Уравнения состояния и термодинамические функции кианита, андалузита и силлиманита

Мелехова Е.А. Дорогокупец П.И.(dor@crust.irk.ru)

Институт земной коры СО РАН, Иркутск

Введение

Термодинамические функции кианита, андалузита и силлиманита полиморфных модификаций Al₂SiO₅, имеют принципиальное значение в термодинамике алюмосиликатов и компьютерном моделировании процессов метаморфизма в горных породах. Их термодинамические функции очень близки, поэтому даже незначительные колебания, например, в стандартной энтропии приводят к смещению линий равновесия, изменению их наклона и положения тройной точки на РТ диаграмме. Между тем, первичные экспериментальные данные для этих минералов в известной степени противоречивы. Согласно Todd [1] стандартная энтропия кианита, андалузита и силлиманита составляет 83.76, 93.22 и 96.11 Дж/(моль-К), тогда как в работе Robie and Hemingway [2] были получены более низкие величины: 82.3±0.13, 91.39±0.14 и 95.79±0.14 Дж/(моль·К). Позже Hemingway et al. [3] с учетом наклона линий равновесия рекомендовали следующие значения стандартной энтропии кианита, андалузита и силлиманита: 82.8±0.5, 91.39±0.52 и 95.4±0.52 Дж/(моль·К), которые используются во многих базах термодинамических данных. Известны также противоречия в определении коэффициента термического расширения [3-5] и сжимаемости [6-9] этих минералов. Поэтому основной целью этой работы является пересмотр термодинамических функций Al₂SiO₅ с помощью уравнения состояния [10, 11].

Уравнение состояния полиморфов Al₂SiO₅

В работах [10, 11] было предложено уравнение состояния твердых фаз, которое позволяет проводить как обработку экспериментальной информации, так и расчет любых термодинамических функций в широкой области температур и давлений. Это уравнение состояния вполне пригодно для совместного анализа низко- и высокотемпературной теплоемкости и данных по зависимости объема от температуры и давления полиморфов Al₂SiO₅. В кратком изложении оно выглядит следующим образом.

Свободная энергия Гельмгольца представлена в виде суммы

$$F(V,T) = U_0 + E(V) + F_{th}(V,T) + F_a(V,T),$$
(1)

где U₀ – уровень отсчета энергии, который вводим для получения справочных значений $\Delta H_{f,298}$ и $\Delta G_{f,298}$ при стандартных условиях, E(V) – потенциальная часть свободной энергии на отсчетной изотерме 298.15 К, которая зависит только от объема, $F_{th}(V,T)$ – тепловая часть свободной энергии, которая зависит от объема и температуры, F_a(V,T) – часть свободной энергии, связанная с ангармоничностью.

Потенциальная часть представлена уравнением Берча-Мурнахана

$$E(V) = \frac{9}{2}V_0 K_0 f^2 (1 + \frac{2}{3}af),$$
⁽²⁾

где $f=(x^{-2/3}-1)/2$, $x = V/V_0$, a = 1.5(K'-4), K' – производная изотермического модуля сжатия K_0 по давлению при стандартных условиях T = 298.15 K, P = 0 бар и x = 1, V_0 – объем при стандартных условиях.

Тепловая часть в (1) выражена в виде суммы [10, 11]

$$F_{th}(V,T) = m_{B1} R[\frac{d_1}{2} \Theta_{B1} - T \ln(1+b_1)] + m_{B2} R[\frac{d_2}{2} \Theta_{B2} - T \ln(1+b_2)] + m_{E1} R[\frac{\Theta_{E1}}{2} + T \ln(1 - \exp{\frac{-\Theta_{E1}}{T}})] + m_{E2} R[\frac{\Theta_{E2}}{2} + T \ln(1 - \exp{\frac{-\Theta_{E2}}{T}})],$$
(3)

где R – универсальная газовая постоянная, m_{B1} m_{B2} , m_{E1} и m_{E2} – степени свободы, их сумма должна быть равна 3n, где n равно числу атомов в ячейке; Θ_{B1} , Θ_{B2} , Θ_{E1} и Θ_{E2} – характеристические температуры, $b=1/[\exp(g)-1]$, $g=d\ln[1+\Theta_B/(Td)]$, d_1 и d_2 – степенные параметры, регулирующие поведение теплоемкости вблизи 0 К.

