a— 0,9, 6— 0,7, a— 0,5, a— 0,3, a— некондиционные (борт. содержание Cu <0,3%) (рудные интервалы отражены по принципу перекрытия интервалами, выделенными при более высоком значении борта, интервалов при более низком борте); 7— рудные интервалы, выделенные авторами оценки ресурсов (1986); 8— контуры подсчетных блоков на разрезах и их номера, по бортовому содержанию Cu (в %): a— 0,3 и 6— 0,7; 9— контур проектного карьера на конец отработки при бортовом содержании меди 0,3%

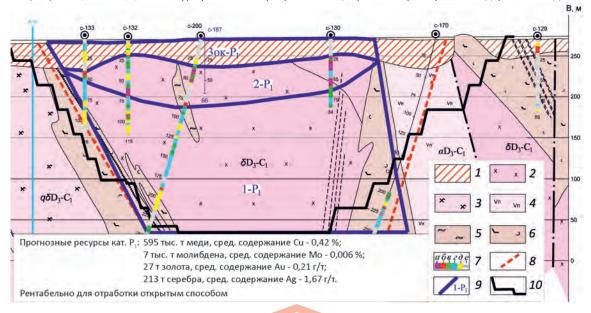
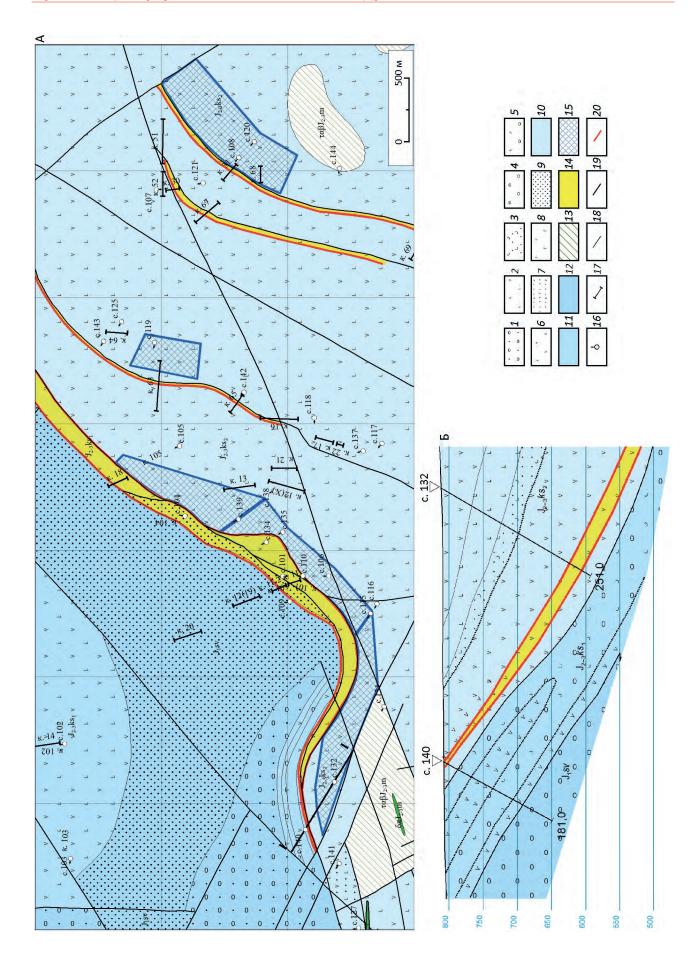



Рис. 8. Геологический разрез Зеленодольского (Челябинская область) медно-порфирового рудопроявления:

1 — кора выветривания; порфириты: 2 — диоритовые и 3 — кварцевые диоритовые; 4 — андезиты пироксеновые; туфы: 5 — пироксеновых андезитов и 6 — андезибазальтового состава; 7 — интервалы опробования, включаемые в рудные интервалы при бортовом содержании (в %): a — 0,5, δ — 0,4, δ — 0,3, δ — 0,2, ∂ — 0,1, δ — <0,1 (рудные интервалы отражены по принципу перекрытия интервалами, выделенными при более высоком значении борта, интервалов при более низком борте); δ — предполагаемая граница распространения оруденения с содержанием меди 0,1 %; δ — границы подсчетных блоков; δ — контур проектного карьера

