2018

Геология

ГЕОЛОГИЯ, ПОИСКИ И РАЗВЕДКА ТВЁРДЫХ ПОЛЕЗНЫХ ИСКОПАЕМЫХ, МИНЕРАГЕНИЯ

УДК 549.74

Физико-химические исследования жильных карбонатов Воронцовского золоторудного месторождения

Е.И. Сорока^а, М.Е. Притчин^а, О.Б. Азовскова^а, М.Ю. Ровнушкин^а, В.П. Лютоев^b, И.В. Смолева^b

^а Институт геологии и геохимии УрО РАН, 620016, Екатеринбург,

ул. Акад. Вонсовского, 15. E-mail: soroka@igg.uran.ru

^b Институт геологии Коми НЦ УрО РАН, 167982, Сыктывкар,

ул. Первомайская, 54. E-mail: vlutoev@geo.komisc.ru

(Статья поступила в редакцию 7 июня 2017 г.)

Исследована карбонатная жильная минерализация рудовмещающих пород Воронцовского золоторудного месторождения (Северный Урал), представленная кальцитом и доломитом. Изотопные исследования карбонатов показали тренд облегчения изотопного состава С и О от осадочных известняков к гидротермально измененным породам. Исследования жильных карбонатов методом ЭПР показали, что, судя по сигналам Mn^{2+} в кальците и доломите, они различаются по ширине линий спектра. Облегченным значениям δ^{13} С соответствуют и наиболее широкие линии спектра вхождения Mn^{2+} в карбонаты, характерные для высокодефектных структур карбонатов, которые, вероятно, образовались из рудоносного флюида. В изученной выборке карбонатов наблюдаются 3 вида распределения РЗЭ: 1 – с отрицательной Се-аномалией; 2 – с положительной Еu-аномалией; 3 – пологий тренд, характерный для рудоносных метасоматитов. Отрицательная Се-аномалия может указывать на связь с морскими осадками, положительная Eu-аномалия предполагает магматогенный источник флюида.

Ключевые слова: рудоносные брекчии, карбонаты, Воронцовское золоторудное месторождение, физико-химические методы исследования.

DOI: 10.17072/psu.geol.17.1.41

Введение

Воронцовское золоторудное месторождение расположено вблизи г. Краснотурьинска в северной части Свердловской области. Оно было открыто относительно недавно – в 1985 г., и по ряду минералогогеохимических характеристик отвечает карлинскому типу (Мурзин и др., 2010). Месторождение локализовано в краевой части Ауэрбаховского андезитоидного вулканоплутонического комплекса нижнедевонского возраста (Murzin et al., 2016; Замятина и др., 2016). Вмещающими для золотого оруденения являются мраморизованные и брекчированные рифогенные известняки (а именно карбонатные брекчии с туфогенным цементом) и сопряженные с ними вулканогенно-осадочные образования (туфоалевролиты, туфопесчаники) краснотурьинской свиты (нижний девон, эмс). Развитые на месторождении

[©] Сорока Е.И., Притчин М.Е., Азовскова О.Б., Ровнушкин М.Ю., Лютоев В.П., Смолева И.В., 2018

дайки образуют штокверковую систему (рис. 1), состав их варьирует от габбродолеритового до кварц-диоритового, отмечаются и субщелочные разности. По петрографическим и петрохимическим характеристикам они отнесены к двум сериям – субвулканитам краснотурьинской свиты, и дайкам и малым интрузиям ранних фаз ауэрбаховского комплекса (Murzin et al., 2016).

Существуют различные взгляды на генезис Воронцовского месторождения. Большинство исследователей в той или иной степени связывают оруденение с магматогенно-гидротермальной деятельностью, рассматривая его как часть медно-порфировой системы на (мезо)-эпитермальном уровне. В.В. Мурзиным с соавторами (Мурзин и др., 2010) предложена 3-этапная модель формирования месторождения. На 1-м этапе происходил

подогрев вод в осадках, которые извлекали золото; 2-й этап – внедрение интрузий ауэрбаховского комплекса, которое вызвало перемещение золотоносных флюидов в краевые части системы в мраморизованные известняки; на 3-м этапе произошел подток магматогенного флюида, обогащенного Pb, Zn, Ag. Вблизи контакта с малыми интрузиями ауэрбаховского комплекса были сформированы золотоносные скарны и кварцевые жилы. Имеются также отчетливые признаки связи золотого оруденения с проявлениями эндогенной активности в период мезозойской тектоно-магматической активизации (Баранников и др., 2016). В ряде работ, посвященных Воронцовскому месторождению (Баранников, 2003; Грязнов, 1997; Савельева, 1991; Сазонов и др., 1991, 1998), этот объект рассматривается как полигенный и полихронный.

Рис. 1. Общий вид серии даек в бортах Северного карьера Воронцовского месторождения золота

Методы и результаты исследований

Жильная карбонатная минерализация на Воронцовском месторождении приурочена к тектоническим нарушениям, границам раздела пород и руд. Пробы были отобраны из жил на контакте с вулканитами и дайками основных пород и из карбонатных жил в рудоносных метасоматитах.