Вклад ангармоничности представлен в виде:

$$F_a(V,T) = -3nRaT^2 = -3nRa_0 x^g T^2$$
(4)

где a_0 – параметр ангармоничности при x = 1, g – ангармоничный аналог параметра Грюнайзена, величина которого примерно в три раза выше решеточного параметра Грюнайзена.

Учитывая сравнительно невысокие термодинамические параметры зависимость характеристических температур от объема может быть принята в классическом виде:

$$\Theta = \Theta_0 \exp[\gamma_0(1-x)], \tag{5}$$

где γ_0 – параметр Грюнайзена при стандартных условиях.

Дифференцируя эти уравнения по температуре при постоянном объеме и по объему при постоянной температуре получаем необходимые нам термодинамические функции в аналитическом виде (более детально см. [10, 11]). В результате имеем следующий набор подгоночных параметров: V_0 , K_0 , K', Θ_{B10} , Θ_{B20} , Θ_{E10} , Θ_{E20} , d_1 , d_2 , m_{B1} , m_{B2} , m_{E1} , m_{E2} , γ_0 , a_0 , g. Это параметры при стандартных условиях и они полностью определяют температурную и объемную зависимости термодинамических функций. Параметр U_0 можно принять равным энтальпии образования из простых веществ, т.е. $U_0=\Delta H_{f,298}$. Теперь, зная подгоночные параметры, можно рассчитать любые термодинамические функции в зависимости как от T и V, так и от T и P.

Анализ термодинамических функций полиморфов Al₂SiO₅

На основе описанного выше уравнения состояния была сформирована система уравнений, которая включает экспериментальные измерения теплоемкости в интервале 5–1000 К [1–2], относительной энтальпии в интервале 400–1600 К [12], объема в интервале 290–1300 К и 0–58 кбар [3–9]. Решение полученной системы было найдено методом наименьших квадратов с весами. Подгоночные параметры для каждого полиморфа Al₂SiO₅, часть из которых фиксировалась (V_{298} принято по работе [2], K' = 4), приведены в табл. 1.

1105 http://zhurnal.ape.relarn.ru/articles/2002/101.pdf

Параметр	And	Sil	Ку		
$V_0, {\rm cm}^3$	51.52	49.86	44.15		
<i>K</i> ₀ , ГПа	151.0	173.1	193.4		
K'	4	4	4		
Θ_{B10}, K	873.6	593.5	595.2		
d_1	2.257	6.532	4.217		
$m_{\rm B1}$	3.265	5.801	4.516		
Θ_{B20}, K	461.7	277.3	282.2		
d_2	1292.5	11.065	966.3		
$m_{\rm B2}$	8.429	4.209	1.437		
Θ_{E10}, K	1002.5	1201.8	1069.2		
$m_{\rm E1}$	10.302	7.516	9.128		
Θ_{E20}, K	219.4	590.7	537.4		
$m_{\rm E2}$	2.004	6.474	8.919		
γ0	1.288	0.791	1.245		
a_0, K^{-1}	0	6.183E-6	0		
g	0	3	0		

Таблица 1. Параметры уравнений состояния андалузита (And), силлиманита (Sil) и кианита (Ky)

Оказалась, что рассчитанные значения стандартной энтропии для кианита, андалузита и силлиманита составляют 83.16, 92.31 и 95.74 Дж/(моль·К), которые существенно выше для кианита и андалузита по сравнению с данными Robie and Hemingway [2] и практически совпадают для силлиманита. В чем же причина такого разногласия?

