Методы и методики прогноза, поисков, оценки и разведки месторождений

ПЕТРОГРАФО-МИНЕРАЛОГО-ГЕОХИМИЧЕСКИЕ ИНДИКАТОРЫ ЗОЛОТОРУДНЫХ МЕСТО-РОЖДЕНИЙ И ИХ ПОИСКОВО-ОЦЕНОЧНОЕ ЗНАЧЕНИЕ (НА ПРИМЕРЕ НАТАЛКИНСКОГО РУДНОГО ПОЛЯ, СЕВЕРО-ВОСТОК РОССИИ)

По результатам анализа околорудных метасоматических, минералогических и геохимических ореолов золоторудного месторождения Наталка построены петрографо-минералого-геохимические модели и на их основе разработаны комплексы поисково-оценочных критериев как для эндогенного уровня (первичные ореолы), так и для зоны гипергенеза (вторичные ореолы и потоки рассеяния).

Ключевые слова: рудный объект, петрографо-минералого-геохимическая модель, первичные и вторичные ореолы, потоки рассеяния.

Комплексное изучение околорудных метасоматических, минералогических и геохимических ореолов в коренном залегании и в зоне гипергенеза (вторичные ореолы и потоки рассеяния) проводилось на золоторудном месторождении Наталка Центрально-Колымского региона [7–9]. Целью исследований было построение эндогенных и экзогенных петрографо-минералого-геохимических моделей ожидаемых в районе рудных объектов. На месторождении прослежены изменения индикаторных минералого-геохимических характеристик в ряду сопряжённой системы: рудное тело+первичный ореол – вторичный ореол – поток рассеяния.

Наталкинское рудное поле расположено в юго-восточной части Яно-Колымского складчатого пояса в пределах Аян-Юряхского антиклинория, характеризующегося преимущественным развитием терригенно-сланцевых толщ пермского и триасового возраста. Рудное поле сложено верхнепермскими отложениями, подразделяемыми на четыре свиты (снизу вверх): тасскую (глинистые и углисто-глинистые сланцы с прослоями песчаников), атканскую (туфогенные сланцы), нерючинскую (глинистые сланцы с примесью туфогенного материала), кулинскую (песчаники, глинистые сланцы). Породы смяты в синклинальную складку, ограниченную продольными разрывами, инъецированы поясами даек спессартитов и диоритовых порфиритов. В размещении оруденения важная роль принадлежит двум рудоконтролирующим разломам северо-западного простирания – Главному и Северо-Восточному [3].

Выделяются следующие структурно-морфологические типы золотого оруденения: зоны метасоматического окварцевания; кварцевые жилы и линзы с чёткими границами; системы параллельных кварцевых жил и прожилков; штокверковые тела.

Формирование минеральных новообразований проходило в два этапа. В дорудный (метаморфогенный) этап образовались

Миляев Сергей Анатольевич

кандидат геолого-минералогических наук ведущий научный сотрудник sermil52@yandex.ru

Чекваидзе Виктор Борисович

доктор геолого-минералогических наук ведущий научный сотрудник chekvaidze@rambler.ru

Исакович Ирина Зигмундовна

кандидат геолого-минералогических наук старший научный сотрудник

> ФГБУ Центральный научно-исследовательский геологоразведочный институт цветных и благородных металлов, г. Москва

Рис. 1. ЭНДОГЕННЫЕ МИНЕРАЛОГО-ГЕОХИМИЧЕСКИЕ ОРЕОЛЫ В ПОПЕРЕЧНОМ СЕЧЕНИИ НАТАЛКИНСКОГО ЗОЛОТО-КВАРЦЕВОГО МЕСТОРОЖДЕНИЯ. РАЗВЕДОЧНАЯ ЛИНИЯ +55:

а – метасоматические ореолы; *б* – ореолы прожилковой нерудной минерализации; *в* – ореолы рудной минерализации; *г* – геохимические ассоциации рудных элементов; *д* – геологический разрез и первичные ореолы золота; *1* – песчано-глинистые сланцы; *2* – туфогенные сланцы; *3* – глинистые и углисто-глинистые сланцы; *4* – рудные тела; *5* – Главный разлом; *6* – карбонат-альбит-кварцевые метасоматиты; *7* – совмещение серицитовых и альбитсодержащих метасоматитов; *8* – зоны повышенной (*a*) и слабой (*б*) серицитизации; *9* – нитевидные прожилки кварц-анкеритового состава (интенсивность развития ~1%); *10* – субпараллельные прожилки кварц-анкеритового состава (интенсивность развития 2–10%); *11* – система субпараллельных прожилков кварц-анкеритового состава (интенсивность развития 2–10%); *12* – штокверк кварцевых жил и прожилков интенсивностью до 50%; *13* – просечки, вкрапленность пирротина; *14* – прожилки пирит-марказита по пирротину (ореолы дисульфидизации пирротина); *15* – рассеянная вкрапленность метакристаллов пирита, игольчатого арсенопирита, сфалерита, халькопирита; *16* – пирит-арсенопиритовая минерализация; поля ассоциаций рудных элементов: *17* – золота, мышьяка, вольфрама, *18* – серебра, свинца, меди, цинка, *19* – ореолы ртути; *20* – первичные ореолы Аu с содержаниями >300 (*a*), 30–300 (*b*), 10–30 (*b*), мг/т

две ассоциации, связанные с региональным метаморфизмом, – прогрессивная (биотит, пирротин) и регрессивная (хлорит по биотиту, мусковитовидный серицит, метаморфогенный пирит). В пространственном распределении ассоциаций обнаруживается отчётливая зональность: с приближением к участку месторождения последовательно сменяют друг друга зоны биотита, хлорита и мусковитовидного серицита. Последняя непосредственно переходит в ореол околорудных изменений [8].

Собственно рудный этап подразделяется на четыре стадии:

- предрудного кислотного выщелачивания-осаждения;
- сульфидно-кварцевую;
- полисульфидную (продуктивную);
- пострудную.

Первая стадия характеризует период формирования основной массы околорудных метасоматитов, близких к формации лиственито-березитов. При этом достаточно чётко дифференцируются продукты гипогенного кислотного выщелачивания (серицитизированные породы) и продукты осаждения вынесенных компонентов (в разной степени альбитизированные породы, вплоть до альбититов). Сульфидно-кварцевая стадия определяет появление двух минеральных ассоциаций: пиритарсенопиритовой (с альбитом, анортоклазом, хлоритом) и существенно кварцевой. Обе ассоциации в незначительном количестве содержат самородное золото. В полисульфидную (продуктивную) стадию возникли золото-арсенопирит-кварц-анкеритовая ассоциация (с галенитом, сфалеритом, халькопиритом, шеелитом, пиритом). Пострудная стадия выразилась в появлении поздних кальцитовых прожилков, содержащих незначительные количества пирита и кварца.

По ландшафтно-геохимическим условиям площадь рудного поля находится в горно-таёжных районах с устойчивой многолетней мерзлотой. Элювио-делювиальные образования (кора выветривания) состоят из грубообломочного материала; доля фракции <1,0 мм не более 25–30%. Мощность элювио-делювия на водоразделах и верхних частях склонов равна 1–2 м, к подножию увеличивается до 4–5 м. Изученные речные долины I–III порядков имеют, как правило, *V*-образный профиль. Аллювий представлен валунно-галечным, гравийно-песчаным, реже илисто-глинистым материалом. В коренном залегании околорудные метасоматические ореолы представлены линейными зонами серицитизации терригенных пород, интенсивность проявления которой возрастает в сторону рудных зон от первых процентов до 30% и более (от общего объёма вмещающих пород). В непосредственном обрамлении рудных зон на уровне современного эрозионного среза фиксируются тела альбитовых кварцитов (анкерит-кварц-альбитовых метасоматитов), чередующихся с блоками серицитизированных пород или полностью их вытесняющих (рис. 1, *а*). В глубинных зонах соотношения серицитизированных и альбитизированных пород носят более сложный характер [6].

В направлении восстания рудоносных структур мелко-среднезернистые разности альбитовых кварцитов сменяются тонкозернистыми, вплоть до скрытокристаллических (в надрудных интервалах). Мощность тел альбитовых кварцитов колеблется от первых сантиметров до 20–30 м.