Количественный рентгенофазовый анализ (РФА) монофракций карбонатов был

выполнен на рентгеновском дифрактометре XRD-7000 (Shimadzu) в лаборатории физико-химических методов исследований (ФХМИ) Института геологии и геохимии (ИГГ) УрО РАН (аналитик О.Л. Галахова). Расчет содержаний минерала в пробе (мас.%) был проведен при помощи программы SIROQUANT (табл. 1). Изотопные анализы, исследования образцов методами ИК спектроскопии и ЭПР проводились в ЦКП «Геонаука» Института геологии Коми НЦ УрО РАН.

N⁰	Образец, место отбора	Минеральный	δ ¹³ C,	δ ¹⁸ O, ‰
пп		состав по дан-	‰	SMOW
		ным РФА, мас.%	PDB	
1	Вор 2/15, жила в туфоалевролитах, Южный ка-	100 Clc	-2.66	13.24
	рьер, южный борт, гор. 125			
2	Вор 3/15, жила в туфоалевролитах, там же	73 Dlt, 14 Qtz, 11	-2.53	15.97
		Clc, 2 Klt		
3	Вор 6/15 жила в тектоническом контакте с дай-	81 Mg-Clc, 17 Qtz,	-1.20	14.69
	кой лампрофиров в туфоалевролитах, там же	2 Chl, Pyr		
4	Вор 7/15к, альцит (97), кварц, из туфоалевроли-	97 Clc, 3 Qtz	0.45	17.51
	тов, Южный карьер, южная часть, гор. 125			
5	Вор 9/15ж, жила из контакта известняков с вул-	58 Qtz, 29 Dlt, 9	-1.31	14.89
	канитами, Северный карьер, северная часть, гор.	Clc, 4 Klt		
	55			
6	Вор 10/15, жила, там же	93 Clc, 6 Qtz, 2 Dlt	0.05	15.12
7	Вор 12/15, жила из тектонического контакта ру-	80 Clc, 16 Dlt, 4	-1.20	13.44
	доносных брекчий известняков с вулканитами,	Qtz,		
	Северный карьер, северная часть, гор. 50			
8	Вор 14/15, жила из контакта известняков и дай-	49 Dlt, 39 Clc, 12	-4.51	12.95
	ки пород основного состава, там же	Qtz,		
9	Вор17/15, кальцит из обеленного известняка,	99 Clc, 1 Qtz	1.17	23.36
	там же			
10	Bop1a/16, известняк на контакте с дайкой ос-	99 Clc, 1 Qtz	0,9	17,83
	новного состава, сев. борт, Северный карьер			
11	Вор 3/16, известняк, вост.борт, Южный карьер	97 Clc, 3 Dlt	1,41	24,39
12	Вор 4/16, известняк, вост. борт, Южный карьер	95 Clc, 3 Dlt	-2,96	15,28
13	Вор 5/16, известняк, зап.борт, гор.165, Южный		1,41	22,19
	карьер	99 Clc, 1Dlt		
14	Вор 6/16, известняк	90 Clc, 1 Qtz	1,11	24,21
15	Вор 7а/16, известняк	92 Clc, 6 Chl, 2 Qtz	1,06	20,21
16	Вор7б/16, известняк	92 Clc, 6 Chl, 1 Klt	1,02	19,34

Таблица 1. Изотопный состав карбонатов Воронцовского месторождения

Примечание. Clc – кальцит, Dlt – доломит, Qtz – кварц, Klt – каолинит, Chl – хлорит.

Разложение карбонатов в ортофосфорной кислоте и измерение изотопного состава углерода и кислорода методом проточной масс-спектрометрии в режиме постоянного потока гелия (CF-IRMS) производились на аналитическом комплексе фирмы ThermoFisher Scientific (Бремен, Германия), включающем систему подготовки и ввода проб GasBench II, соединенную масс-спектрометром DELTA V Advantage. Значения δ^{13} С даны в промилле относительно стандарта PDB, $\delta^{18}O$ – стандарта SMOW. При калибровке использованы международные стандарты NBS 18 и NBS 19. Ошибка определения δ^{13} С и δ^{18} О составляет ±0.15‰ (1 σ). Результаты представлены в табл. 1.

Анализы проб на РЗЭ и элементыпримеси выполнялись в лаборатории ФХМИ ИГГ УрО РАН методом массспектрометрии с индуктивно связанной плазмой (ICP-MS) на масс-спектрометре ELAN 9000 (аналитики Н.В Чередниченко, Л.К Дерюгина). Результаты приведены в табл. 2.

Исследования жильных карбонатов методом ЭПР проводились на радиоспектрометре SE/X-2547 Radio PAN. Спектры ЭПР записывались с порошковых навесок 20-40 мг исходных и прогретых образцов при температурах 350 и 600° С в течение 30 мин.