Robie and Hemingway [2, 3], использовали кубические сплайны для сглаживания низкотемпературной теплоемкости, тогда как в нашей модели теплоемкость аппроксимируется приближением Бозе-Эйнштейна. Различные методы аппроксимации одних и тех же данных по теплоемкости не могут привести к таким значительным отклонениям в энтропии. Тщательный анализ работ этих авторов [2, 3] показал, что сглаженная теплоемкость кианита и андалузита [2, Table 4, 5] занижена по сравнению с первичными измерениями (2, Table 1, 2) примерно на 1%. Это хорошо видно на рис. 1 на примере кианита, где сглаженные данные [2] по теплоемкости показаны сплошной линией, которая отклоняется от первичных данных в области до 380 К примерно на 1%, в то же время в области 380-1000 К такого отклонения нет. Аналогичные результаты получены и для андалузита (Рис. 2). Отсюда можно сделать следующий вывод: стандартная энтропия кианита и андалузита в работе Robie and Hemingway [2] вероятно рассчитана из сглаженных данных, систематическую ошибку, что и привело к снижению имеюших рекомендованной ими стандартной энтропии на 1% по сравнению с истинной.

Рассчитанная изобарная теплоемкость андалузита и кианита хорошо согласуется с первичными низкотемпературными измерениями Robie and Hemingway [2, Table 1–3] и высокотемпературными Hemingway et al. [3], что хорошо видно на рисунке. Более ранние измерения теплоемкости Todd [1] в целом согласуются как с данными Robie and Hemingway [2], так и с нашим расчетом за исключением области 50–80 К, где данные Todd [1] завышены до 6 %.

Рис. 1. Теплоемкость кианита.

А. Отклонения рассчитанной изобарной теплоемкости кианита от экспериментальных данных. 1 – данные из таблицы 1 по работе [2], 2 – по данным [3], 3 – по данным [1], 4 – по данным [12] для относительной энтальпии, 5 – данные из таблицы 4 по работе [2].

В. Рассчитанная изобарная (C_P) и изохорная (C_V) теплоемкости кианита. 1 – экспериментальные данные [3], 2 – расчет по полиному из [3], 3 – расчет по полиному из [12].

Рис. 2. Теплоемкость андалузита.

А. Отклонения рассчитанной изобарной теплоемкости андалузита от экспериментальных данных. 1 – данные из таблицы 2 по работе [2], 2 – по данным [3], 3 – по данным [1], 4 – по данным [12] для относительной энтальпии, 5 – данные из таблицы 5 по работе [2].

В. Рассчитанная изобарная (C_P) и изохорная (C_V) теплоемкости кианита. 1 – экспериментальные данные [3], 2 – расчет по полиному из [3], 3 – расчет по полиному из [12].

Рис. 3. Теплоемкость силлиманита.

А. Отклонения рассчитанной изобарной теплоемкости силлиманита от экспериментальной. 1 – данные из таблицы 3 по работе [2], 2 – по данным [3], 3 – по данным [1], 4 – по данным [12] для относительной энтальпии, 5 – данные из таблицы 6 по работе [2].

В. Рассчитанная изобарная (C_P) и изохорная (C_V) теплоемкости силлиманита. 1 – экспериментальные данные [3], 2 – расчет по полиному из [3], 3 – расчет по полиному из [12].

Теплоемкость кианита (Рис. 1) и андалузита (Рис. 2) аппроксимирована без учета ангармоничной составляющей, однако ангармонизм заметен в силлиманите, где высокотемпературный предел 3nR изохорной теплоемкости достигается уже при 1600 К (Рис. 3). Параметр ангармоничности *а* получается примерно равными при разных значениях ангармоничного аналога параметра Грюнайзена *g*. Нами принято теоретическое значение, когда ангармоничный аналог параметра Грюнайзена превышает решеточный примерно в три раза, поэтому *g*=3. Не исключено, что в предлагаемом уравнении состояния силлиманита неявным образом аппроксимированы вклады процессов разупорядочивания решетки.