9. Литолого-стратиграфический план (A) и разрез по линии I-I (Б) рудопроявления Кодак. С использованием материалов ООО «Железный Кряж» и ФГУП ЦНИГРИ:

1 — терригенная толща переслаивания конгломератов, песчаников и алевролитов (только на плане); 2 — вулканогенная толща, сложенная андезитами, андезибазальтами и базальтами с терригенными прослоями; 3 — туфопесчаники; 4 — конгломераты; 5 — туфоконгломераты; 6 — лавы андезитов; 7 — туфы андезибазальтов; 8 — габбро-долериты; 9 — песчаники; верхне-среднеюрские отложения: 10 — кайласская свита, верхняя подсвита (трахиандезибазальты, трахиандезиты, трахиандезиты и их лавобрекчии, редко трахиты), 11 — кайласская свита, нижняя подсвита (трахиандезибазальты, трахиандезиты и их туфы); нижнеюрские отложения: 12 — сивачинская свита (конгломераты с прослоями песчаников и алевролитов); верхе—среднеюрские субвулканические образования: 13 — трахиандезибазальты, 14 — зоны гидротермальных метасоматических изменений с сульфидной минерализацией, 15 — контуры проекций рудных тел на горизонтальную плоскость; 16 — пробуренные скважины; 17 — пройденные канавы; границы: 18 — геологические и 19 — тектонические; 20 — зоны минерализации и рудные тела

3. Апробированные прогнозные ресурсы золото-серебро-полиметаллических руд рудопроявления Кодак

Категории	Ресурсы руды, тыс. т	Ресурсы металла				
		Рb, тыс. т	Zn, тыс. т		Au, т	
P_{1}	2370	44	7	233	3,9	
P_2	4306	138	6	535	5,4	
P_1+P_2	6676	182	13	768	9,3	

По итогам ревизионно-поисковых работ последних лет, нацеленных на поиски глубокозалегающих медноцинково-колчеданных месторождений, на территории юго-востока Республики Башкортостан были выделены шесть площадей, в пределах которых предварительно оконтурены рудные залежи и локализованы прогнозные ресурсы категории P_2 : меди — 3,4 и цинка — 6,2 млн. т. На наиболее перспективной — Новопетровской площади (рис. 11) в настоящее время реализуется поисковый проект с задачей выявления промышленных колчеданных залежей и оценкой прогнозных ресурсов категорий P_1 и P_2 .

В рамках этого проекта, на основе использования данных глубинных электроразведочных методов, на Новопетровской площади на глубинах 370–500 м вскрыты и предварительно оконтурены залежи медноцинковоколчеданных руд с промышленными содержаниями меди и цинка. По итогам 2016 года предварительно оконтурена рудная залежь (500×600 м), для которой по восьми скважинам АО «Северо-Кавказское ПГО» выполнена оперативная оценка прогнозных ресурсов категории P_1 меди и цинка, а также попутных золота и серебра: медь – 350 тыс. т (с содержанием 1,7%), цинк – 610 тыс. т (2,97%), золото – 55,5 т (2,7 г/т), серебро – 553 т (27 г/т).

Полученные результаты позволяют рассчитывать на безусловное выполнение планируемых приростов меди и цинка категории P_1 : меди — 300 и цинка — 600 тыс. т.

В южной части рудопроявления Верхнепогурейское по результатам буровых работ рудная залежь прослежена по падению. Ожидаемый прирост на основе полученных данных составит более 1 млн. т хромовых руд (табл. 4). Дальнейшие геологоразведочные работы бу-

дут сосредоточены на оконтуривании рудного тела по простиранию и падению (рис. 12).

В рамках подпрограммы Минпромторга «Развитие промышленности редких и редкоземельных металлов» проведены оценочные работы на трех крупных редкометалльных месторождениях. Предварительно оценены запасы ниобия, тантала, редких и редкоземельных металлов. Все контракты выполнены в срок и в полном объеме. Не завершены работы на Куларкинском рудопроявлении в связи с сокращением финансирования работ по программе (табл. 5).

