—— ГЕОХИМИЯ —

УДК 552.313:554+930.26(571.6)

ВАРИАЦИИ ИЗОТОПОВ СТРОНЦИЯ, НЕОДИМА И КИСЛОРОДА В ПОРОДАХ ЩЕЛОЧНОЙ БАЗАЛЬТ-ТРАХИТ-ПАНТЕЛЛЕРИТ-КОМЕНДИТОВОЙ СЕРИИ ВУЛКАНА ПЕКТУСАН

© 2008 г. В.К. Попов, Г. П. Сандимирова, Т. А. Веливецкая

Представлено академиком М.И. Кузьминым 12.02.2007 г.

Поступило 22.02.2007 г.

Вариации состава радиогенных изотопов неодима, стронция, а также стабильного изотопа кислорода в породах внутриплитных щелочных базальтовых серий определяются составом глубинных мантийных источников. Работы по изотопногеохимической систематике базальтов длительно живущих вулканических центров выявили отчетливую эволюцию источников, отраженную в составе пород различных стадий формирования постройки, например вулкана Халеакала на Гавайях [1]. В континентальных рифтовых зонах изотопный состав вулканических пород, кроме того, зависит от процессов смешения мантийных и коровых компонентов.

В пределах Восточно-Китайской рифтовой системы в миоцене и плиоцен-четвертичное время происходили извержения щелочных и толеитовых базальтов. В четвертичный период вулканическая активность локализовалась в "горячих" точках и проявилась извержениями щелочных базальтоидов с различными эволюционными трендами с образованием лейцититов (группа вулканов Удалянчи), щелочных трахитов и кислых щелочных пород пантеллерит-комендитового ряда (вулкан Пектусан) [2–5]. Несомненный интерес представляет изотопно-геохимическое изучение вулкана Пектусан, где наблюдались неоднократные излияния щелочных и толеитовых базальтов с различными изотопными характеристиками, которые слагают щитовую постройку, а также образуют трубки взрыва и лавовые покровы на конусе вулкана, сложенном трахитами и кислыми щелочными породами [5-7].

В 2002 г. нами проведены полевые исследования на вулкане. Результаты геохимического и

Российской Академии наук, Владивосток

Институт геохимии им. А.П. Виноградова

геохронологического изучения вулканических пород изложены в [7–10]. В настоящем сообщении на основе новых результатов изотопно-геохимического изучения неодима, стронция и кислорода рассмотрены некоторые вопросы генезиса кислых щелочных пород.

Вулкан Пектусан (Байтоушань) расположен на границе Кореи и Китая, его координаты: 42°00' с.ш. и 128°04' в.д., высшая отметка 2744 м. Является единственным действующим вулканом на восточной окраине Азиатского материка. Расположен на базальтовом плато Чанбайшань, нижняя часть которого сложена щелочными базальтами, а верхняя – толеитами. Вершинная кальдера (4 × 6 км) с оз. Тяньчи сформировалась в период 969 ± 20 лет н.э. в результате катастрофического направленного взрыва [11]. Последние вулканические события произошли в 1702 г. с извержением внутри кальдеры игнимбритов и туфов трахитового состава. В 1898 г. русским путешественником Н.М. Гарином-Михайловским наблюдалось фреатомагматическое извержение в кратерном озере с выбросом пара, газа и песка, а в 1903 г. произошло эксплозивное извержение с выбросом комендитовой и трахитовой тефры, отложившейся на северном и восточном склонах вулкана [4].

Щелочные породы вулкана Пектусан слагают его конус (лавы, игнимбриты, туфы), а также поля рыхлых пемзовых отложений вокруг вулканической постройки. Вулканические породы представлены щелочными базальтами, трахитами, трахидацитами, пантеллеритами, комендитами и трахириолитами (табл. 1). Формирование конуса вулкана началось с извержения трахитов 3.11 млн. лет назад [6]. В дальнейшем происходило периодическое чередование извержений трахитовых лав с трахидацитами, пантеллеритами и комендитами. Извержение пемз и обсидианов трахириолитового состава произошло 2.2 млн. лет назад к юго-востоку от вулкана. На склонах вулкана известны трубки взрыва щелочных базальтов, сформированные 245-125 тыс. лет назад [6, 7].