Предлагаемые уравнения состояния полиморфов Al₂SiO₅ оптимизируют как теплоемкость при нулевом давлении, так и объем в зависимости от температуры и давления. Следует заметить, что V(T) кианита при нулевом давлении согласуется с данными Skinner et al. и Winter and Ghose [4, 5], a V(P)согласуется с данными Yang et al. [7] на комнатной изотерме при $K_T = 193.4$ ГПа и К'=4. Измерения Comodi и др. [9] отличаются от этих данных, что приводит к более низкой величине $K_T = 160 \ \Gamma \Pi a$ при K' = 4, и при выборе этих параметрах немного ухудшается согласование высокотемпературной теплоемкости. Более высокое значение К_Т подтверждается расчетами методами молекулярной динамики [13], хотя в работе Oganov and Brodholt [14] получено К₀=172 ГПа, которое близко к среднему значению из работ Yang и Comodi [7, 9]. Если проводить только оптимизацию теплоемкости и данных по V(T), тогда K_T стремится к величине порядка 200 ГПа, что явилось последним аргументов в пользу данных Yang et al. [7] для V(P) кианита.

Рассчитанная зависимость V(T) для андалузита близка к данным Skinner et al. [4], зависимость V(P), корректированная по данным приводимым в работе Yang et al. [8], не противоречит измерениям Ralph et al. [6]. Основываясь на работе Yang et al. [8] модуль сжатия андалузита принят равным 151 ГПа, это значение согласуется с полученным Oganov and Brodholt [14], их модуль сжатия равен 142 ГПа, и адиабатическим модулем сжатия (K_S=158 ГПа) Vaughan and Weidner [15]. Что касается силлиманита, то зависимость V(T) аппроксимирует измерения Skinner et al. [4] и слегка отклоняеться от измерений Winter and Ghose [5], а V(P) согласуется с данными Yang et al. [8].

Рассчитанные термодинамические функции полиморфов Al_2SiO_5 были преобразованы в полиномиальную форму для использования в существующих базах данных (Табл.2) и в численном виде приведены в табл. 3-5. Стандартная ошибка аппроксимации теплоемкости не превышает ±0.2 Дж/(моль·К) в интервале 298-2000 К, коэффициента термического расширения ±0.3 · 10⁻⁶ K⁻¹ и изотермического модуля сжатия ±0.3 ГПа.

Таблица 2. Коэффициенты полиномов, аппроксимирующие изобарную теплоемкость, коэффициент термического расширения и изотермический модуль сжатия андалузита, силлиманита и кианита при стандартном давлении

	c_1	<i>C</i> ₂	<i>C</i> ₃	c_4	c_5	a_1	a_2	a_3	$\mathrm{d}K_T/\mathrm{d}T$
And	380.25	-83.81	32.17	-3.96	-4050.0	27.23	7.46	-0.824	-0.0197
Sil	372.11	-74.29	23.56	-2.40	-3943.4	15.75	3.67	-0.483	-0.0132
Ky	401.55	-100.4	38.34	-5.14	-4362.7	24.78	5.61	-0.789	-0.0222

 $C_P (J/(\text{mol}\cdot\text{K})) = c_1 + c_2 10^{-3}T + c_3 10^{-6}T^2 + c_4 10^{-9}T^3 + c_5 T^{-0.5},$ $\alpha(T) (\text{K}^{-1}) = a_1 10^{-6} + a_2 10^{-9}T + a_3 T^{-2},$