Элемент	Bop	Bop 3/15	Bop 6/15	Bop 7/15	Bop 9/15	Bop	Bop 12/15	Bop	Bop
Lo	2/15	30.003	7.034	16 115	5 202	10/15	$\frac{12/15}{2.014}$	14/15	1//15
	11,104	45 022	11 207	10,113	10 297	2 860	2,914	10,090	4,080
Dr.	11,347	43,035	11,297	2 1 2 7	10,387	0 009	0,140	20,390	2,241
ri Nd	1,708	3,000	1,370	3,127 12.067	1,470	0,000	0,092	5,754 16,916	0,394
INU Sm	0,735	25,744	3,872 1,521	12,907	0,425	5,590 0.726	5,018 0,600	10,810	2,328
5III Eu	1,091	2,510	1,321	2,705	1,007	0,750	0,090	4,555	0,550
Eu	0,004	2,008	4,137	0,725	0,370	0,220	0,210	3,434	0,007
Ga	1,240	5,941	1,768	3,342	1,/38	0,983	0,792	4,679	0,399
10 D	0,171	0,856	0,260	0,518	0,272	0,153	0,125	0,654	0,051
Dy	1,083	4,/36	1,633	3,286	1,795	1,051	0,837	3,879	0,326
Ho	0,228	0,880	0,319	0,686	0,376	0,246	0,189	0,723	0,080
Er	0,655	2,137	0,862	1,888	1,100	0,739	0,579	1,882	0,231
Tm	0,085	0,261	0,110	0,241	0,157	0,100	0,080	0,238	0,027
Yb	0,476	1,272	0,670	1,362	1,041	0,638	0,491	1,371	0,131
Lu	0,066	0,186	0,090	0,183	0,154	0,092	0,070	0,173	0,022
Σ REE	36,931	128,83	36,943	63,116	32,098	17,352	16,841	85,954	10,939
Eu/Eu*	0,571	0,475	2,523	0,239	0,225	0,259	0,292	0,761	0,178
Ce/Ce*	0,124	0,227	0,245	0,042	0,255	0,002	0,317	0,244	-0,139
Cs	0,000	0,183	0,016	0,041	0,021	0,000	0,222	0,058	0,038
Rb	0,0018	0,1051	0,0185	0,0238	0,0368	0,0034	0,1829	0,04813	0,0651
Th	0,0146	0,2293	0,0071	0,0329	0,0704	0,0253	0,0143	0,01274	0,0062
U	0,0395	0,2270	0,0786	0,2155	0,1902	0,3684	0,0354	0,0461	0,1655
Pb	2,0261	0,7880	0,8068	0,0874	1,9708	0,5621	0,3436	12,139	0,0937
Ba	0,0122	0,1139	0,9138	0,0194	0,0869	0,0202	1,9330	0,0242	0,1122
Nb	0,0054	0,0303	0,0049	0,0120	0,0235	0,0077	0,0192	0,0024	0,0460
Та	0,1692	0,0749	0,1189	0,1158	0,0266	0,0780	2,0961	0,0074	0,0973
Be	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,062
W	0,0001	0,1248	0,1179	0,0457	4,1014	0,0359	0,4754	0,07916	0,1992
Sr	0,8560	0,4193	1,2000	0,5902	0,3082	0,5021	0,5564	0,9220	0,5147
Zr	0,0025	0,0731	0,0052	0,0134	0,0849	0,0147	0,0084	0,0092	0,0080
Hf	0.0098	0.0860	0.0116	0.0235	0.0908	0.0143	0.0129	0.01777	0.0126
Li	0.0018	0.1989	0.0674	0.0114	0.3264	0.0063	0.0233	0.2407	0.0099
Но	0.2925	1.1276	0.4090	0.8793	0.4819	0.3157	0.2418	0.9271	0.1030
Y	0.5331	1.6498	0.5340	1.3545	0.5771	0.5593	0.3231	1.2235	0.0914
Ti	0.0006	0.0381	0.0153	0.0096	0.0982	0.0032	0.0106	0.0102	0.0243
Cu	0.0166	0.0814	0.2015	0.0436	0.0682	0.0164	0.0120	0.03442	0.0516
Sc	0.0377	0.0962	0.0591	0.0334	0.0887	0.0513	0.0679	0 1111	0.0235
V	0.0064	0.0794	0.0235	0.0095	0.1433	0.0088	0.0456	0.0465	0.0156
, Co	0.0228	0.0778	0.0514	0.0386	0 1062	0.0415	0.0373	0.0622	0.0560
Ni	0.0621	0.0448	0.0645	0 1068	0.0381	0 1430	0.0589	0.0325	0.0988
Cr	0.0282	0.0066	0.0119	0.0147	0.0259	0.0506	0.0053	5 4054	0.0196
	0,0202	0,0000	0,0117	0,014/	0,0457	0,0500	0,0055	5,7057	0,0170

Таблица 2. Содержание элементов в карбонатах и породах рудовмещающей толщи Воронцовского месторождения, (г/т)

Примечание. Еu/Eu* рассчитано по отношению измеренного содержания европия к средним геометрическим значениям приведенных к метеоритному стандарту концентраций самария и гадолиния: Eu/Eu* = $E_{uH}/(Sm_HNd_H)1/2$ (Akagi et al., 1998). Расчет Се-аномалии производился по формуле Ce/Ce*=lgC_{eH}/Ce*= lg[C_{eH}/(L_{aH} Nd_H)1/2] (Akagi et al., 1998), индекс «н» – нормированное содержание по хондриту.