Дальневосточный геологический институт Дальневосточного отделения

Сибирского отделения Российской Академии наук, Иркутск

							•
Компонент	П-505/1	П-505	П-508/1	П-509/1	П-509	П-507/4	23C
SiO ₂	50.50	59.36	63.60	66.24	69.25	72.90	73.46
TiO ₂	2.69	0.80	0.37	0.34	0.32	0.23	0.05
Al_2O_3	17.90	19.30	17.60	15.59	13.79	9.98	9.39
Fe ₂ O ₃	5.03	3.25	2.14	2.10	1.04	0.03	0.13
FeO	3.80	2.04	1.95	2.44	3.25	4.13	1.55
MnO	0.13	0.18	0.12	0.13	0.12	0.08	0.04
MgO	4.65	1.08	0.17	Не обн.	Не обн.	0.24	Не обн.
CaO	7.90	2.29	1.35	0.89	0.49	0.33	1.55
Na ₂ O	3.86	5.90	6.45	6.30	6.01	5.38	3.25
K ₂ O	2.05	4.39	5.55	5.02	4.64	4.52	4.45
P_2O_5	0.56	0.44	0.06	0.13	0.05	0.06	Не обн.
H_2O^-	0.05	0.15	0.02	Не обн.	0.05	0.17	1.44
П.п.п.	0.70	0.32	0.13	0.37	0.49	2.13	5.12
Сумма	99.82	99.50	99.51	99.55	99.50	99.62	100.43
F	467	975	596	1805	1969	2184	Не опр.
Cl	50	80	1200	1500	2650	2400	779
S	30	25	35	95	75	55	Не опр.

Таблица 1. Содержания петрогенных оксидов (мас. %) и летучих компонентов (мкг/г) в щелочных породах вулкана Пектусан

Примечание. Здесь и в табл. 2, 3: П-505/1 – щелочной базальт, основание конуса вулкана; П-505 – щелочной трахит, там же; П-508/1 – щелочной сиенит (обломок в пемзовых отложениях на внешнем склоне вершинной кальдеры); П-509/1 – щелочной трахидацит, конус вулкана; П-509 – пантеллерит, привершинная часть конуса вулкана; П-507/4 – комендит, там же; 23С – трахириолит, южные отроги вулкана. Химический состав определен методом "мокрой химии", микроэлементный – рентгенофлуоресцентным методом в аналитическом центре ДВГИ ДВО РАН.

Кислые эффузивы сложены стекловатыми разностями. Как правило, породы содержат вкрапленники щелочных темноцветных минералов - арфедсонита, эгирина, калиевого полевого шпата, а также фаялита, анортоклаза, кислого плагиоклаза. Акцессорные минералы представлены цирконом, апатитом, монацитом, ильменитом. Среди пемзовых отложений встречаются обломки сиенитов. Впервые сиенитовые включения были отмечены Э.Э. Анертом [12], позднее Е.П. Денисовым [13], обнаружившими их на юго-восточной стороне вулкана. Исследователями был изучен их петрографический состав и отмечено, что особенности состава породообразующих минералов трахитовых лав и сиенитовых включений "подтверждают генетическую связь трахитов и сиенитов и указывают на наличие в глубине сиенитового массива" [13, с. 6]. Обнаруженные нами в 2002 г. обломки сиенитов (до 20 см в поперечнике) представлены средне- и крупнозернистыми разностями щелочных нефелиновых сиенитов, сложенных кристаллами кали-натрового полевого шпата, эгирин-авгита, керсутита, гастингсита, оливина гортонолит-фаялитового состава, биотита, мелкозернистыми агрегатами нефелина. Акцессорные минералы представлены апатитом, магнетитом и цирконом. Породы имеют порфировидную структуру и несут следы динамотермального метаморфизма, выраженные в частичной дезинтеграции и разложении оливина, полевого шпата, биотита и стекла основной массы. По химическому и микроэлементному составу сиенитам близки стекловатые трахиты и трахитовые пемзы, слагающие постройку стратовулкана и имеющие аналогичный состав минералов-вкрапленников [8]. Данные по редкоземельному составу сиенитов и трахитов свидетельствуют о формировании сиенитов в апикальных частях промежуточных магматических камер при кристализации флюидонасыщенных трахитовых расплавов [8].

Для вулканических пород Пектусана характерны высокие концентрации высокозарядных (HFSE), крупноионных литофильных (LILE) и редкоземельных (REE) элементов, как для кислых, так и для базальтоидных пород (табл. 2). В кислых щелочных породах наблюдается высокая степень фракционирования распределения элементов. На диаграммах нормированного распределения элементов кислые породы имеют максимумы по Cs, Rb, Th, U, Hf, Zr и глубокие минимумы по Ba и Sr. Кривые распределения REE для этой группы пород имеют отрицательный наклон с европиевым минимумом [9, 10].