давлен	ИИ							
Т	α* E6	V	K_T	K_S	C_P	C_V	S	$H_T - H_{298}$
К	1/K	cm ³	ΓΙ	Па	Д	(ж/(моль•К)	Дж/моль
10	0.00	44.048	196.1	196.1	0.008	0.008	0.002	-16018
50	0.45	44.048	196.1	196.1	3.104	3.104	0.837	-15984
150	7.65	44.064	195.7	195.9	53.200	53.124	23.426	-13471
200	11.64	44.086	195.1	195.7	80.811	80.577	42.602	-10105
250	15.02	44.115	194.4	195.3	104.082	103.599	63.221	-5463
298.15	17.67	44.150	193.6	194.9	122.169	121.374	83.159	0
300	17.76	44.151	193.6	194.9	122.786	121.977	83.917	227
350	19.94	44.193	192.7	194.4	137.504	136.318	103.995	6749
400	21.68	44.239	191.8	193.8	149.043	147.449	123.141	13924
450	23.07	44.289	190.8	193.2	158.146	156.122	141.242	21613
500	24.21	44.341	189.8	192.6	165.407	162.942	158.294	29708
600	25.95	44.453	187.7	191.3	176.091	172.721	189.460	46818
700	27.23	44.571	185.5	189.9	183.471	179.180	217.191	64817
800	28.24	44.695	183.3	188.5	188.855	183.628	242.059	83446
900	29.08	44.823	181.1	187.1	192.982	186.804	264.551	102547
1000	29.81	44.956	178.8	185.6	196.289	189.142	285.060	122016
1100	30.48	45.091	176.6	184.1	199.046	190.910	303.902	141786
1200	31.10	45.230	174.3	182.6	201.424	192.276	321.325	161812
1300	31.69	45.373	172.0	181.1	203.539	193.352	337.533	182062
1400	32.26	45.518	169.7	179.5	205.469	194.214	352.688	202514
1500	32.83	45.666	167.4	178.0	207.269	194.914	366.926	223152
1600	33.39	45.818	165.1	176.5	208.978	195.490	380.358	243965
1700	33.95	45.972	162.7	174.9	210.628	195.970	393.077	264945
1800	34.52	46.130	160.4	173.3	212.240	196.373	405.162	286089
1900	35.10	46.291	158.0	171.8	213.833	196.715	416.680	307393
2000	35.68	46.455	155.6	170.2	215.421	197.008	427.688	328856

dK_T/dT в ГГ	la/K.				
Таблица З	. Термодинамиче	еские функции	кианита п	ри стандарти	юм
лавлении					

Таблица 4. Термодинамические функции андалузита при стандартном давлении

_								
Т	α* E6	V	K_T	K_S	C_P	C_V	S	$H_T - H_{298}$
К	1/K	cm ³	ΓΙ	Та	1	Ҭж/(моль ∙К)	Дж/моль
10	0.01	51.376	153.3	153.3	0.046	0.046	0.021	-17070
50	0.95	51.377	153.3	153.3	5.811	5.810	1.793	-17002
150	9.58	51.403	152.8	153.1	58.678	58.570	30.331	-13918
200	13.80	51.433	152.3	152.9	84.380	84.082	50.811	-10328
250	17.41	51.473	151.7	152.5	106.262	105.670	72.068	-5544
298.15	20.27	51.520	151.0	152.2	123.406	122.453	92.305	0
300	20.37	51.522	151.0	152.2	123.992	123.024	93.070	229
350	22.74	51.578	150.2	151.7	138.028	136.626	113.281	6793
400	24.64	51.639	149.3	151.2	149.099	147.225	132.463	13982
450	26.19	51.705	148.5	150.7	157.894	155.526	150.552	21665
500	27.46	51.774	147.6	150.2	164.970	162.090	167.567	29743
600	29.44	51.922	145.7	149.1	175.527	171.594	198.638	46801
700	30.93	52.079	143.8	147.9	182.980	177.964	226.286	64746
800	32.14	52.243	141.9	146.6	188.543	182.418	251.099	83335
900	33.17	52.414	139.9	145.4	192.908	185.647	273.567	102415
1000	34.09	52.591	137.9	144.1	196.486	188.059	294.083	121890
1100	34.93	52.773	135.9	142.8	199.532	189.907	312.957	141695
1200	35.73	52.960	133.9	141.5	202.214	191.354	330.435	161785
1300	36.50	53.151	131.9	140.2	204.642	192.507	346.718	182129
1400	37.25	53.348	129.8	138.8	206.894	193.440	361.967	202707
1500	38.00	53.549	127.7	137.5	209.026	194.206	376.315	223504
1600	38.76	53.755	125.7	136.1	211.079	194.843	389.871	244510
1700	39.52	53.965	123.6	134.8	213.085	195.378	402.728	265718
1800	40.30	54.181	121.5	133.4	215.069	195.831	414.964	287126