Запись производилась при комнатной температуре в автоматическом режиме. Инфракрасные спектры были получены М.Ф. Самотолковой на фурье-спектрометре ИК-поглощения Люмекс ФТ-02 в диапазоне 400–4000 см⁻¹ при 256 сканах и с инструментальным разрешением 2 см⁻¹. Препараты готовились в виде прессованных таблеток 1 г КВг и 1.5 мг растертого образца. Результаты приведены в табл. 3.

Результаты изотопного изучения С-О показали, что δ^{13} С выборки карбонатов колеблется от -4.51 до 1.41‰. Облегченное δ^{13} С (-4.51‰) имеет жильный карбонат из тектонического контакта дайки основного состава с известняками и карбонат дайки (-3.11‰) δ^{13} С известняков имеет положительные значения. На диаграмме изотопного состава С-О (рис. 2) прослеживается тренд облегчения изотопного δ^{13} С карбонатов от известняков до карбонатов даек. Облегченное δ^{13} С имеет карбонат некоторых гидротермально измененных туфоалевролитов и известняков (-2.66-2.53‰). Нужно отметить, что в их составе присутствуют примеси кварца, слюды, каолинита (табл. 1). В карбонатах данной выборки также происходит заметное облегчение изотопного состава кислорода δ^{18} О (12.95–18.61 ‰) – от кальцита известняков, который имеет значение, хаморских рактерное для карбонатов (23.36 ‰), до значений в карбонатах метасоматитов и жил на контакте с дайкой основного состава (12.95-13.24 %).

Геохимические исследования показали, что в выборке жильных карбонатов Воронцовского месторождения установлены значительные вариации содержаний ΣРЗЭ: от 128,8 до 10,9 г/т. Повышенные содержания ΣРЗЭ наблюдаются в карбонатах из гидротермально измененных туфоалевролитов (обр. Вор 3/15) и в жиле на контакте известняков и дайки основного состава – 80,95 г/т (обр. Вор 14/15).

Наименьшее содержание РЗЭ представлено в кальците из гидротермально измененного известняка (Вор 17/15) (табл. 2). Хондрит-нормализованные тренды распределения РЗЭ карбонатов имеют

Рис. 2. Диаграмма распределения изотопов С-О в карбонатах Воронцовского месторождения. Поля I–IV по (Замятина, Мурзин, 2016): I – мраморизованные известняки, II – карбонат рудоносных брекчий; III – карбонат джаспероидов; IV – карбонат из кварцевых жил Песчанского золоторудного месторо-ждения. 1-3 – жильные карбонаты Воронцовского месторождения, данные ЭПР: 1 – карбонат с низкой концентрацией Mn^{2+} ; 2 – со средней концентрацией Mn^{2+} ; 3 – с высокой концентрацией Mn^{2+} ; 4 – нет данных ЭПР

в основном положительный наклон HREE < LREE (рис. 3, а). Нужно отметить, что на диаграмме тренды нормированных содержаний РЗЭ (Вор 5/15, Вор 6/15, Вор 10/15, Вор14/15) имеют положительную аномалию европия Eu/Eu* (рис. 3, а), несмотря на то, что расчетные значения Eu/Eu* меньше 1 (табл. 2). На некоторых трендах карбонатов (Вор 17/15, Вор 10/15, Вор 9/15) наблюдается отрицательная аномалия церия (рис. 3, а) (табл. 2).

Содержания рассеянных элементов в карбонатах Воронцовского месторождения низкие, около 1 г/т (табл. 2). Но обр. Вор 14/15 из зоны контакта известняков с дай-кой основного состава выделяется резким падением содержания Сг и относительно повышенным содержанием Рb, что видно и на диаграмме распределения рассеянных элементов (рис. 3, б). Образцы Вор 2/15, 10/15 отличаются практически отсутствием Сs и низким содержанием Rb.

Спектры ИК-поглощения препаратов для ЭПР исследований состоят из полос поглощения кальцита, доломита и кварца. Для качественной оценки соотношения данных минералов в пробах использованы интенсивности неперекрывающихся узких полос поглощения данных минералов, относящихся к деформационным колебаниям карбонатной и силикатной группировок: кальцит – 713, доломит – 728, кварц – 799 см⁻¹ (табл. 3). Кварц в том или ином количестве присутствует во всех пробах карбонатных жил из туфоаргиллита, он не обнаружен в мраморизованных известняках. Высокая доля доломита установлена в образцах Вор 14/15 и Вор 9/15ж. Карбонат остальных образцов сложен кальцитом. Качественная оценка минерального состава препаратов методом ИКС полностью согласуется.