Минералогические ореолы нерудной прожилковой минерализации [1, 7] во внешних зонах состоят из нитевидных прожилков анкерита (<5% от объёма пород). В сторону рудных зон интенсивность прожилкования возрастает, а в прожилках преобладают кварц, карбонаты (анкерит, железистый кальцит, кальцит). В центральной зоне распространены прожилки кварц-альбит-калишпатанкеритового состава, содержание которых достигает 20–50% (см. рис. 1, *б*).

Сульфидная минерализация во внешней зоне представлена дисульфидами железа (пирит, марказит) с многочисленными реликтами пирротина. В центральной зоне развивается рассеянная вкрапленность метакристаллов пирита с зональной структурой агрегатов. Наблюдается эпизодическая вкрапленность арсенопирита, сфалерита и халькопирита (см. рис. 1, в).

Первичные геохимические ореолы характеризуются слабо проявленной латеральной и вертикальной геохимической зональностью. Латеральная зональность выражена в смене ассоциаций химических элементов от «рудной» (Au, As, W) в центральной зоне к «полиметаллической» (Pb, Ag, Cu, Zn, Ba) и ртутной во внешней (см. рис. 1, г). Вертикальная геохимическая зональность месторождения Наталка (снизу вверх): W–Co–Zn–As–Au–Ag– Cu–Mo–Pb–Ba–Hg.

Рудные тела или первичные ореолы, выведенные на уровень денудационного среза, обеспечивают формирование вторичных ореолов рассеяния месторождения в качестве устойчивых геологических образований зоны гипергенеза, подчиняющихся вполне определённым закономерностям. В зоне гипергенеза околорудные метасоматические и минералогические ореолы рассеяния изучались с помощью брикетов-шлифов и брикетованшлифов, изготовленных из обломочной фракции (1–3 мм) литохимических проб, отобранных с поверхности элювио-делювия. Некоторые результаты выполненных исследований приведены на рис. 2 в виде сопоставления околорудных метасоматических, минералогических и геохимических ореолов в коренном залегании и во вторичных ореолах рассеяния.

Наиболее информативные параметры вторичных околорудных метасоматических ореолов – интенсивность серицитизации и количество обломков альбитсодержащих метасоматитов, характеризующие рудные зоны месторождения (см. рис. 2, а). Бесспорно выявляется близость контуров зон серицитовых и альбит-кварцевых метасоматитов на эндогенном и гипергенном уровнях. Наблюдается некоторое расширение контуров вторичных метасоматических ореолов по отношению к исходным зонам изменения, в ряде случаев теряется чёткость ограничения отдельных зон и при их частой перемежаемости в элювиоделювии фиксируется ореол смешанных обломков и тех и других разностей метасоматитов. В целом, рассматриваемые геологические и ландшафтные обстановки отличаются высокой степенью соответствия первичных и вторичных околорудных метасоматических ореолов.

Индикаторная роль вторичных минералогических ореолов рассеяния в зоне гипергенеза значительно снижается в связи с разложением большей части карбонатов и сульфидов. В то же время, возможно проводить идентификацию отдельных рудных зон по наличию в обломках ряда минералов, типоморфных для оруденелых участков, или по продуктам их гипергенного разложения. Устойчивое присутствие в обломках серого рудного кварца с пустотами выщелачивания, заполненными скоплениями гидроксидов железа и марганца, является благоприятным признаком наличия оруденения золото-кварцевого типа (см. рис. 2, б). Рудные зоны, выходящие на поверхность или же находящиеся в близком залегании от неё, обнаруживаются в зоне гипергенеза по появлению в обломках кварца вкрапленности арсенопирита, пирита, а также эпизодических включений халькопирита и железистого кальцита.

Вторичные геохимические ореолы рассеяния сохраняют высокую контрастность в зоне гипергенеза (см. рис. 2, в). Наиболее протяжённые вторичные ореолы образуют Au, As, W. Элементы-спутники (Ag, Hg, Pb, Zn, Cu), характеризуясь невысокими содержаниями в коренном залегании, формируют непротяжённые слабоконтрастные вторичные ореолы. Морфология вторичных ореолов в плане подчиняется строению рудных зон. Результаты исследования геохимического состава вторичных ореолов показали высокую степень сходства с составом коренного оруденения. Незначительное перераспределение химических элементов в процессе гипергенного ореолообразования подтверждается близкими к единице значениями коэффициентов остаточной продуктивности [5], определяемых по отношению количества металла в ореоле рассеяния и в коренном залегании.

