УДК 550.341.5

ИЗМЕРЕНИЯ ТЕПЛОПРОВОДНОСТИ И УДЕЛЬНОЙ ТЕПЛОЕМКОСТИ НА ПРИМЕРЕ ВУЛКАНОГЕННЫХ ГОРНЫХ ПОРОД

© 2014 г. А. В. Кирюхин, А. Ю. Поляков, А. В. Мушинский

Институт вулканологии и сейсмологии ДВО РАН 683006 Петропавловск-Камчатский, бульвар Пийпа, 9, e-mail: avk2@kscnet.ru Поступила в редакцию 05.10.2012 г.

Разработаны лабораторная установка и метод определения теплофизических свойств (теплопроводности и удельной теплоемкости) цилиндрических образцов горных пород. Метод основан на инверсионном iTOUGH2-EOS3 моделировании по данным измерений температур внутри образцов в результате их кратковременного нагрева с последующим восстановлением начальной температуры. Выполнены оценки теплопроводности и удельной теплоемкости для коллекции петротипов вулканогенных пород, слагающих Рогожниковский вулканогенный нефтяной резервуар (29 образцов). Среднее значение теплопроводности сухих горных пород составляет 1.47 Вт/м °С, среднее значение удельной теплоемкости – 754 кДж/кг °С, воспроизводимость оценивания – 2.2% для теплопроводности и 0.7% для удельной теплоемкости.

DOI: 10.7868/S0203030614050046

ВВЕДЕНИЕ

Лабораторное определение тепловых и петрофизических свойств горных пород является фундаментальной задачей геотермальных исследований, так как на этих параметрах основываются различные геодинамические модели, подсчет геотермальных ресурсов и эксплуатационных запасов геотермальных месторождений, модели тепломассопереноса и различные технологии, связанные с извлечением и закачкой флюидов (пара, воды, нефти, газа и др.), особенно в подземных резервуарах трещинно-блокового строения. В 1980-ые годы В.М. Сугробовым и Ф.А. Яновским [Яновский, 1989] в Институте вулканологии ДВО АН СССР было налажено лабораторное измерение коэффициента теплопроводности горных пород и проанализировано более 200 образцов. По этим данным теплопроводность вулканогенно-осадочных пород из керна скважин Камчатки изменяется от 1.0 до 2.4 Вт/м °С. Вместе с тем, при оценке геотермальных ресурсов Камчатки В.М. Сугробовым удельная тепловая емкость флюидонасыщенных горных пород принималась равной 2.5–2.7 Дж/см³ °С по литературным данным, что снижает достоверность выполненных оценок.

Теплофизические свойства горных пород необходимы также для понимания механизма формирования нефтяных вулканогенных резервуаров, обнаруженных в последние годы в Западной Сибири, и организации их рациональной эксплуатации (при вытеснении исходной нефтяной фазы закачкой воды). Одним из таких резервуаров является Рогожниковский нефтяной вулканогенный резервуар [Чирков и др., 2011], сложенный пермо-триасовыми вулканогенными породами, характеризующийся гидротермальной деятельностью с температурой 120–140°С и давлением 310–320 бар.

Используемый метод определения коэффициента теплопроводности и удельной теплоемкости горных пород базируется на приложении инверсионного моделирования iTOUGH2 к зондовому прослеживанию распространения и релаксации фронта температурной волны в исследуемом образце.

ИСХОДНЫЕ ДАННЫЕ

Образцы для исследований получены из керна скважины Рогожниковской нефтяной вулканогенной залежи с глубины 2580—2800 м. Геохимические свойства Рогожниковских вулканогенных пород описаны в [Шадрина, 2009], они охарактеризованы как риолитовые туфы, лавы и брекчии, состоящие из следующих основных минеральных фаз: кварц (объемная фракция 27%), К-полевой шпат (23%), альбит (28%). Оптические петрологические исследования показывают значительные гидротермальные изменения.

В качестве исходных данных для выполнения измерений коэффициентов теплопроводности и удельной теплоемкости использовались образцы, представляющие собой цилиндры со средним диаметром 50 мм и средней высотой 50 мм. Для каждого образца в Тюменьском отделении Сургутского научно-исследовательского института нефтяной промышленности (ТО СургутНИПИНефть) предварительно выполнено определение минеральной и объемной плотности, пористости и проницае-

Рис. 1. Лабораторная установка.

мости (средняя пористость и проницаемость – 0.17 и 1.78 мД соответственно) (табл. 1).