Спектры ЭПР данных образцов представлены секстетной сверхтонкой структурой (СТС) ионов Mn^{2+} в решетках кальцита и доломита (рис. 4). Спектры сильно различаются по ширинам компонент СТС. В качестве меры ширины принята ширина ΔB на половине высоты низкополевой части шестого СТС-компонента.

Рис. 3. *Нормированные по хондриту (McDonough et al., 1995) содержания РЗЭ (а) и элементов*примесей (б) в жильных карбонатах Ворнцовского золоторудного месторождения

	Интенсивность полос ИКС, у.е.			Состав				
Образец	Clc	Dlt	Qtz	карбона-	ЭПР, ДВ, Mn ²⁺ , мТ			
	713 см ⁻¹	726 см ⁻¹	799 см ⁻¹	та				
Высокая концентрация Mn ²⁺ в карбонате								
Bop 2/15	1.0	0	0.05	Clc	4.5			
Bop 14/15	1.0	0.7	0.7	Clc+Dlt	4.3			
Средняя концентрация Mn ²⁺ в карбонате								
Bop 6/15	1.0	0	0.7	Clc	1.7			
Вор 9/15ж	1.0	0.5	2.7	Clc+Dlt	2.5			
Bop 10/15	1.0	0	0.03	Clc	2.5			
Низкая концентрация Mn ²⁺ в карбонате								
Bop 3/16	1.0	0	0.	Clc	0.25			
Bop 5/16	1.0	0	0	Clc	0.25			
Bop 17/15	1.0	0	0	Clc	0.4			

Таблица 3. Интенсивности полос ИК-поглощения и ширина линий ЭПР спектра Mn²⁺

Большие ширины компонент характерны для карбоната с высоким содержанием марганца, а также других примесных парамагнитных ионов, особенно железа. По величине уширения спектра можно выделить три группы образцов. Мраморизованные известняки (обр. Вор 3/15, 5/15, 17/15) характеризуются наиболее узкими $(\Delta B = 2.25 - 0.4 \text{ мT})$ в данной выборке линиями ЭПР ионов Mn²⁺, находящихся в данном случае в исключительно в решетке кальцита (табл. 4). В спектрах ЭПР образцов Вор 6/15, 9/15ж и 10/15 величина ∆В на порядок выше (1.7–2.5 мТ), соответственно концентрация марганца В кальците и доломите гораздо выше, чем в мраморизованных известняках. Наиболее высокие значения ширины линий (ДВ = 4.3-4.5 мТ) и соответственно наиболее высокие концентрации марганца зарегистрированы в карбонатах Вор 2/15 и 14/15. Следы электронно-дырочных центров в виде узких малоинтенсивных линий SO²⁻ и SO³⁻ были обнаружены в спектрах ЭПР только двух образцов известняков – Вор 3/16 и 5/16. Углеродные радикалы, часто присутствующие в карбонате (Майдль и др., 2017), в исследуемой серии проб не обнаружены.

Обсуждение результатов

Полученные результаты позволяют выделить, по крайней мере, две группы

жильных карбонатов в породах Воронцовского месторождения, и одна из них представлена карбонатами, которые образовались в результате воздействия рудоносного гидротермального флюида.

Распределение редких и рассеянных элементов в жильных карбонатах месторождения подтверждают данные (Замятина и др., 2016; Мурзин и др., 2010), что концентрации примесных компонентов в карбонатах невысоки, около 1 г/т. Некоторые превышения по Pb, W, Y, Ba наблюдаются в карбонатах из контакта рудоносных брекчий с вулканитами и дайками основного состава. В обр. Вор 14/15 в жильных карбонатах на контакте известняков и дайки основного состава наблюдается резкое падение содержаний Cr и повышенное содержание Pb, что может являться следствием перераспределения этих элементов при взаимодействии между минералообразующим флюидом и карбонатом, но, возможно, что карбонат жилы более поздний. Нужно отметить, что по данным ЭПР карбонат этого образца имеет самую широкую линию спектра вхождения Mn²⁺ (рис. 4), а также облегченные значения $\delta 1^{3}$ С и δ^{18} О (табл. 1). Кроме того, в пробах карбонатов присутствует примесь каолинита и слюды, что может быть признаком аргиллизации.

В выборке жильных карбонатов Воронцовского месторождения наблюдаются три вида трендов распределения РЗЭ: 1-й с отрицательной Се-аномалией и отрицательной Еu-аномалией; 2-й – с положительной Eu-аномалией; 3-й – пологий тренд, характерный для карбонатов рудных метасоматитов (Мурзин и др., 2010).

Рис. 4. *Типовые спектры вхождения Мп*²⁺ в карбонаты Воронцовского месторождения

Нужно отметить, что в кальците измененного обеленного известняка (Вор 17/15) содержание РЗЭ не только самое низкое среди карбонатов данной выборки, но и много ниже, чем в слабо измененном брекчированном известняке (Мурзин и др., 2010). По исследованиям (Замятин и др., 2016), известняки вмещающей толщи месторождения имеют повышенную фоновую концентрацию РЗЭ. Таким образом, можно говорить о выносе РЗЭ из известняка в процессе рудообразования и/или при его дорудных изменениях. Высказано предположение, что известняк является основным поставщиком РЗЭ в рудообразующем флюиде. Исчезновение отрицательной аномалии Се в джаспероиде и скарне месторождения трактуется исследователями как участие магматогенного флюида на последнем (3-м) этапе рудообразования (Мурзин и др., 2010). Проведенные исследования показали, что карбонаты без Се-аномалии имеют и наибольшую концентрацию Mn²⁺. По всей видимости, они образовались из рудообразующего флюида.