Ионно-потенциометрические исследования зоны гипергенеза [2] показали наличие в пределах месторождения аномалий ионов NH₄⁺, K⁺, Na⁺, Ca²⁺, Cl⁻, l⁻, Br. Наиболее отчётливо рудные зоны проявлены в полях потенциалов pH и Eh. В пределах рудных зон отмечается увеличение pH до 7,5–8,5 (щелочная реакция среды) при фоновых значениях 5,6±0,64 (слабокислая реакция среды). Окислительно-восстановительный потенциал в области фона имеет величину Eh 338±52 мВ. В элювио-делювии рудных зон Eh понижается до 170–200 мВ.

Эффект протекания реакции окисления в щелочных условиях при более низких значениях Eh, чем в кислых, хорошо известен [4]. Присутствие в почвенных растворах над рудными зонами изученных объектов повышенных концентраций щелочных и щёлочноземельных элементов (Ca, Mg, Na), являющихся сильными восстановителями, приводит к падению Eh растворов с одновременным разложением воды и выделением из неё водорода. В этом случае (например, для карбоната кальция) в почвенных растворах в пределах рудных зон, будет широко представлена буферная система из угольной кислоты и её кальциевой соли – бикарбоната кальция, образование которых протекает по общей схеме:

 $\begin{array}{l} {\sf CaCO_3+H_2O+CO_2=Ca(HCO_3)_2,} \\ {\sf Ca(HCO_3)_2+2H^+=Ca^{2+}+2H_2CO_3,} \\ {\sf CaCO_3+H_2CO_3=Ca(HCO_3)_2.} \end{array}$

Рис. 2. СООТВЕТСТВИЕ ПЕРВИЧНЫХ И ВТОРИЧНЫХ ОКОЛОРУДНЫХ МЕТАСОМАТИЧЕСКИХ (*a*), МИНЕРАЛОГИЧЕСКИХ (*б*) И ГЕОХИМИЧЕСКИХ (*в*) ОРЕОЛОВ ПО ПРОФИЛЮ НА ЮГО-ВОСТОЧНОМ ФЛАНГЕ ИЗУЧАЕМОГО МЕСТОРОЖДЕНИЯ:

Ab – альбитизация; Ser – серицитизация; Q – жильный кварц; Pi+APi – сульфиды (пирит+арсенопирит); Cc – карбонаты (анкерит+железистый кальцит); Fe+Mn – гидроксиды железа и марганца; 1 – рыхлые образования; графики изменения по профилю: 2 – в коренном залегании, 3 – в элювио-делювии; 4 – поле аномальных значений pH/Eh; остальные усл. обозн. см. рис. 1 Щелочная обстановка конечных продуктов реакции определяется соотношением бикарбоната кальция к его карбонату. Образующаяся угольная кислота (H₂CO₃) полностью нейтрализуется CaCO₃, вследствие чего в почвенных растворах наблюдаются дефицит иона H⁺ (повышение pH) и избыток ионов Ca²⁺.

В пределах профиля на юго-восточном фланге месторождения (см. рис. 2, *в*) положительные аномалии образуют показатель pH/Eh и катион Ca²⁺. Для усиления полезного сигнала выявляемых над рудными телами аномалий pH и Eh предложено рассчитывать показатель pH/Eh. В целях обеспечения безразмерности показателя и необходимости сопоставления аномалий в различных ландшафтных обстановках значения pH и Eh предварительно нормируются к их локальному фону.

Результаты экспериментов по привлечению модельных характеристик для интерпретации аномалий рассмотрены на примере участка Купольный. Участок протягивается на 0,8-1 км вдоль восточного фланга Наталкинского месторождения, приурочен к зоне разлома северо-западного направления в осадочных толщах позднепермского возраста. Установлен нами в процессе мелкомасштабных рекогносцировочных работ по появлению в единичных пробах с поверхности аномальных содержаний Au, As и W в сочетании с наличием обломков альбитовых метасоматитов [9]. После получения первых результатов на площади была проведена ионно-потенциометрическая съёмка м-ба 1:10000, по данным которой непосредственно в поле по контуру показателя pH/Eh предварительно определены границы потенциально рудоносной площади (рис. 3). Последующее использование полного комплекса минералого-геохимических методов позволило выявить вторичные ореолы рассеяния Au (С_{тах} 3,88 г/т), As, W, Hg. В процессе анализа брикетов-шлифов выделены две зоны альбитовых кварцитов (до 60% в составе обломков), совмещающихся с повышенно-серицитизированными породами. Этим зонам в брикетаханшлифах соответствуют максимумы накопления жильного кварца, гидроксидов железа, марганца, а в отдельных случаях остатков арсенопирита.