1900	41.09	54.402	119.4	132.0	217.051	196.218	426.645	308732
2000	41.91	54.628	117.2	130.7	219.047	196.551	437.829	330537

F 1								
Т	α*E6	V	K_T	K_S	C_P	C_V	S	$H_T - H_{298}$
К	1/K	cm ³	ΓΙ	Па	Д	[ж/(моль•К)	Дж/моль
10	0.01	49.779	174.5	174.5	0.027	0.027	0.025	-17454
50	0.69	49.780	174.4	174.4	7.232	7.232	2.260	-17367
150	5.62	49.795	174.2	174.3	60.712	60.671	32.878	-14092
200	7.96	49.812	173.9	174.1	85.965	85.855	53.902	-10408
250	9.93	49.834	173.5	173.8	107.025	106.812	75.423	-5566
298.15	11.49	49.860	173.1	173.6	123.575	123.236	95.740	0
300	11.54	49.861	173.1	173.5	124.144	123.799	96.506	229
350	12.85	49.892	172.6	173.2	137.842	137.344	116.711	6792
400	13.91	49.925	172.1	172.8	148.743	148.079	135.857	13967
450	14.78	49.961	171.5	172.4	157.443	156.601	153.898	21629
500	15.49	49.999	170.9	172.0	164.438	163.413	170.861	29683
600	16.59	50.079	169.8	171.1	174.791	173.386	201.818	46678
700	17.42	50.164	168.5	170.2	181.944	180.148	229.331	64535
800	18.07	50.254	167.3	169.2	187.126	184.929	253.982	83002
900	18.62	50.346	166.0	168.3	191.049	188.442	276.259	101919
1000	19.09	50.441	164.6	167.3	194.141	191.113	296.554	121184
1100	19.53	50.538	163.3	166.2	196.669	193.208	315.180	140728
1200	19.93	50.638	161.9	165.2	198.804	194.897	332.386	160505
1300	20.31	50.740	160.6	164.1	200.660	196.292	348.374	180480
1400	20.68	50.844	159.2	163.1	202.315	197.470	363.306	200630
1500	21.04	50.950	157.7	162.0	203.825	198.487	377.316	220938
1600	21.40	51.059	156.3	160.9	205.228	199.379	390.516	241391
1700	21.76	51.169	154.9	159.8	206.555	200.175	402.998	261981
1800	22.12	51.281	153.4	158.7	207.827	200.896	414.841	282701
1900	22.49	51.396	151.9	157.6	209.061	201.558	426.111	303545
2000	22.86	51.513	150.4	156.4	210.272	202.174	436.865	324512

Таблица 5. Термодинамические функции силлиманита при стандартном лавлении

Выводы

Таким образом, мы показали, что сглаженные данные по теплоемкости кианита и андалузита Hemingway и др. [3] имеют систематическую ошибку в области до 380 К, которая привела к тому, что рекомендованная в работе Hemingway и др. [3] стандартная энтропия кианита и андалузита занижена по сравнению с истинной на 1%. Рассчитанные значения S_{298} для кианита, андалузита и силлиманита составляют 83.16, 92.31 и 95.74 Дж/(моль·К). Рассчитанные в этой работе термодинамические функции кианита, андалузита и силлиманита хотя и не вносят принципиальных изменений в фазовую диаграмму Al_2SiO_5 , но могут оказать существенное влияние на термодинамику других алюмосиликатов, которые связаны с полиморфами Al_2SiO_5 фазовыми взаимоотношениями.