Некоторые исследователи считают, что положительная Еu-аномалия может быть связана с изменением формы переноса Еu во флюиде при снижении температуры (Колонин и др., 2012). По данным Г.Р. Колонина (2006), в растворе Eu³⁺ присутствует в значительном количестве при флюидодоминирующем режиме. Таким образом, можно ожидать, что на последующих стадиях геохимических процессов «избыточный» Еи фиксируется в виде положительных аномалий в жильных образованиях.

Пологие тренды распределения РЗЭ в карбонатах, а также HREE>LREE могут свидетельствовать об изменении pH и Eh флюида, в результате которого легкие LREE образуют свои минеральные фазы либо входят в новообразованные фазы, например, Се-эпидот, хлорит, апатит. В близнейтральном флюиде понижение концентраций РЗЭ+Ү наблюдается при охлаждении раствора от 400 до 200° С (для La, Ce, Pr – в 3 раза, Nd – в 5, Sm, Eu, Gd – в 6 раз). В этом случае возможно обогащение жильных карбонатов, как LREE, так и HREE, при суммарном низком содержании РЗЭ, а также образование собственных минеральных фаз, обогащенных РЗЭ (монацит, гояцит), что наблюдалось на Сафьяновском колчеданном месторождении (Притчин и др., 2014).

В процессе формирования золоторудных парагенезисов Воронцовки образуется карбонат с последовательным облегчением изотопного состава углерода и кислорода в ряду: рудоносные известковые брекчии – джаспероиды – скарны - кварцевые жилы (Мурзин и др., 2010).

На рис. 2 видно, что изотопные значения жильных карбонатов Воронцовского месторождения образуют тренд с последовательным облегчением изотопного состава от морских осадков к магматическим образованиям. Кроме того, выделяется группа карбонатов со значениями δ^{13} С от -1.20 до -4.51‰ и δ^{18} О от 18 до 15 ‰, которая соответствует области распространения карбонатов джаспероидов (Замятина и др., 2016).

Облегченным значениям δ^{13} С соответствуют и наиболее широкие линии спектра вхождения Mn^{2+} в карбонаты (табл. 3). Параметры линий спектров Mn^{2+} зависят от состава и степени совершенства структуры карбонатов и существенно изменяются на спектрах образцов карбонатов разного генезиса. Ширина линий спектра Mn²⁺ увеличивается с ростом общей дефектности кристаллов карбоната (Вотяков и др., 1996). Высокодефектные разности содержат наибольшее количество изоморфных примесей Mn²⁺, Fe²⁺ и др. и соответствуют условиям образования в присутствии флюидов, обогащенных рудными элементами. В частности, ион Fe²⁺ активен в средах с низкими значениями рН и Eh. К росту концентрации Mn²⁺ приводит также перекристаллизация карбонатов Са и Мд, находящихся в контакте с морскими водами, т. к. коэффициент распределения Mn²⁺ в карбонатах относительно морской воды значительно выше 1. Кроме того, обнаружено, что в частично перекристаллизованных известняках концентрация ионов Mn²⁺ в новообразованном доломите в 2-15 раз выше, чем в оставшемся кальците (Майдль и др., 2017).

Уширение линий спектра наблюдается в жильных карбонатах внутри- и околорудных фаций некоторых колчеданных месторождений Южного Урала (Вотяков и др., 1996). Вероятно, оно было вызвано увеличением взаимодействия катионов Mn²⁺ между собой и с катионами Fe²⁺ в связи с их повышенным содержанием в структуре изученных карбонатов. Например, в околорудных породах Au-Pdпроявления Чудное Приполярного Урала присутствует только гидротермальный кальцит (Сорока и др., 2012), который относится к жильным фациям карбонатов, характеризующихся высокой степенью дефектностью структуры.

Таким образом, некоторые жильные карбонаты Воронцовского месторождения (Вор17/15, 5/15, 3/16) по спектрам Mn²⁺ соответствуют карбонатам вмещающих известняков, осадочным морским образованиям (т.к. в морской воде содержание Mn и Fe недостаточно высокое, чтобы на спектрах обычных для этой среды карбонатных осадков наблюдалось концентрационное уширение линий ЭПР изоморфного марганца). Возможна и метаморфогенная природа этих жил.

Таким образом, часть жильных карбонатов Воронцовского месторождения с уширенными линиями спектра Mn²⁺ имеют высокодефектную структуру и образовались, вероятно, при участии рудоносного флюида. Очевидно, что жильные карбонаты могут быть связаны с разными этапами рудообразования. Кроме того, нужно отметить, что по данным наших исследований изменение дефектности структуры карбоната влияет на облегчение изотопного состава С и О (рис. 2).