На основании петрографо-минералого-геохимической модели коренного оруденения [7, 8] с помощью набора информативных поисково-оценочных критериев представлено обоснование для проведения буровых работ. Вновь пробуренными

Рис. 3. ВТОРИЧНЫЕ МИНЕРАЛОГО-ГЕОХИМИЧЕСКИЕ ОРЕО-ЛЫ РАССЕЯНИЯ УЧАСТКА КУПОЛЬНЫЙ:

1 – Центральный разлом; аномалии: 2 – потенциометрического показателя pH/Eh >1,5, 3 – обломков альбитовых метасоматитов (10–60%), 4 – ртути (0,02–0,2 г/т), 5 – золота (0,1–1 г/т); 6 – поисковые скважины с промышленными рудными подсечениями (*a*), эндогенными минералого-геохимическими ореолами (*б*); 7 – профили минералого-геохимической съёмки

скважинами на участке Купольный были вскрыты промышленные золоторудные тела.

Преобладание механических форм рассеяния минералов и рудных элементов при подчинённой роли гидрохимических процессов особенно отчётливо проявляется при формировании потоков рассеяния большинства рудных месторождений и в большинстве районов. Минералого-геохимические потоки рассеяния месторождения Наталка фиксируются чётко и имеют комплексный состав, отвечающий минеральному и химическому составам коренного оруденения.

В условиях расчленённого рельефа формируются высококонтрастные *потоки рассеяния околорудных метасоматитов*, среди которых ведущее

Рис. 4. РЕЗУЛЬТАТЫ МИНЕРАЛОГО-ГЕОХИМИЧЕСКОЙ СЪЁМКИ ПО ПОТОКАМ РАССЕЯНИЯ НАТАЛКИНСКОГО РУДНОГО ПОЛЯ м-6а 1:100 000:

аномальные поля: *a* – альбитизированных обломков, % (1 – >30, 2 – 15–30, 3 – 5–15), *б* – гидроксидов железа и марганца, % (1 – >35, 2 – 25–35, 3 – 15–25), *в* – золота, г/т (1 – >1, 2 – 0,1–1, 3 – 0,01–0,1), *г* – потенциала pH/Eh (1 – >2, 2 – 2–1,7, 3 – 1,7–1,5); 4 – гидросеть с точками опробования; 5 – рудные зоны месторождения

значение имеют потоки альбита и серицита – основных минералов околорудных метасоматических ореолов. Аномальное поле потоков рассеяния альбита (рис. 4, *a*) вытянуто в северо-западном рудоконтролирующем направлении. Максимальные содержания в них обломков альбитизированных пород составляют 40%. Потоки рассеяния серицита с содержаниями до 80% от общего объёма проб отмечаются в руслах рек, непосредственно примыкающих к месторождению. Как и для альбита, протяжённость потоков рассеяния серицита составляет не более 2 км.

Протяжённые *минералогические потоки рассеяния* отмечаются для гидроксидов железа и марганца, определяемых в брикетах-аншлифах (см. рис. 4, *б*). Площадь развития аномалий названных компонентов по результатам наблюдений составила 45 км². Максимальные содержания гидроксидов железа и марганца в брикетах-аншлифах достигают 60%, что значительно превышает таковые содержания во вторичных минералогических ореолах рассеяния.

Высококонтрастные *геохимические потоки рассеяния* формируют основные рудные элементы – Аи и As. Протяжённость потоков Au первые километры, максимальные содержания 1 г/т и более (см. рис. 4, в). По протяжённости потоки рассеяния As превосходят потоки золота и составляют 4– 6 км, что связано с большей долей солевого рассеяния мышьяка по сравнению с золотом. Максимальные содержания мышьяка в руслах первого порядка 3000 г/т при фоновых значениях 15 г/т. Помимо потоков рассеяния элементов, наблюдаются также потоки рассеяния ионов и потенциалов. Среди последних наиболее контрастные и протяжённые аномалии отмечены для показателя pH/Eh (см. рис. 4, г).