ЛАБОРАТОРНАЯ УСТАНОВКА ДЛЯ ОПРЕДЕЛЕНИЯ ТЕПЛОПРОВОДНОСТИ И УДЕЛЬНОЙ ТЕПЛОЕМКОСТИ ГОРНЫХ ПОРОД

Лабораторная установка состоит из четырех независимых маломощных теплоизолированных нагревателей (тепловые ячейки) мощностью менее 12 Вт (рис. 1), в которых помещаются стандартные цилиндрические образцы горных пород. На рис. 2 изображено устройство индивидуальной тепловой ячейки, использующейся для лабораторных испытаний.

Нагрев осуществляется с нижней торцевой части, которая однородно зачернена (сажа). Измерение температуры производится в верхней торцевой части через отверстие диаметром 2.4 мм и глубиной 10 мм при помощи четырех цифровых термометров Hioki 3447-01 (точность измерения температуры 0.1°С). (рис. 3, 4) Для улучшения термоконтакта зонда использовалась теплопроводящая паста КПТ-8 (коэффициент теплопроводности пасты при 20°С не менее 0.7 Вт/м °С).

Для обеспечения постоянной начальной температуры эксперимента установка с образцами и регистрирующими термометрами выстаивалась в течение 18 ч до начала эксперимента в специальном подземном лабораторном помещении, в котором обеспечивались минимальные суточные колебания температуры (не более 0.5°C). Реги-

Рис. 2. Тепловая ячейка.

страция температуры термозондом осуществлялась с временным интервалом 10 с, начиналась за 5 мин до включения нагревателя (регистрировалась начальная температура образца), затем на 10 мин включался тепловой источник и регистрировалось прохождение температурной волны через образец, далее регистрировалось восстановление температуры в течение 3-х ч.

Рис. 3. Конфигурация лабораторной установки: 1, 2, 3, 4 – номера тепловых ячеек. Черные кружки – на-греватели, серые участки – теплоизоляция, крестики – термозонды.

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 5 2014

На верхнем торие показано местоположение зонда термометра, использующегося для регистрации температурного фронта, перемещающегося от теплового ис-гочника, размещенного в нижнем торце образца. Вычислительная сетка состоит из 26-ти горизонтальных слоев (LAYERS) и 12-ти радиальных зон (COLUMNS). Рис. 4. Геометрия вычислительной сетки, использующейся для моделирования прохождения температурного фронта в цилиндрическом образце.

Таблица нефтяно	1. Оценка теплопроводности λ_r^i (Вт/м °С) и удельной тепло резервуара	лоемка	ости С ^і	кДж/н	ar °C) e	образцо	в горні	л поре	д Рог	инжо	KOBCK(ого вул	қаноген	ного
Nº	Описание образцов	ф	ρ_R	k	λ_r^1	C_r^1	λ_r^2	C_r^2	λ_r^3	C_r^3	Сред	ение	STD	
ооразда											λ_r	C,	λ_r	Ċ,
1	Сфералоидный эффузив со слабым запахом нефти	12.2	2.64	0.26	1.66	828	1.67	828			1.67	828	0.007	0.4
3	Кластолава неравномерно кавернозная с запахом нефти	16.4	2.63	0.95	1.48	766	1.48	761			1.48	764	0.0001	4.1
5	Эффузивная порода интенсивно нефтенасыщенная	18.95	2.59	19.50	1.46	804	1.46	800	1.47	801	1.46	802	0.006	2.1
9	Эффузивная порода кислого состава неравномерно нефтенасыщенная	10.4	2.64	0.10	1.71	723	1.86	735			1.79	729	0.106	8.3
8	Кластолава участками сильно кавернозная с запахом нефти	16	2.65	0.15	1.6	723	1.6	725			1.6	724	0.0001	1.6
6	Кластолава участками пористо-кавернозная с запахом нефти	19.2	2.6	1.95	1.39	753	1.46	758			1.43	756	0.049	3.6
10	Кластолава неравномерно кавернозная с запахом нефти	16.1	2.62	0.72	1.58	755	1.58	755			1.58	755	0.0001	0.1
11	Эффузивная порода кислого состава неравномерно слабо нефтенасыщенная	15.49	2.6	0.42	1.55	779	1.55	782	1.54	772	1.55	778	0.006	5.1
13	Кластолава участками сильно кавернозная с запахом нефти	16.7	2.61	0.12	1.56	772	1.58	677			1.57	776	0.014	4.8
14	Кластолава неравномерно нефтенасыщенная	17.2	2.63	0.15	1.66	881	1.66	881			1.66	881	0.0001	0.2
16	Кластолава неравномерно кавернозная с запахом нефти	8.8	2.36	0.66	1.41	769	1.44	778			1.43	774	0.021	9
17	Эффузивная порода кислого состава прослоями крупнопористая со слабым запахом нефти	10.51	2.61	0.22	1.58	724	1.54	727	1.57	727	1.56	726	0.021	1.7
18	Кластолава со слабым запахом нефти	14.9	2.64	0.35	1.53	736	1.53	730			1.53	733	0.0001	4.5
19	Кластолава слойками крупнопористая с запахом нефти	22.7	2.62	0.84	1.36	768	1.39	771			1.38	769	0.021	2.4