Таким образом, можно сделать вывод, что карбонаты Воронцовского месторождения являются индикаторами процессов рудообразования. Часть жильных карбонатов образовалась из рудоносного магматогенного флюида, о чем свидетельствуют их физико-химические характеристики.

Работа выполнена при поддержке проекта УрО РАН № 15-11-5-17.

Библиографический список

- Баранников А.Г., Азовскова О.Б., Ровнушкин М.Ю., Готтман А.А., Смагин И.В. Рудоносный карст мезозойского возраста Воронцовского золоторудного месторождения, Северный Урал // Руды и металлы. 2016. № 2. С. 84–99.
- Вотяков С.Л., Масленников В.В., Борисов Д.Р., Краснобаев А.А. Марганец – индикатор условий образования карбонатов на колчеданных медно-цинковых месторождений Южного Урала (Россия) // Геология рудных месторождений. 1996. Т.38, № 6. С. 558-569.
- Замятина Д.А., Мурзин В.В. Источники вещества и флюида при формировании золотосульфидного оруденения Ауэрбаховского вулканоплутонического пояса на Северном Урале // Литосфера. 2016. № 1. С. 169-177.
- Колонин Г.Р. Физико-химические особенности европия как возможного индикатора условий минералообразования // Докл. Акад. наук. 2006. Т. 408, № 4. С. 508-511.
- Колонин Г.Р., Широносова Г.П. Влияние кислотности-щелочности растворов на распределение РЗЭ в процессах рудообразования (термодинамическое моделирова-

ние) // Докл. Акад. наук. 2012. Т. 443, № 5. С. 613-616.

- Майдль Т. В., Лютоев В. П., Даньщикова И. И., Головатая О. С. Использование электронного парамагнитного резонанса для выявления признаков тектонических преобразований в карбонатных породах надвиговых зон (на примере силурийскоордовикских отложений скв. 1-Адакская, центральная часть гряды Чернышева) // Вестник ИГ Коми НЦ УрО РАН. 2017. № 2. С. 29–40.
- Мурзин В.В., Сазонов В.Н., Ронкин Ю.Л. Модель формирования Воронцовского золоторудного месторождения на Урале (карлинский тип): новые данные и проблемы // Литосфера. 2010. № 6. С. 66-73.
- Притчин М.Е., Сорока Е.И., Молошаг В.П., Замятин Д.А. Находки гойяцита в метасоматитах Сафьяновского медноколчеданного месторождения // Сборник мате-

риалов УМШ-2014. Екатеринбург, 2014. С. 211-213.

- Сорока Е.И, Галеев А.А., Леонова Л.В., Галахова О.Л. Физико-химические характеристики карбонатов как индикаторы условий их образования на некоторых золотопроявлениях Приполярного Урала // Учен.зап. Казан. ун-та. Сер. Естеств. науки. 2012. Т. 154. Кн. 1. С. 177-188.
- Akagi T., Masuda A. A simple thermodynamic interpretation of Ce anomaly // Geochem. J. 1998. Vol. 32. P. 301-314.
- McDonough W.F., Sun S.-s. The composition of the Earth // Chemical Geology. 1995. Vol. 120. No. 3-4. P. 223 – 253.
- Murzin V.V., Naumov E.A., Azovskova O.B., Varlamov D.A., Rovnushkin M.Yu., Pirajno F. The Vorontsovskoe Au-Hg-As ore deposit (Northern Urals, Russia): Geological setting, ore mineralogy, geochemistry, geochronology and genetic model, Ore Geology Reviews (2016), doi:10.1016/j.oregeorev.2016.10.037.

Physical-Chemical Study of the Vein Carbonates of the Vorontsovskoe Gold Deposit

E.I. Soroka^a, M.E. Pritchin^a, O.B. Azovskova^a, M.Yu. Rovnushkin^a, V.P Lutoev^b, I.V. Smoleva^b

^a Institute of Geology and Geochemistry UB RAS, 15 Acad. Vonsovskii Str., Ekaterinburg 620016, Russia. E-mail: soroka@igg.uran.ru
^b Institute of Geology Komi SC UB RAS, 54 Pervomaiskaya Str., Syktyvkar 167982, Russia. E-mail: vlutoev@geo.komisc.ru

A carbonate (calcite and dolomite) vein mineralization of the ore-bearing rocks of the Vorontsovskoe gold deposit (Northern Urals) was studied. Isotopic analysis of carbonates shows a trend toward the lightening of C and O isotopic composition from limestones to hydrothermal altered and magmatic rocks. Electron Paramagnetic Resonance study of carbonates showed that they differs in a width of Mn^{2+} spectrum because of structure defects. The C and O composition lightening corresponds to the carbonates with strong defects of structure which was formed by an ore-bearing fluid. In the carbonates, 3 types of rare-earth elements composition trends were observed: 1 – with negative Ce-anomaly; 2 – with positive Eu-anomaly; 3 – without anomalies. A negative Ce-anomaly possibly is related to the marine sediments, a positive Eu-anomaly suggests a magmatic origin of hydrothermal fluid.