За прошедший период в рамках заключенного в марте 2001 г. контракта на разведку железомарганцевых конкреций (ЖМК) с Международным органом по морскому дну (МОМД) продолжались геологоразведочные работы на российском месторождении ЖМК в зоне Кларион-Клиппертон Тихого океана.

Обеспечена подготовка материалов и подача в МОМД заявок на разведку глубоководных полиметаллических сульфидов (ГПС) в районе Срединно-Атлантического хребта Атлантического океана и кобальтоносных железомарганцевых корок (КМК) в районе Магеллановых гор Тихого океана.

В октябре 2012 г. и марте 2015 г. заключены с МОМД соответствующие контракты на разведку и начаты работы по их выполнению.

Общий ресурсный потенциал океанских руд приведен на рис. 13.

К настоящему времени в зоне ответственности России накоплен значительный потенциал океанских руд. Пришло время перехода на следующие стадии работ, для чего необходим поиск новых организационных и технических решений для их реализации.

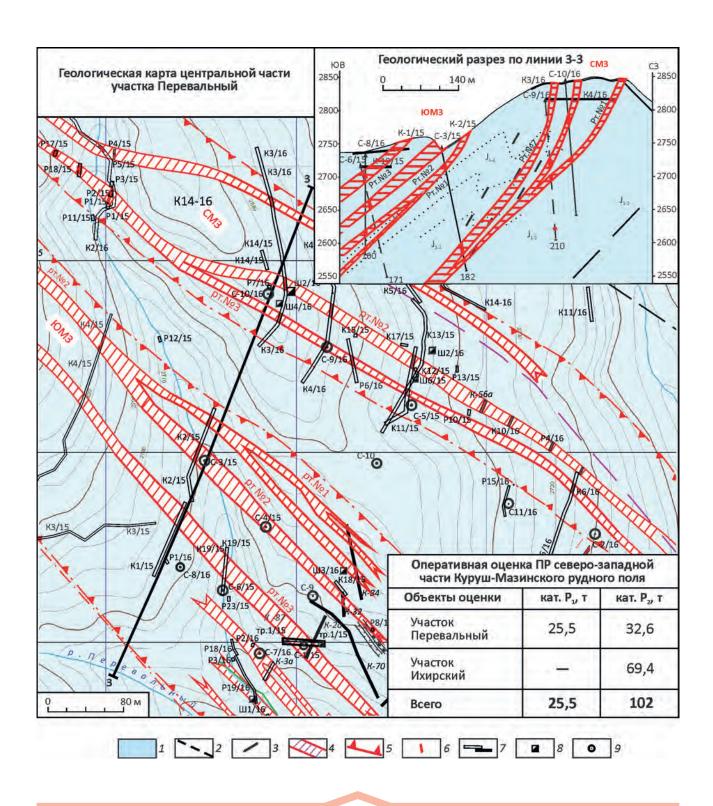


Рис. 10. Положение минерализованных зон и рудных тел золотосульфидно-кварцевого оруденения по результатам поисковых работ на рудное золото в северо-западной части Куруш-Мазинского рудного поля (Республика Дагестан):

¹ — ранне-среднеюрские терригенные и вулканогенно-терригенные отложения; 2 — разрывные нарушения; 3 — жильно-прожилковые кварц-сульфидные образования; 4 — рудные тела; 5 — граница минерализованных зон; 6 — рудные интервалы со средними содержаниями Au 1,5—5,9 г/т (по данным пробирного анализа проб); 7 — канавы, расчистки, траншеи; 8 — шурфы; 9 — скважины поискового бурения; минерализованная зона: СМЗ — Северная и ЮМЗ — Южная; 3-3 — линия геологического разреза