		1	X	, , ,	1		5
Компонент	П-505/1	П-505	П-508/1	П-509/1	П-509	П-507/4	23C
Ni	64	2	0.5	2	_	_	11
Co	38	2	1	1	_	_	1
Cr	105	_	1	6	13	_	20
V	201	3	Не опр.	3	0.5	0.6	1
Cu	32	3	Не опр.	7	9	14	18
Zn	107	129	129	199	274	256	30
Sn	1.9	2.9	5.2	10.3	15.0	17.7	3.5
Мо	2.2	4.6	Не опр.	11.4	16.2	9.3	5.2
Sb	0.01	0.11	Не опр.	0.25	0.32	0.38	0.35
Li	7.1	23.3	Не опр.	37.7	49.8	67.2	32.1
Be	1.73	4.91	6.06	10.83	15.88	17.30	3.42
Sc	20	7	3	3	1	1	2
Ga	22	23	34	38	41	40	13
Ge	1.4	1.4	3.9	2.1	2.4	2.2	1.2
Rb	36	100	136	231	314	345	103
Sr	688	519	35	20	0.5	4	18
Y	22	38	47	78	119	112	12
Zr	231	578	817	1704	2404	2028	71
Nb	35.18	84.69	86.26	168.27	216.99	221.35	16.94
Cs	0.34	0.72	1.56	3.66	4.81	6.13	3.73
Ba	586	1889	74	26	2	14	79
La	34.28	88.80	70.98	155.78	217.40	182.16	29.04
Ce	70.55	181.50	147.86	327.78	471.68	363.72	54.48
Pr	8.62	20.78	Не опр.	33.98	48.60	37.96	5.57
Nd	36.76	73.27	56.03	116.87	171.91	142.64	16.65
Sm	7.50	12.34	15.35	21.00	30.76	28.30	2.70
Eu	2.72	3.37	0.94	0.42	0.53	0.39	0.13
Gd	7.03	15.72	11.23	26.30	38.63	32.78	4.46
Tb	0.33	0.75	1.58	1.30	1.72	2.48	0.14
Dy	5.49	9.18	8.72	16.43	26.91	26.97	2.36
Но	1.09	1.93	1.74	3.58	5.58	5.59	0.50
Er	2.30	4.49	4.24	8.40	12.97	12.80	1.31
Tm	0.31	0.66	0.58	1.28	1.91	1.92	0.21
Yb	2.69	5.05	4.38	9.26	13.96	13.67	1.52
Lu	0.37	0.72	0.57	1.32	1.96	1.80	0.22
Hf	6.52	15.42	19.27	45.16	65.06	59.03	3.42
Та	2.59	6.88	4.01	10.53	11.98	12.62	2.33
W	0.95	3.82	1.68	6.09	7.16	8.33	2.70
Pb	3.51	10.44	6.80	21.42	35.78	34.11	17.65
Th	4.12	10.28	13.40	27.74	48.51	48.58	18.47
U	0.79	2.97	2.25	5.59	9.94	10.96	4.14

Таблица 2. Концентрации микроэлементов (мкг/г, метод ICP-MS) в щелочных породах вулкана Пектусан

Примечание. Определения выполнены в лаборатории геохимии изотопов Института геохимии СО РАН.

ДОКЛАДЫ АКАДЕМИИ НАУК том 419 № 1 2008

ВАРИАЦИИ ИЗОТОПОВ СТРОНЦИЯ

№ обр.	${}^{87}\text{Sr}/{}^{86}\text{Sr} \pm 2s$	ε _{Sr}	143 Nd/ 144 Nd ± 2s	ε _{Nd}	δ^{18} O, ‰ SMOW
П-505/1	0.70489 ± 1	0.05	0.512578 ± 4	-1.2	5.3
П-505	0.70504 ± 1	0.08	0.512639 ± 9	0.02	6.3
П-508/1	0.70504 ± 1	0.08	0.512597 ± 8	-0.8	2.2
П-509/1	0.70800 ± 6	0.49	0.512591 ± 3	-0.9	6.2
П-509			0.512599 ± 10	-0.8	
П-507/4	0.70536 ± 2	0.12	0.512596 ± 6	-0.8	6.3
23C	0.71331 ± 1	1.25	0.512735 ± 3	1.9	6.8

Таблица 3. Изотопный состав стронция, неодима и кислорода в породах вулкана Пектусан

Примечание. Анализ изотопов проводился по валовым пробам. Вычисление ε_{Nd} в породах проводилось по современному значению $I_{CHUR}^0 = 0.512638$. $\varepsilon_{Sr} = (({}^{87}Sr/{}^{86}Sr)/0.7045 - 1) \cdot 100$.