30

КИРЮХИН и др.

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 5 2014

Окончание	
Таблица 1.	

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 5 2014

N₀ Notragua	Описание образцов	÷	ρ_R	k	λ_r^1	C_r^1	λ_r^2	C_r^2	λ_r^3	C_{r}^{3}	Сред значе	нее	STD	
вдевдоо											λ,	C,	λ,	C,
20	Эффузивная порода интенсивно нефтенасыщенная	20.9	2.6	12.50	1.37	731	1.36	724			1.37	727	0.007	5
22	Кластолава с запахом нефти	12.2	2.62	0.05	1.59	714	1.67	719			1.63	716	0.057	3.4
24	Туф кавернозный с запахом нефти	20.2	2.61	0.40	1.39	776	1.42	777			1.41	777	0.021	0.8
27	Эффузивная порода сильно кавернозная интенсивно нефтенасыщенная	19.7	2.63	0.26	1.37	745	1.37	745			1.37	745	0.0001	0.3
28	Туф с запахом нефти	18.5	2.62	0.15	1.44	751	1.45	751			1.45	751	0.007	0.1
29	Эффузивная порода кавернозная нефтенасыщенная	19.8	2.56	0.24	1.36	708	1.37	706			1.37	707	0.007	1.3
30	Эффузивная порода прослоями сильно кавернозная с запахом нефти	22	2.59	0.44	1.35	740	1.36	740			1.36	740	0.007	0.3
31	Туф кавернозный с запахом нефти	19.3	2.6	0.26	1.35	715	1.36	717			1.36	716	0.007	1.1
32	Туф с запахом нефти	18.3	2.61	0.41	1.47	744	1.5	744			1.49	744	0.021	0.5
34	Эффузивная порода неравномерно кавернозная с запахом нефти	21.2	2.61	0.21	1.28	742	1.32	749			1.3	746	0.028	4.9
35	Туф кавернозный с запахом нефти	20.3	2.62	0.33	1.35	767	1.35	767			1.35	767	0.0001	0
36	Туф с запахом нефти	19.8	2.64	0.34	1.49	802	1.5	803			1.5	803	0.007	0.6
38	Лавобрекчия пористая нефтенасыщенная	17	2.59	6.10	1.49	722	1.48	716			1.49	719	0.007	4.2
Примеча) ристость,	ние. φ — пористость, %, ρ _R – минеральная плотность (10 ³ кг/л минеральная плотность и проницаемость по данным Т.А. Кор	³), k – п івиной (роница	змость, сообще	мД, <i>i</i> = ние, 20	1, 2, 3 - 00.	номер и	спытан	ия, ST	D – cī	андарт	ное отк	лонение	. По-

ИЗМЕРЕНИЯ ТЕПЛОПРОВОДНОСТИ И УДЕЛЬНОЙ ТЕПЛОЕМКОСТИ

СБОРКА МОДЕЛИ ДЛЯ ОПИСАНИЯ ЛАБОРАТОРНОГО ЭКСПЕРИМЕНТА, ПАРАМЕТРИЗАЦИЯ МОДЕЛИ И КАЛИБРОВКА ЭКСПЕРИМЕНТАЛЬНОЙ ЛАБОРАТОРНОЙ УСТАНОВКИ С ИСПОЛЬЗОВАНИЕМ ИНВЕРСИОННОГО ІТОUGH2-EOS3 МОДЕЛИРОВАНИЯ

Численная модель базируется на вычислительной программе TOUGH2, разработанной для моделирования многомерных, неизотермических, многофазных, многокомпонентных потоков флюидов в пористой и трещиноватой среде [Pruess et al., 1999]. Реализованные в вычислительной программе TOUGH2 управляющие уравнения многокомпонентного многофазного тепломассопереноса (уравнения сохранения массы и энергии) в трещинно-пористой среде редуцируются применительно к эксперименту по нагреванию образца следующим образом.