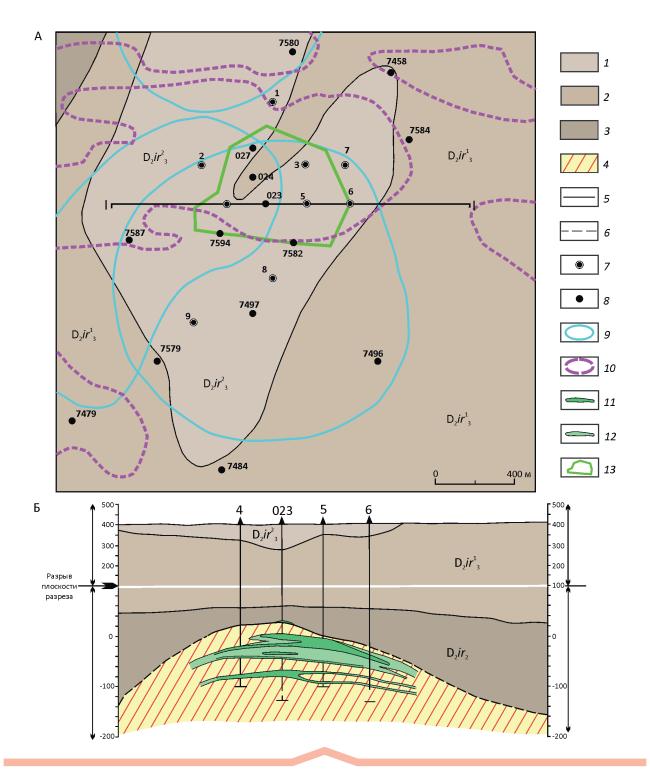


Рис. 11. Фрагмент геологической карты Новопетровской площади (A) и разрез по линии I-I (Б) с показом позиции глубокозалегающих колчеданных залежей (370–500 м) и их отражение в геофизических полях:

постколчеданные образования ирендыкской свиты: 1 – третья толща, верхняя подтолща, андезиты, 2 – третья толща, нижняя подтолща, андезиты, андези-дациты, дациты, их туфы, горизонты вулканогенно-осадочных пород, 3 – вторая толща, туфы андезитов, андези-базальтов, туфы смешанного состава; метасоматически измененные породы: 4 – серицит-хлорит-кварцевые породы по вулканическим образованиям средне-кислого состава рудовмещающей толщи баймак-бурибаевской свиты; геологические границы: 5 – установленные и 6 – предполагаемые; скважины (и их номера), пробуренные в ходе: 7 – реализации проекта, 8 – предшествующих поисковых работ; аномалии: 9 – МЗЭП, 10 – СГ-ВП; 11 – сплошные массивные колчеданные медно-цинковые руды; 12 – прожилково-вкрапленные и густо-вкрапленные медно-цинковые руды; 13 – контур подсчета прогнозных ресурсов P_1

4. Оценка параметров рудной залежи

Категория прогнозных ресурсов			Ожидаемое содержание Ср ₂ О ₃ , %	Ресурсы хромовых руд, тыс. т
\mathbf{P}_{1}	7,6	240	~30%	1116

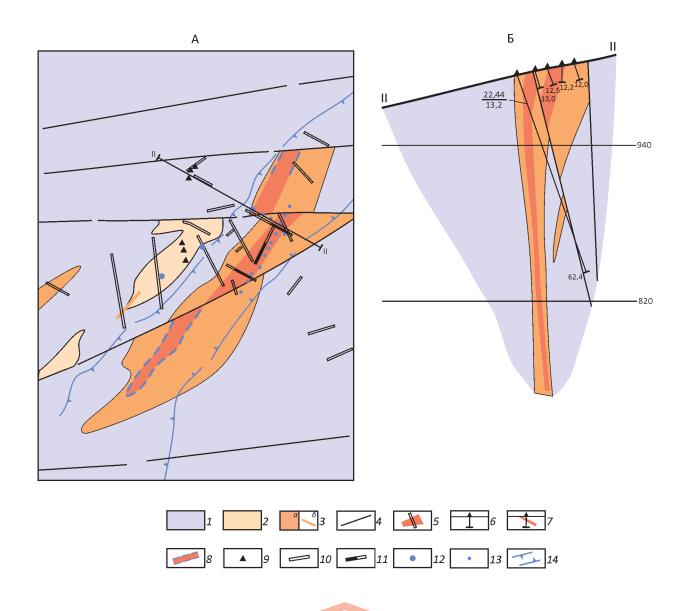


Рис. 12. Схематический геологический план южной части рудопроявления Верхнепогурейское (A) и разрез по профилю II (Б):