Особенности геохимического состава свидетельствуют о генетической связи щелочных базальтов, трахитов и кислых щелочных пород вулкана Пектусан. Механизм образования кислых пород вулкана трактуется исследователями поразному. Образование комендитовых магм Пектусана традиционно объясняется фракционированием из трахитового расплава анортоклаза, геденбергита и фаялита [11]. Другие исследователи [5], основываясь на изотопных и геохимических данных, происхождение пантеллеритов и комендитов связывают с процессами кристаллизационной дифференциации базальтовой магмы без признаков смешения с коровым веществом. На основании результатов геохимического изучения пород мы пришли к выводу, что формирование кислых щелочных пород (щелочных трахидацитов, пантеллеритов и комендитов) объясняется механизмом флюидно-магматической эволюции трахитовых расплавов, насыщенных летучими компонентами - Cl, F, S, H₂O, а образование трахириолитов связано с процессами анатектического плавления материала коры [10]. Полученные новые данные изотопного состава неодима, стронция и кислорода в основных типах пород с использованием данных [10] позволили вернуться к рассмотрению вопросов генезиса щелочно-салических пород вулкана Пектусан.

Аналитические исследования выполнены в Институте геохимии СО РАН (изотопы стронция и неодима) и Дальневосточном геологическом институте ДВО РАН (изотопы кислорода). Концентрации Rb, Sr, Nd и Sm определены методом ICP-MS на масс-спектрометре Element 2 фирмы "Finnigan". Измерения изотопов стронция и неодима выполнены на масс-спектрометре "Finnigan MAT 262". Масс-спектрометрический анализ изотопного состава кислорода проводился на массспектрометре МИ 1201-В.

Полученные результаты свидетельствуют о значительных вариациях в породах вулканиче-

ской постройки изотопов стронция, кислорода и неодима (табл. 3).

Щелочные базальты, залегающие в основании конуса стратовулкана, характеризуются минимальным значением отношений ⁸⁷Sr/⁸⁶Sr. В щелочных трахитах, а также сиенитах величина отношений ⁸⁷Sr/86Sr возрастает. Кислые щелочные породы характеризуются контрастным распределением концентраций стронция. Щелочные трахидациты имеют самые высокие концентрации стронция, а в пантеллеритах, комендитах и трахириолитах содержание этого элемента резко снижается. Значение ⁸⁷Sr/⁸⁶Sr в щелочных трахидацитах составляет 0.708. В пантеллеритах минимальные концентрации стронция не позволили определить его изотопный состав. В комендитах величина ⁸⁷Sr/⁸⁶Sr-отношения составляет 0.70536. В трахириолитах значение ⁸⁷Sr/⁸⁶Sr достигает 0.71331. Изотопный состав кислорода в щелочных базальтах составляет 5.3‰, в щелочных трахитах, трахидацитах и комендитах варьирует от 6.2 до 6.3%, а трахириолитах возрастает до 6.8%. Исключение составляют сиениты, обедненные тяжелым изотопом кислорода. Значения отношений ¹⁴³Nd/¹⁴⁴Nd в щелочных базальтах ниже относительно щелочных трахитов и кислых пород. В ряду щелочной трахит-комендит отношения ¹⁴³Nd/¹⁴⁴Nd близки $(\epsilon_{Nd} = -0.8...-0.9)$. В трахириолитах значение ¹⁴³Nd/¹⁴⁴Nd возрастает ($\epsilon_{Nd} = 1.9$). Мы предполагаем, что такое нарушение мантийной последовательности обусловлено значительными вариациями изотопного состава магматических резервуаров - источников щелочных и толеитовых базальтов, слагающих плато Чанбайшань, основание стратовулкана и трубки взрыва на его конусе.