Key words: Vorontsovskoe gold deposit, ore-bearing breccias, carbonates, physicalchemical methods.

References

Barannikov A.G., Azovskova O.B., Rovnushkin M.Yu., Gottman A.A., Smagin I.V. 2016. Ru-

donosnyy karst mezozoyskogo vozrasta Vorontsovskogo zolotorudnogo mestorozhdeniya, Severnyy Ural. [Ore-bearing Mesozoic carst of the Vorontsovskoe gold deposit, Northern Urals]. Rudy i metally. 2: 84–99. (in Russian)

- Votyakov S.L., Maslennikov V.V., Borisov D.R., Krasnobaev A.A. 1996. Marganets - indicator usloviy obrazovaniya karbonatov kolchedannykh medno-tsynkovykh mestorozhdeniy Yuzhnogo Urala (Rossiya) [Manganese as an indicator of carbonate mineralization at the sulfide zinc-copper deposits of the Southern Urals (Russia)]. Geologiya rudnykh mestorozhdeniy. 38(6): 558-569. (in Russian).
- Zamyatina D.A., Murzin V.V. 2016. Istochniki veshchestva i flyuida formirovaniy zolotosulfidnogo orudeneniya Auerbakhovskogo volcano-plutonicheskogo poyasa na Severnom Urale [Substance and fluid sources of gold sulfide mineralization of the Auerbakh volcanic-plutonic belt in the Northern Urals]. Litosfera. 1:169-177 (in Russian).
- Kolonin G.R. 2006. Fiziko-khimicheskie osobennosti evropiya kak vozmozhnogo indikatora usloviy mineraloobrazovaniya [Physicalchemical Eu features as possible indicator of mineralization]. Doklady RAN, 408(4):508-511 (in Russian).
- Kolonin G.R., Shironosova G.P. 2012. Vliyanie kislotnosti-shchelochnosti rastvorov na raspredelenie RZE v protsessakh rudoobrozovaniya (termodinamicheskoe modelirovanie) [Influence of acid-alkali fluids to REE differentiation in ore-bearing processes (thermodynamic model)]. Doklady RAN, 443(5): 613-616 (in Russian).
- Maidl T.V., Lutoev V. P., Danshchikova I.I., Golovataya O.S. 2017. Ispolzovanie elektronnogo paramagnitnogo rezonansa dlya vyyavleniya priznakov tecktonicheskikh preobrazovaniy v karbonatnykh porodakh nadvigovykh zon (na primere siluriyskoordovikskikh otlozheniy skv. 1-Adakskaya, tsentralnaya chast gryady Chernyshova) [Use of Electron Paramagnetic Resonance to study the features of tectonic transformation in carbonaceous rocks of thrust zones (the example

of Silurian-Ordovician sediments of borehole 1-Adakskaya, a central part of the Chernyshov Ridge]. Vestnik Instituta geologii Komi NC, UrO RAN. 2: 29–40. (in Russian)

- Murzin V.V., Sazonov V.N., Ronkin Yu.L. 2010. Model formirovaniya Vorontsovskogo zolotorudnogo mestorozhdeniya na Urale (karlinskiy tip): novye dannye i problemy [A formation model of the Vorontsovskoe gold deposit on the Urals (Carline type): new data and problems]. Litosfera. 6:66-73 (in Russian).
- Pritchin M.E., Soroka E.I., Moloshag V.P., Zamyatin D.A. 2014. Nakhodki goyatsita v metasomatitakh Safiyanovskogo mednokolchedannogo mestorozhdeniya [Goyacite occurrences in metasomatites of the Safyanovskoe sulfide copper deposit]. In Sbornik materialov UMSchool-2014. Ekaterinburg, pp. 211-213 (in Russian).
- Soroka E.I, Galeev A.A., Leonova L.V., Galakhova O.L. 2012. Fiziko-khimicheskie kharakteristiki karbonatov kak indikatory usloviy ikh obrazovaniya na nekotorykh zolotoproyavleniyakh Pripolyarnogo Urala [Physical-chemical characteristics of carbonates as indicators of their formation conditions at the some gold deposits of the PrePolar Urals]. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 1(154):177-188 (in Russian).
- Akagi T., Masuda A. 1998. A simple thermodynamic interpretation of Ce anomaly. Geochem. J., 32: 301-314.
- McDonough W.F., Sun S.-s. 1995. The composition of the Earth. Chemical Geology, 120 (3-4): 223 253.
- Murzin, V.V., Naumov, E.A., Azovskova, O.B., Varlamov, D.A., Rovnushkin, M.Yu., Pirajno, F. 2016. The Vorontsovskoe Au-Hg-As ore deposit (Northern Urals, Russia): Geological setting, ore mineralogy, geochemistry, geochronology and genetic model, Ore Geology Reviews. 85: 271-298. doi: 10.1016/ j.oregeorev.2016.10.037.