Так как образцы высушиваются перед экспериментами, поровое пространство занято в основном воздухом. Следовательно, начальное насыщение газовой фазы (воздуха) может быть задано на модели 0.9999, что соответствует уравнению состояния, реализованному в модуле EOS3 (вода + воздух) вычислительной программы iTOUGH2 [Finsterle, 1999].

Цилиндрический образец рассматривается относительно теплоизолированным с боковой поверхности и на верхнем торце, на нижнем торце задается тепловой поток, равный мощности теплового источника. Потери тепла, происходящие через боковую поверхность и верхний торец цилиндра, учитываются граничными условиями Дирихле, которые заданы с помощью одного внешнего модельного элемента (с фиксированной начальной температурой), соединенного с элементами боковой поверхности и верхнего торца модели.

Радиально-цилиндрическая вычислительная сетка, использующаяся для представления нагреваемого образца и обработки эксперимента, показана на рис. 4. Сетка включает 26 слоев и 12 радиальных зон. Каждый слой имеет мощность 2 мм, радиальные зоны задаются последовательностью логарифмически увеличивающихся радиусов (с коэффициентом 1.165): первый радиус соответствует радиусу зонда 1.2 мм, последний – радиусу цилиндрического образца 25 мм. Нумерация элементов вычислительной сетки осуществлялась с использованием кодового имени элемента модели в формате AI_K, где I - номер слоя (слои нумеровались сверху вниз), К – номер радиальной зоны (от центра к периферии). Термозонд задавался в элементах модели AI 1, где I = 1, 2, 3, 4, 5 определялось глубиной зондировочного отверстия 10 мм.

В качестве известных исходных петрофизических параметров задавались минеральная плотность, пористость и проницаемость (см. табл. 1). Поскольку поровое пространство образцов заполнено воздухом (эксперименты проводились на сухих образцах), в качестве уравнения состояния использовался модуль EOS-3, включающий две фазы: газовую (воздух с парами воды) и водную (вода с растворенным воздухом). В данном уравнении состояния в качестве основных переменных используются три: давление *P*, насыщение газовой фазы (воздух) S_g , температура *T*. Начальные значения: $P = 10^5 \text{ Па}$, $S_g = 0.999$ (образцы сухие). Зависимость теплопроводности λ от насыщения порового пространства водой задавалась формулой:

$$\lambda = \lambda_r + (\lambda_w - \lambda_r) S_w,$$

где λ_w — теплопроводность, насыщенных водой, горных пород, λ_r — теплопроводность сухих горных пород, S_w — насыщение воды.

Процесс нагрева задан постоянной генерацией тепла W в течение ограниченного времени – 10 мин во внешнем элементе модели B, который соединяется с нижними элементами цилиндрического образца AA_K (K = 1, 2, ... 12).

В качестве одиннадцати оцениваемых (неизвестных) модельных параметров рассматривались: теплопроводность λ_r (сухого образца); удельная теплоемкость образца Сг; λ_i , i = 1, 2, 3, 4 – теплопроводность теплоизоляционных покрытий; W_i , i = 1, 2, 3, 4 – мощность тепловых источников; C_p – эффективная удельная теплоемкость термозонда.

Для снижения количества оцениваемых (неизвестных) параметров (W_i , i = 1, 2, 3, 4 — мощность тепловых источников) была произведена калибровка установки на эталонном образце. В качестве эталона использовался цилиндрический образец, изготовленный из плавленого кварца QU1, физические и теплофизические свойства которого известны: теплопроводность 1.38 Вт/м °С, удельная теплоемкость 728 кДж/кг °С, минеральная плотность 2210 кг/м³ (при 25°С) [Richet et al., 1982; Sugawara, 1968].

Для калибровки использован кварцевый эталон, изготовленный ОАО Tydex (www.tydex.ru) с размерами, соответствующими анализируемым образцам (высота 50 мм, диаметр 50 мм, с отверстием диаметром 2.4 мм и глубиной 10 мм в верхней торцевой части).

При калибровке экспериментальной установки эталон перемещался последовательно по четырем тепловым ячейкам лабораторной установки, в каждой ячейке эксперимент по нагреву эталона осуществлялся 3 раза (т.е. по эталону осуществлено всего 12 экспериментов).