гарцбургиты с выделением дунитов в количестве: 1 –до 10%, 2->10%; 3- дунитовые тела в масштабе (a), изображение обособлений и тел дунитов вне масштаба (b); 4- тектонические нарушения; 5- рудная залежь хромитов в плане; 6- буровые скважины в разрезе и их глубина; 7- рудная залежь хромитов в разрезе и характеристика рудного пересечения по скважине (числитель — среднее содержание (b) Сг $_2$ 0 $_3$, знаменатель — горизонтальная мощность (b) рудной залежи по скважине); b0- прогнозируемый контур рудной залежи и тел хромитов в плане; b0- развалы хромовых руд; b0- канавы; b1- место отбора бороздовых проб по забою канавы; буровые скважины и их номера: b1- поисковые в плане с проекциями на дневную поверхность, вскрывшие хромиты, b1- картировочно-поисковые в плане; b1- перспективная зона на выявление тел хромитов

Объекты	Полезное ископаемое	С ₁ , тыс. т	С ₂ , тыс. т	Р ₁ , тыс. т
	ΣTR_2O_3	921	1850	6173
Оценочные работы на Северном и Южном участках Томторского	$\mathrm{Nb_2O_5}$	107	334	1142
рудного поля (Республика Саха	Y_2O_3	30	68	231
(Якутия))	$\mathrm{Sc_2O_3}$	1	2	5,6
	ΣTR_2O_3	484	699	493
Поисковые и оценочные работы	$\mathrm{Nb_2O_5}$	74	130	33
на Чуктуконском рудном поле (Красноярский край)	Y_2O_3	17	26	10
	$\mathrm{Sc_2O_3}$	1	2	1
Поисковые и оценочные работы на редкометалльном проявлении Отбойное (Иркутская область)	$\mathrm{Ta_2O_5}$	2	8	

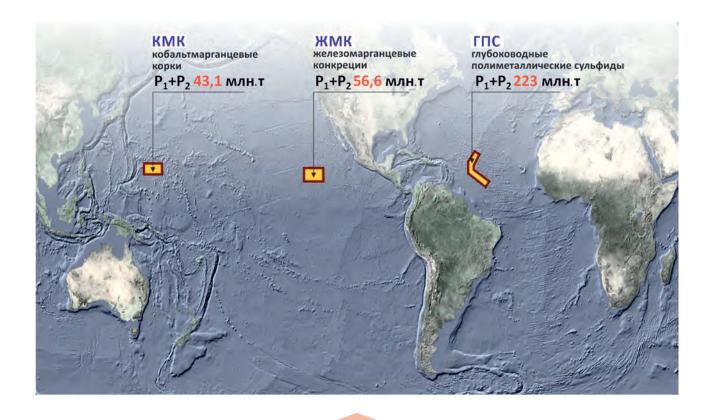


Рис. 13. Общий ресурсный потенциал океанских руд (сухой рудной массы)

В ходе рассмотрений итогов геологоразведочных работ за 2016 г. по ряду объектов был выявлен видимый отрицательный результат и невозможность достижения целевого назначения работ (табл. 6).

Основные причины снижения качества робот:

сокращение сроков работ вследствие несвоевременного утверждения проектно-сметной документации;

нарушение методики и последовательности проведения ГРР, предусмотренной техническим (геологическим) заданием;

6. Итоги года

Объекты		Результаты	Полезные ископаемые
	Завершающиеся объекты (25)	Положительные результаты (12)	Угли (1) Уран (2) Черные металлы (4) (в том числе морские работы – 3) Цветные металлы (2) Благородные металлы и алмазы (2) Неметаллические ТПИ (1)
		Неясные результаты (1)	Благородные металлы (1)
Всего объектов ГРР (в том числе новых объектов – 6, тематические работы – 1) (90)		Отрицательные результаты (12)	Уран (1), обнаружено рудопроявление барита, отвечающее среднему–крупному месторождению) Редкие металлы (2) Благородные металлы и алмазы (8) Неметаллические ТПИ (1)
	Переходящие объекты (58)	Положительные результаты (12)	Черные металлы (1) Цветные металлы (4) Благородные металлы и алмазы (3) Неметаллические ТПИ (4)
		Неясные результаты (43)	Уран (3) Черные металлы (2) Цветные металлы (3) Благородные металлы и алмазы (32) Неметаллические ТПИ (3)
		Отрицательные результаты (3)	Цветные металлы (1) Благородные металлы и алмазы (1) Неметаллические ТПИ (1)

Примечание. В скобках – число объектов.