Проведённые работы по изучению потоков рассеяния с привлечением комплекса минералов, химических элементов, ионов и потенциалов –

индикаторов золото-кварцевого оруденения – показали, что кроме элементов (Au, As, W, Ag и др.), полезную информацию о составе оруденения несут околорудные изменённые породы, рудосопровождающие минералы и потенциалы pH и Eh. По данным ионно-потенциометрии и минералогического анализа (определение гидроксидов Fe и Mn) возможно получение предварительных результатов с определением контуров потенциальных рудных полей непосредственно в поле. С большей достоверностью может быть проведён прогноз ожидаемого типа золотого оруденения. В частности, наталкинский (золото-кварцевый) тип достаточно уверенно диагностируется по аномальным содер-

СПИСОК ЛИТЕРАТУРЫ

- Исакович И.З. Ореолы нерудной прожилковой минерализации на полиметаллических и золоторудных месторождениях и их прогнозно-поисковое значение. – М.: Бородино-Е, 2009.
- 2. *Миляев С.А., Чекваидзе В.Б.* Применение ионно-потенциометрического метода при поисках золоторудных месторождений в терригенно-сланцевых толщах (на примере Центральной Колымы) // Отечественная геология. 2007. № 4. С. 52–59.
- Многофакторная модель золоторудного месторождения Наталка / С.Ф.Стружков, М.В.Наталенко, В.Б.Чекваидзе и др. // Руды и металлы. 2006. № 3. С. 34–44.
- Перельман А.И. Геохимия элементов в зоне гипергенеза. – М.: Недра, 1972.
- 5. *Соловов А.П.* Геохимические методы поисков месторождений полезных ископаемых – М.: Недра, 1985.

жаниям альбитизированных и серицитизированных обломков в сочетании с положительными аномалиями pH/Eh, что полностью соответствует минералого-геохимической модели объекта [7, 8].

По комплексным минералого-геохимическим данным возможно более надёжно производить отбраковку ландшафтных и техногенных аномалий, так как для них совершенно не характерно наличие околорудных метасоматических и минералогических ореолов. Приведённый пример минералого-геохимической съёмки по потокам рассеяния показывает достаточно высокую степень информативности предлагаемого комплекса методов при оценке литохимических аномалий.

- 6. *Чекваидзе В.Б.* Метасоматическая вертикальная зональность березитов на золоторудных месторождениях // Руды и металлы. 2017. № 3. С. 62–67.
- 7. Чекваидзе В.Б., Исакович И.З., Миляев С.А. Минералого-геохимические ореолы Наталкинского золоторудного месторождения // Руды и металлы. 1999. № 6. С. 43–50.
- Чекваидзе В.Б., Миляев С.А., Исакович И.З. Комплексная петрографо-минералого-геохимическая методика поисков золоторудных месторождений. – М.: Бородино-Е, 2004.
- 9. Чекваидзе В.Б., Миляев С.А., Исакович И.З. Оценка геохимических аномалий золоторудных полей на основе петрографо-минералого-геохимических моделей рудных объектов // Руды и металлы. 2017. № 4. С. 99–101.

PETROGRAPHIC-MINERALOGICAL AND GEOCHEMICAL INDICATORS OF GOLD DEPOSITS AND THEIR PROSPECTING SIGNIFICANCE (CASE STUDY OF NATALKINSKOE ORE FIELD, NORTHEAST RUSSIA)

S.A.Milyaev, V.B.Chekvaidze, I.Z.Isakovich (Central Research Institute of Geological Prospecting for Base and Precious Metals, Moscow)

According to the results of a systematic analysis of circum-ore metasomatic, mineralogical and geochemical haloes of Natalka gold deposit, petrographic-mineralogical-geochemical models were built and a set of prospecting and evaluation criteria for both endogenous level (primary haloes) and supergene zones (secondary haloes and scattering flows) was developed on their basis.

Key words: ore deposit, petrographic-mineralogical and geochemical model, primary and secondary haloes, scattering flows.