По данным эксперимента оценивались следующие девять параметров лабораторной установки: тепловые мощности источников по каждой из четырех ячеек W_i (i = 1, 2, 3, 4 — тепловые источники в каждой ячейке), λ_i (i = 1, 2, 3, 4) эффективные теплопроводности по оболочке каждой из четырех ячеек, контролирующие тепловые потери в окружающую среду и C_p — эффективная удельная тепловая емкость термозонда (см. табл. 1). Оценка производилась методом инверсионного 9-ти параметрического iTOUGH2 моделирования по данным экспериментов с размещением эталона в четырех различных ячейках лабораторной установки (рис. 5). Для оценки воспроизводимости эксперименты повторялись три раза (табл. 2).

Проверка полученных оценок характеристик лабораторной установки (см. табл. 1) осуществлялась оцениванием теплопроводности λ_r и удельной теплоемкости C_r эталонного образца и сравнением полученных оценок с известными характеристиками (табл. 3).

ОЦЕНКА ТЕПЛОПРОВОДНОСТИ И УДЕЛЬНОЙ ТЕПЛОЕМКОСТИ ОБРАЗЦОВ ГОРНЫХ ПОРОД РОГОЖНИКОВСКОГО ВУЛКАНОГЕННОГО НЕФТЯНОГО РЕЗЕРВУАРА

Теплопроводность λ_r и удельная теплоемкость *C_r*образца оценивается с учетом установленных в результате калибровки экспериментальной установки данных: мощности тепловых источников (*W*₁, *W*₂, *W*₃, *W*₄) по каждой из ячеек и *C_p* тепловой емкости зонда (см. табл. 2).

Оценивание λ_r и C_r образца осуществлялось методом 6-ти параметрического инверсионного iTOUGH2 моделирования по данным экспериментов с размещением образца в четырех различных ячейках лабораторной установки (см. рис. 5). В число оцениваемых 6-ти параметров входят: λ_r – теплопроводность образца, C_r – удельная теплоемкость образца, λ_i (*i* = 1, 2, 3, 4) – эффективные теплопроводности первой, второй, третьей и четвертой ячеек, контролирующие тепловые потери в окружающую среду (см. табл. 1). Включение в число оцениваемых параметров эффективных теплопроводностей оболочек ячеек необходимо для учета влияния отклонения индивидуальных геометрических характеристик образцов от диаметра эталона.

Определения теплофизических свойств (теплопроводности и удельной теплоемкости) выполнены для 27 образцов из керна скважин Рогожниковского нефтяного вулканогенного резервуара. Установлено, что среднее значение теплопроводности сухих горных пород составляет 1.47 Вт/м °С, среднее значение удельной теплоемкости — 754 кДж/кг °С.

Брекчии характеризуются средним значением теплопроводности 1.51 Вт/м °С и удельной тепло-

Рис. 5. Сходимость экспериментальных данных (кружки) и результатов моделирования (сплошные линии) (эксперимент #2011-7-LOG-1, табл. 2) в четырех различных ячейках лабораторной установки. Экспериментальные данные и модельные результаты по одним и тем же ячейкам показаны одинаковым цветом.

емкостью 757 кДж/кг °С (11 образцов), лавы – 1.46 Вт/м °С и 752 кДж/кг °С (10 образцов), туфы – 1.42 Вт/м °С и 763 кДж/кг °С (6 образцов).

Сравнение термальных и гидравлических свойств показывает, что существует небольшая корреляции (0.28) между теплопроводностью и пористостью (например, теплопроводность уменьшается с увеличением пористости), при этом другие параметры не обнаруживают статистически значимой зависимости. На рис. 6 и 7 показаны оцениваемые теплофизические свойства (теплопроводность и удельная теплоемкость) в зависимости от глубины отбора образца.

Получена достаточно хорошая воспроизводимость при повторных определениях (стандартное отклонение по теплопроводности 0.006– 0.106 Вт/м °С, по удельной теплоемкости 0.1– 8.3 кДж/кг °С, общая невязка температуры между наблюдаемой и расчетной менее 0.3°С (рис. 8).

КИРЮХИН и др.