Рис. 14. Особенности планирования ГРР на 2017 г. и последующие годы

существенное отставание аналитических (лабораторных) работ по определению содержаний полезных компонентов (более 50% объемов), что не дает возможности оценить целесообразность продолжения работ.

На рис. 14 показано, как снижение финансирования влияет на планирование работ.

В 2018 г. предстоит ввести в работу одновременно 43 новых объекта, к чему надо готовиться заранее, чтобы избежать недостатков действующего цикла работ, основы которого были заложены в 2015 г. при вводе 66 новых объектов.

Планирование на 2017 г. и последующие годы предлагается осуществлять, учитывая следующие факторы: снижение финансирования ГРР;

корректировка ГП ВИПР на основе разрабатываемой Стратегии развития минерально-сырьевой базы Российской федерации до 2030 г.;

необходимость совершенствования организации ГРР;

уточнение задач в сфере геологического изучения и освоения минеральных ресурсов Мирового океана.

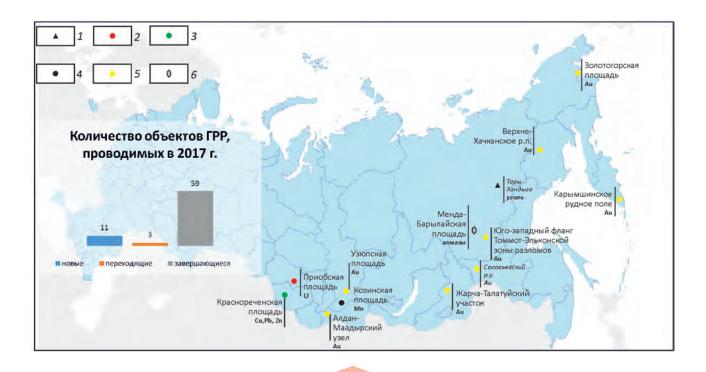


Рис. 15. Новые объекты ГРР, планируемые к постановке за счет федерального бюджета в 2017 г.:

1 – угли; 2 – уран; металлы: 3 – цветные, 4 – черные, 5 – благородные; 6 – алмазы; курсивный шрифт – резервные объекты

Рис. 16.Новые объекты ГРР, планируемые к постановке за счет федерального бюджета в 2018 г.:

см. услов. обозн. к рис. 15

Рис. 17. Выполнение подпрограммы 1 «Воспроизводство минерально-сырьевой базы, геологическое изучение недр» государственной программы «Воспроизводство и использование природных ресурсов» в части твердых полезных ископаемых (в части прогнозных ресурсов)

Приоритетами вложения государственных средств в ГРР будут:

по видам полезных ископаемых – золото, алмазы, серебро, никель, медь, свинец, уран и хромовые руды, по регионам – ДВФО и Забайкалье.

В 2017 г. планируется к постановке 11 объектов геологоразведочных работ на золото, уголь, уран и цветные металлы, сосредоточенные на территории Дальневосточного и Сибирского федеральных округов (рис. 15).

В 2018 г. планируется к постановке 43 объекта геологоразведочных работ, также сосредоточенных в основном на территории Дальневосточного и Сибирского федеральных округов (рис. 16). На новых объектах работы будут проводиться по 11 видам ТПИ (всего 12), из которых на благородные металлы — 23 объекта.

На рис. 17 приведены сведения о возможном выпол-

нении плановых показателей ГП ВИПР в 2020 г. при доведенных лимитах финансирования. Безусловно, государственная программа требует корректировки, которая должна быть проведена в ближайшее время.

В целях совершенствования организации планирования и проведения ГРР предлагается:

- 1. Уточнить приоритетные вложения государственных средств в ГРР в отраслевом региональном разрезе и подготовить предложения по корректировке ГП ВИПР.
- 2. Усилить со стороны Заказчика контроль за проведением ГРР, подготовкой и реализацией регламентирующих документов по осуществлению методического сопровождения ГРР.
- 3. Внести дополнения в Среднесрочный пообъектный план геологоразведочных работ по ТПИ на период до 2020 г. и подготовить его к утверждению.