Миоценовые базальты основания плато Чанбайшань сопоставимы с составом внутриплитных толеитов и E-MORB [14]. Плиоценовые щелочные оливиновые базальты и толеиты Чанбайшаня по Nd–Sr–Pb-изотопным отношениям отвечают глубинному резервуару типа EMI и базальтам океанических островов [3, 5]. Данные изотопного

Рис. 1. Соотношение изотопного состава неодима и стронция в изверженных породах вулкана Пектусан. Стрелками показаны предполагаемые эволюционные тренды мантийных источников с различными изотопными характеристиками. Эллипсом ограничено поле состава базальтов плато Чанбайшань и вулкана Пектусан по данным [5]. *1* – данные авторов; *2* – данные по [5].

состава базальтов Чанбайшаня и Пектусана, приведенные в [5], свидетельствуют о том, что по ¹⁴³Nd/¹⁴⁴Nd здесь можно выделить три магматических резервуара, в которых є_{Nd} составляет +2.6 (щелочные оливиновые базальты), -1.3...-1.5 (толеиты и щелочные оливиновые базальты) и -2.7 (оливиновые толеиты). Изученные нами щелочные оливиновые базальты, залегающие в основании постройки Пектусана ($\varepsilon_{Nd} = -1.2$), соответствуют магматическому резервуару с промежуточными значениями ¹⁴³Nd/¹⁴⁴Nd. Последующие плиоцен-четвертичные извержения щелочных трахидацитов, пантеллеритов и комендитов, очевидно, были связаны с эволюцией щелочных базальтов данного магматического источника, что подтверждается хронологическими данными извержений вулкана [6, 7]. Щелочные трахидациты отличаются высокими содержаниями Sr и Rb (табл. 2). Значения 87 Sr/ 86 Sr в этих породах возрастают до 0.708, а 143 Nd/ 144 Nd уменьшаются до 0.512591 и отвечают источнику EMII (рис. 1). Значение δ^{18} О в трахидацитах ниже, чем в трахитах из основания вулканической постройки (табл. 3). Пантеллериты и комендиты обогащены Rb и Nd и резко обеднены Sr. Значения ¹⁴³Nd/¹⁴⁴Nd в породах остаются на уровне 0.512599-0.512596, а ⁸⁷Sr/⁸⁶Sr (в комендитах) составляет 0.70536. Величина δ^{18} О в комендитах не меняется. Sr–Nd-изотопная система для комендитов незначительно обогащена радиогенным стронцием, оставаясь в пределах поля составов базальтов Чанбайшаня (рис. 1).

Рис. 2. Распределение Nb и Zr в изверженных породах вулкана Пектусан. *1* – данные авторов; *2* – данные по [14].

Трахиты, имеющие возраст 3.1 млн. лет, а также трахириолиты, появившиеся 2.2 млн. лет назад на южной стороне вулкана в виде пемз и вулканических стекол (обсидианов) [6], имеют более высокие, чем в изученных щелочных базальтах, значения ¹⁴³Nd/¹⁴⁴Nd ($\varepsilon_{Nd} = 0.02$ и 1.9 соответственно) и, очевидно, связаны с развитием других магматических резервуаров. Об этом свидетельствует характер распределения в породах Nb и Zr (рис. 2). Трахириолиты по характеру распределения в них редких и редкоземельных элементов идентичны щелочным трахитам и трахидацитам [10]. Изучение состава трахириолитов в Sr-Nd и Sr-18O изотопных системах свидетельствует о контаминации мантийного источника коровым материалом, приведшей к возрастанию в трахириолитах радиогенного стронция и δ¹⁸O. По соотношению изотопного состава кислорода и стронция точки состава пород Пектусана повторяют тренд "мантийной" контаминации щелочнобазальттрахит-комендитовой серии вулкана Белоголовского на Камчатке по данным [15] (рис. 3).

В сиенитах изотопные отношения ¹⁴³Nd/¹⁴⁴Nd и ⁸⁷Sr/⁸⁶Sr незначительно отклоняются от мантийной последовательности. При этом наблюдается их резкое обеднение тяжелым изотопом кислорода, что можно объяснить взаимодействием с гидротермально-измененными породами или наложенным термальным метаморфизмом под воздействием флюидов, основным компонентом которых является вода [15]. Этот вывод подтверждается данными о проявлении динамотермального метаморфизма в сиенитах.

Таким образом, проведенные исследования изотопного состава неодима, стронция и кислорода в основных типах пород вулкана Пектусан в

ДОКЛАДЫ АКАДЕМИИ НАУК том 419 № 1 2008

Рис. 3. Соотношение изотопного состава кислорода и стронция в породах вулкана Пектусан (1) и щелочнобазальт-трахит-комендитовой серии вулкана Белоголовского на Камчатке (2) по данным авторов и работы [15]. М – поле БСОХ.