Оцениваемый	Dopuenuocti	C	ерии экспериментс)B	Среднее	STD	
параметр	газмерность	#2011-7-LOG-1	#2011-7-LOG-A-1	2011-7-LOG-B-1	значение	51D	
C_p	кДж/кг °С	23 598	23993	24102	23898	265	
λ_1	Вт∕м °С	0.0116	0.0117	0.0116	0.0116	0.0001	
λ_2	Вт∕м °С	0.0107	0.0109	0.0109	0.0109	0.0001	
λ_3	Вт∕м °С	0.0107	0.0107	0.0107	0.0107	0.0000	
λ_4	Вт∕м °С	0.0105	0.0106	0.0107	0.0106	0.0001	
W_1	Вт	6.989	7.057	7.051	7.032	0.038	
W_2	Вт	6.127	6.253	6.293	6.224	0.087	
W_3	Вт	5.279	5.289	5.289	5.286	0.006	
W_4	Вт	5.079	5.118	5.133	5.110	0.028	

Таблица 2. Результаты оценивания тепловых характеристик лабораторной установки по данным экспериментов на эталонном образце методом инверсионного 9-ти параметрического iTOUGH2 моделирования

Примечание. Каждый из вариантов обработки (#2011-7-LOG-1, #2011-7-LOG-A-1, #2011-7-LOG-B-1) соответствует данным экспериментов с размещением эталона в четырех различных ячейках лабораторной установки. STD – стандартное отклонение.

Таблица 3. Проверка оценок расчетных характеристик лабораторной установки методом инверсионного iTOUGH2 моделирования на эталонном образце

Оцениваемый	Размерность	Cej	оии эксперимен	ТОВ	Среднее	STD
параметр	Тазмерноств	#2011-8	#2011-8-A	#2011-8-B	значение	510
λ_r	Вт∕м °С	1.386	1.364	1.358	1.369	0.015
C _r	кДж/кг °С	732.9	723.8	722	726.2	5.8

Примечание. Каждый из вариантов обработки (#2011-8, #2011-8-А, #2011-8-В) соответствует данным экспериментов с размещением эталона в четырех различных ячейках лабораторной установки. STD — стандартное отклонение.

ВЕРИФИКАЦИЯ И СРАВНЕНИЕ С ТЕПЛОВЫМИ СВОЙСТВАМИ РЕЗЕРВУАРОВ АНАЛОГОВ

Для определения тепловых свойств горных пород разработано несколько методов [Фокин и др., 2004; Clauser et al., 1995; Popov et al., 1999].

Десять образцов Рогожниковского вулканогенного резервуара исследованы в Российском государственном геологоразведочном университете (РГГРУ-МГРИ) Ю.А. Поповым методом оптического сканирования, заключающемся в бесконтактном измерении излучаемой температуры образца, бесконтактно нагретым точечным источником калиброванной мощности. Средняя теплопроводность образцов составила 1.43 Вт/м °С, удельная теплоемкость 837 кДж/кг °С. Значения теплопроводности близки к полученным нами результатам (см. выше).

В США на протяжении более тридцати лет осуществляется изучение полигона в горах Якка (Невада) [Pruess, 2001] в связи с его предполагаемым использованием для длительного хранения высокоактивных радиоактивных отходов. Горы Якка сложены комплексом трещинноватых риолитовых туфов неогенового возраста (12.5 млн лет), характеризующихся переслаиванием мощных пачек спекшихся и неспекшихся туфов со слабонаклонным залеганием (углы падения 6–7.5 град), осложненных разломами субмеридионального направления.

Рис. 6. Теплопроводность в зависимости от глубины. L – лавы, T – туфы, B – брекчии, L + O – лавы (нефтенасыщенные), B + O – брекчии (нефтенасыщенные).

Спекшиеся туфы характеризуются высокой пористостью порядка 10%, но очень низкой матричной проницаемостью порядка единиц микро-Дарси. Они включают около 10 трещин на м³, при этом средняя проницаемость системы трещин составляет 10 Дарси. Неспекшиеся туфы имеют пористость порядка 30%, разбиты более редкой системой трещин и имеют матричную проницаемость около 100 мД.

Тепловые свойства этих спекшихся туфов оцениваются в пределах 1.12-1.18 Вт/м °С (теплопроводность) и 851-901 кДж/кг °С (удельная теплоемкость), а тепловые свойства неспекшихся туфов – в пределах 0.36-0.75 Вт/м °С и 870-1156 кДж/кг °С [Sass et al., 1988]. Значения теплопроводности спекшихся туфов горы Юкка (1.12-1.18 Вт/м °С) ниже значений пермо-триасовых вулканогенных пород Рогожниковского резервуара (1.47 Вт/м °С), в то время как удельная теплоемкость спекшихся туфов горы Юкка (851-905 кДж/кг °С) больше, чем в Рогожниковском резервуаре (754 кДж/кг °С). Это может объясняться процессами эволюции тепловых свойств горных пород в результате их старения.