Авторы выражают благодарность академику Ф.А.Летникову (ИЗК СО РАН, Иркутск) за постоянную поддержку исследований и А.Р.Оганову (University College London) за плодотворные дискуссии. Работа выполнена при поддержке РФФИ (гранты 02-05-74540, 02-05-64062 и 00-15-98573).

ЛИТЕРАТУРА

- 1. Todd S.S. Heat capacities at low temperatures and entropies at 298.16 K of andalusite, kyanite, and sillimanite. // J. Amer. Chem. Soc. 1950. V. 72. P. 4742-4743.
- 2. Robie R.A., Hemingway B.S. Entropies of kyanite, and alusite, and sillimanite: Additional constraints on the pressure and temperature of the Al₂SiO₅ triple point. // Amer. Miner. 1984. V. 69. P. 298-306.
- 3. Hemingway B.S., Robie R.A., Evans H.T., Kerrick D.M. Heat capacities and entropies of sillimanite, fibrolite, and alusite, kyanite and quartz and the Al₂SiO₅ phase diagram. // Amer. Miner. 1991. V. 76. P. 1597–1613.
- 4. Skinner B.J., Clark S.P., Appleman D.E. Molar volumes and thermal expansions of andalusite, kyanite, and sillimanite. // Amer. J. Sci. 1961. V. 259. P. 651-668.
- 5. Winter J.K., Ghose S. Thermal expansion and high-temperature crystal chemistry of the Al₂SiO₅ polymorphs. // Amer. Miner. 1979. V. 64. P. 573-586.
- 6. Ralph R.L., Finger. L.W., Hazen R.M., Ghose S. Compressibility and crystal structure of andalusite at high pressure. // Amer. Miner. 1984. V. 69. P. 513-519.
- 7. Yang H., Downs R.T., Finger L.W., Hazen R.M., Prewitt C.T. Compressibility and crystal structure of kyanite, Al₂SiO₅, at high pressure. // Amer. Miner. 1997. V. 82. P. 467-474.
- 8. Yang H., Hazen R.M., Finger L.W., Prewitt C.T. Compressibility and crystal structure of sillimanite, Al₂SiO₅, at high pressure. // Phys. Chem. Minerals. 1997. V. 25. P. 39-47.
- 9. Comodi P., Zanazzi P.F., Poli S., Schmidt M.W. High-pressure behavior of kyanite: Compressibility and structural deformations. // Amer. Miner. 1997. V. 82. P. 452–459.
- Дорогокупец 10. П.И. Уравнение состояния И согласованные термодинамические функции минералов. // Петрология. 2001. Т. 9. № 6. С. 612-622.
- 11. Dorogokupets P.I. Critical analysis of equation of state of NaCl // Geochem. International. 2002. (в печати).
- 12. Pankratz L.B., Kelley K.K. High-temperature heat contents and entropies of andalusite, kyanite, and sillimanite. // U.S. Bur. Mines Rept. Inv. 1964. No. 6370.9 p.
- 13. Matsui M. Molecular dynamics study of the structures and bulk moduli of crystals in the system CaO-MgO-Al₂O₃-SiO₂. // Phys. Chem. Minerals. 1996. V. 23. P. 345-353.
- 14. Oganov A.R., Brodholt J.P. High-pressure phases in the Al₂SiO₅ system and the problem of aluminous phase in the Earth's lower mantle: ab initio calculations. // Phys. Chem. Minerals. 2000. V. 27. P. 430-439.
- 15. Vaughan M.T., Weidner D.J. The relationships of elasticity and crystal structure in andalusite and sillimanite. // Phys. Chem. Minerals. 1978. V. 3. P. 133-144.