совокупности с данными [5] позволяют предположить наличие трех мантийных резервуаров, обусловивших вариации изотопного состава щелочных и толеитовых базальтов. Источником щелочных базальтов, залегающих в основании постройки, являлись глубинные резервуары типа ЕМІ. Кислые щелочные породы (пантеллериты и комендиты) сформировались в результате флюидно-магматической дифференциации щелочно-базальтовой магмы при незначительной контаминации расплавов коровым веществом. Щелочные трахидациты по своим параметрам ¹⁴³Nd/¹⁴⁴Nd и ⁸⁷Sr/⁸⁶Sr отвечают источнику EMII, а по изотопному отношению ⁸⁷Sr/⁸⁶Sr и δ^{18} O соответствуют тренду "мантийной" контаминации шелочных базальтов по [15]. Изотопный состав более древних щелочных трахитов и трахириолитов обнаруживает их связь с другим мантийным резервуаром, имеющим более высокое отношение ¹⁴³Nd/¹⁴⁴Nd, ранее установленное в плиоценовых щелочных оливиновых базальтах Пектусана [5]. Высокое содержание В трахириолитах радиогенного стронция обусловлено процессами контаминации мантийных расплавов нижнекоровым материалом, обусловивших небольшое возрастание в кислых дериватах значений δ^{18} O.

Для построения согласованной изотопно-геохимической модели эволюции мантийных источников Пектусана необходимы более детальные геохронологические и изотопные исследования изверженных пород щитовой постройки и конуса вулкана.

Работа выполнена при финансовой поддержке региональной программы "Дальний Восток" РФФИ–ДВО РАН (гранты 06–08–96012, 06–05–96159) и проекта ДВО РАН (№ 06–III–А–08–319).

СПИСОК ЛИТЕРАТУРЫ

- Chen C.-Y., Frey F.A. // J. Geophys. Res. 1985. V. 90. P. 8743–8768.
- Peng Z.G., Zartman R.E., Futa K., Chen D. // Chem. Geol. 1986. V. 59. P. 3–33.
- 3. *Tatsumoto M., Basu A.R., Huang W. et al.* // Earth and Planet. Sci. Lett. 1992. V. 113. P. 107–128.
- 4. *Wei H., Sparks R.S.J., Liu R. et al.* // J. Asian Earth Sci. 2003. V. 21. P. 515–526.
- 5. Basu A.R., Junwen W., Wankang H. et al. // Earth and Planet. Sci. Lett. 1991. V. 105. P. 149–169.
- Геология Кореи. Пхеньян: Изд-во книг на иностр. языках, 1993. 663 с.
- Сахно В.Г., Попов В.К. В сб.: Материалы III Российской конференции по изотопной геохронологии. 6–8 июня 2006 г. М.: Геос, 2006. С. 244–249.
- Попов В.К., Ноздрачев Е.А., Кузьмин Я.В. В сб.: Труды XXI Всероссийского семинара по геохимии магматических пород. 3–5 сентября 2003 г. Апатиты, ГИ КНЦ РАН. Апатиты: Изд-во КНЦ РАН, 2003. С. 127–128.
- Попов В.К., Сахно В.Г., Кузьмин Я.В., Гласкок М.Д. В сб.: Труды научной школы "Щелочной магматизм Земли". Ежегодный семинар "Геохимия магматических пород". 26–27 апреля 2005 г. М., 2005. С. 135–138.
- 10. Попов В.К., Сахно В.Г., Кузьмин Я.В. и др. // ДАН. 2005. Т. 403. № 2. С. 248–252.
- Horn S., Schmincke H.-U. // Bull. Volcanol. 2000. V. 61. P. 537–555.
- Анерт Э.Э. Путешествие по Маньчжурии. СПб: Типография императорской Академии Наук, 1904. 432 с.
- Денисов Е.П., Тен Ха Чер. В кн.: Вопросы геоморфологии и морфотектоники южной части Дальнего Востока. Владивосток: Дальневост. кн. изд-во, 1966. С. 3–7.
- 14. Федоров П.И., Филатова Н.И. // Геохимия. 2002. № 1. С. 3–29.
- Покровский Б.Г. Коровая контаминация мантийных магм по данным изотопной геохимии. М.: Наука, 2000. 228 с.