ОЦЕНКА ТЕПЛОПРОВОДНОСТИ И УДЕЛЬНОЙ ТЕПЛОЕМКОСТИ ВУЛКАНОГЕННЫХ ПОРОД КАМЧАТКИ

В качестве исходных использованы образцы, отобранные на геотермальных месторождениях Камчатки.

Для определения тепловых свойств использовалось восемь цилиндрических образцов диаметром 49 мм и высотой 48–51 мм горных пород (табл. 4).

Рис. 7. Удельная теплоемкость в зависимости от глубины.

L – лавы, T – туфы, B – брекчии, L + O – лавы (нефтенасыщенные), B + O – брекчии (нефтенасыщенные).

Определение минеральной плотности осуществлялось пикнометрическим методом; определение объемной плотности — весовым методом; по этим данным осуществлялся расчет пористости в

Рис. 8. Сходимость экспериментальных данных (кружки) и результатов моделирования (сплошные линии) (образец № 8, табл. 1). Экспериментальные данные и модельные результаты по одним и тем же ячейкам показаны одинаковым цветом.

КИРЮХИН и др.

№ п/п	Шифр образца	Дата отбора	Название породы	Место отбора образца
1	AK 28-09-2009	28.09.2009	Риодациты	Пиначевский экструзивный купол, 3 км вверх по течению ручья от Пиначевских источников
2	AK 2008-043	2008	Туфы	Долина Гейзеров, ручей Ступенчатый; N54.43728 E160.14897, 482 м
3	AK 2607-2007-1	26.07.2007	Блоки туфов	Долина Гейзеров, плотина
4	21	23.07.2008	Туфы	Долина Гейзеров
5	DG	13.09.2010	Блоки туфов	Долина Гейзеров, тело оползня
6	DG140	15.09.2010	Блоки туфов	Долина Гейзеров, тело оползня N54.43403 E160.12939
7	DG138	15.09.2010	Блоки туфов	Долина Гейзеров, тело оползня N54.43263 E160.13318
8	DG139	15.09.2010	Блоки туфов	Долина Гейзеров, тело оползня

Таблица 4. Каталог проб, по которым выполнялись определения тепловых и петрофизических свойств

Таблица 5. Оценка теплопроводности λ_r^i (Вт/м °С) и удельной теплоемкости C_r^i (кДж/кг °С) образцов вулканогенных пород Камчатки

N⁰	φ	0-	k	2 ¹	C^1	λ^2	Среднее	значение	ST	٢D
образца	Ψ	PR	ĸ	\wedge_r	C_r	\mathcal{N}_{r}	λ_r	C_r	λ_r	C _r
21	47.98	2.12	1.000	1330.0	1.500	1200.0	1.25	1265	0.354	91.9
DG	12.85	2.44	1.360	676.9	1.360	676.9	1.36	888	0.000	0.0
DG140	53.39	1.99	1.700	1200.0	1.800	1200.0	1.75	1245	0.071	0.0
DG138	43.80	2.11	0.687	1100.0	0.534	1148.0	0.61	951	0.108	33.9
DG139	29.67	1.68	0.872	1290.0	0.844	1140.0	0.86	1066	0.020	106.1
AK 2008-043	7.20	2.52	1.150	802.9	1.080	769.1	1.12	765	0.049	23.9
AK 2607-2007-1	12.53	2.66	1.070	841.0	0.999	800.2	1.03	841	0.050	28.8
AK 2809-2009	10.41	2.72	0.981	728.0	0.931	700.0	0.96	728	0.035	19.8

Примечание. ϕ – пористость, %, ρ_R – минеральная плотность (10³ кг/м³), i = 1, 2, 3 – номер испытания, STD – стандартное отклонение. Минеральная плотность определена Н.П. Богатко и О.М. Топчиевой пикнометрическим методом в ИВиС ДВО РАН.

соответствии с лабораторным регламентом. Определения плотности и пористости по пробам из тех же образцов осуществлялись Н.П. Богатко и О.М. Топчиевой, петрографическое описание Ю.М. Пузанковым в 2011 в ИВиС ДВО РАН (табл. 5).

ЗАКЛЮЧЕНИЕ

1. Разработаны лабораторная установка и метод определения теплофизических свойств (теплопроводности и удельной теплоемкости) цилиндрических образцов горных пород. Метод основан на инверсионном iTOUGH2-EOS3 моделировании по данным измерений температур внутри образцов в результате их кратковременного нагрева с последующим восстановлением начальной температуры. Метод проверен на эталонном образце с известными теплофизическими свойствами (кварц QU1), точность оценивания (2σ) составила 2.2% для теплопроводности и 1.6% для удельной теплоемкости (см. табл. 3).

2. Выполнены оценки теплопроводности и удельной теплоемкости для коллекции петротипов вулканогенных пород, слагающих Рогожниковский вулканогенный нефтяной резервуар (29 образцов). Среднее значение теплопроводности сухих горных пород составляет 1.47 Вт/м °С, среднее значение удельной теплоемкости 754 кДж/кг °С. Воспроизводимость оценивания составила 2.2% для теплопроводности и 0.7% для удельной теплоемкости.

СПИСОК ЛИТЕРАТУРЫ

Фокин В.М., Чернышев В.Н. Неразрушающие методы оценки тепловых свойств строительных материалов. М.: Машиностроение, 2004. 212 с.

Чирков В.Л., Горбунов И.Н., Шадрина С.В. и др. Геохимические и термогеодинамические критерии для оценки месторождений нефти и газа Западно-Сибирской платформы // Нефтяная промышленность. 2011. № 4. С. 41–45.

Шадрина С.В. Вулканиты Рогожниковского ЛУ (западное обрамление Западно-Сибирской геосинеклизы) // Материалы Всероссийской научной конференции. Томск, 2009. С. 325–328.

Яновский Ф.А. О теплопроводности вулканогенно-осадочных пород Камчатки // Вулканология и сейсмология. 1989. № 5. С. 77–84.

Clauser C., Huenges E. Thermal Conductivity of Rocks and Minerals, Rock Physics and Phase Relations, A Handbook of Physical Constants: AGU Reference. 1995. Shelf 3. 22 p.

Finsterle S. iTOUGH2 User's Guide // Lawrence Berkeley National Laboratory report LBNL-40040. Berkeley. CA. USA. 1999. 130 p.

Popov Yu. A., Pribnow D.F.C., Sass J.H. et al. Characterization of rock thermal conductivity by high–resolution optical scanning // Geothermics. 1999. V. 28 P. 253–276.

Pruess K., Oldenburg C., Moridis G. TOUGH2 User's Guide, Version 2.0 // Lawrence Berkeley National Laboratory report LBNL-43134. Berkeley. CA. USA. 1999. 198 p. *Pruess K.* Two-Phase Unsaturated Flow at Yucca Mountain, Nevada: A Report on Current Understanding. Flow and Transport Through Unsaturated Fractured Rock. 2-nd Edition Geophysical Monograph. 2001 V. 42. P. 113–133.

Richet P., Bottinga Y., Denielou L. et al. Thermodynamic properties of quartz, cristobalite and amorphous SiO₂: drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K //Geochimica et Cosmochimica Acta. 1982. V. 46. P. 2639–2658.

Sass J.H., Lachenbruch W.W., Dudley Jr. et al. Temperature, Thermal Conductivity and Heat Flow near Yucca Mauntain: Some Tectonic and Hydrologic Implications //Open File Report 87-649. 1988. Denver. Colorado. USGS, TIC: 203195.

Sugawara A. The Precise Determination of Thermal Conductivity of Pure Fused Quartz // J. of Applied Physics. 1968. V. 39. № 13. P. 5994–5997.

MEASUREMENTS OF THERMAL CONDUCTIVITY AND SPECIFIC HEAT IN VOLCANOGENIC ROCKS

A. V. Kiryukhin, A. Yu. Polyakov, and A. V. Mushinskii

Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences, Bul'var Piipa 9, Petropavlovsk-Kamchatskii, 683006 Russia

e-mail: avk2@kscnet.ru Received October 5, 2012

Abstract—A laboratory installation has been developed together with a technique for determining thermophysical properties (thermal conductivity and specific heat) in cylindrical rock specimens. The technique is based on iTOUGH2-EOS3 inversion modeling using temperature measurements inside specimens as a result of their short-term heating and subsequent return to the initial temperature. We estimated the thermal conductivity and specific heat for a collection of volcanogenic petrotypes that reflect the rocks that compose the Rogozhnikovskii volcanogenic oil reservoir (29 specimens). The average thermal conductivity of the dry rocks is 1.47 W/m °C and the average specific heat is 754 kJ/kg °C; the reproducibility of this estimation is 2.2% for thermal conductivity and 0.7% for specific heat.