УДК 550.93 (470.5)

А.А. Краснобаев¹, П.М. Вализер², А.Л. Перчук³

ОРДОВИКСИЙ ВОЗРАСТ ДУНИТ-ВЕРЛИТ-КЛИНОПИРОКСЕНИТОВОГО ПОЛОСЧАТОГО КОМПЛЕКСА МАССИВА НУРАЛИ (ЮЖНЫЙ УРАЛ, РОССИЯ) ПО ДАННЫМ SHRIMP U-РЬ ДАТИРОВАНИЯ ЦИРКОНОВ

Приведены результаты изотопно-геохронологического изучения цирконов из верлитов и клинопироксенитов из дунит-верлит-клинопироксенитового полосчатого комплекса, находящегося в основании корового разреза офиолитов Нуралинского массива на Южном Урале. Возраст пород полосчатого комплекса заметно отличается от предыдущих данных и по совокупности полученных данных оценивается в 450±4 млн лет. Редкоземельная спецификация цирконов ультрамафитов относится к магматическому типу и отражает возрастную и предположительно генетическую общность изученных пород с лерцолитами и дунитами мантийной части массива Нурали.

Ключевые слова: верлит, клинопироксенит, циркон, геохимия, U-Pb возраст, офиолиты, Нуралинский массив, Южный Урал.

We present the data of geochemistry and geochronology of zircons from wehrlites and clinopyroxenites from dunite-wehrlite-clinopyroxenite bended complex of the base of crustal section of ophiolite Nurali massif. The U-Pb age of the bended complex is 450 ± 4 Ma which is different from the previous data. Zircons from the studied rocks have complimentary REE patterns and similar U-Pb ages to lherzolites and dunites from mantle section of the Nurali massif.

Key words: wehrlite, clinopyroxenite, zircon, ophiolites, age, Nurali massif, Urals.

Введение. Нуралинский массив, входящий в состав одноименного мафит-ультрамафитового аллохтона, расположен на Южном Урале у истоков р. Миасс в зоне меланжа Главного Уральского разлома. Он образует линзовидное тело (20×3,5 км), сложенное на западе шпинелевыми и плагиоклазовыми лерцолитами, гарцбургитами и дунитами, находящимися в сложных взаимоотношениях. На востоке по тектоническому контакту перидотитовый блок граничит с полосчатым дунит-верлит-клинопироксенитовым комплексом, представляющим пластину мощностью 200-300 м и сменяющимся еще восточнее серпентинитовым меланжем, который включает амфиболовое габбро, переходящее к верхней части интрузии в диориты и кварцевые диориты [Ферштатер, Беа, 1996; Малич и др., 2016; Pertsev et al., 1997] (рис. 1). Такие соотношения главных структурно-вещественных единиц признают все исследователи, но их внутреннее строение, характер взаимосвязей различных породных ассоциаций, геодинамические обстановки и, главное, время проявления петрогенетических процессов, вызвавших формирование Нуралинского аллохтона, остаются дискуссионными [Рудник, 1965; Книппер и др., 2001; Савельева, 1987, 2011; Ферштатер и др., 2013; Tessalina et al., 2007].

Представления о природе перидотитового блока различаются. Г.Б. Ферштатер [Ферштатер,

Беа, 1996; Ферштатер, 2013] рассматривает его в качестве типичного представителя орогенных лерцолитов корневых зон, перекрытого полосчатым дунит-верлит-клинопироксенитовым комплексом мощностью около 400 м, который в свою очередь перекрыт дифференцированной габбро-диоритовой интрузией. Ту же последовательность другие исследователи [Савельева, Денисова, 1983; Савельева, 1987, 2011; Pertsev, 1997; Книппер и др., 2001] трактуют как типичный разрез офиолитовой ассоциации.

Происхождение полосчатого комплекса Нуралинского массива связывают с магматическими процессами в зоне спрединга, но некоторые моменты остаются дискуссионными [Малич и др., 2016]. По одной из гипотез этот комплекс представляет собой продукт кумулусной кристаллизации основных магм, выплавленных из подстилающих перидотитов [Денисова, 1985: Grieco et al., 2007]. Перекрывающие амфиболовое габбро и диориты с полосчатым комплексом не связаны. Близкой точки зрения придерживаются авторы работы [Ферштатер, Беа, 1996], они полагают что полосчатый комплекс не имеет прямого генетического родства с дунит-гарцбургит-лерцолитовой частью массива. Согласно другой гипотезе [Pertsev et al., 1997; Tessalina et al., 2007] дунит-верлитклинопироксенитовый комплекс сформировался

¹ Институт геологии и геохимии имени А.Н. Заварицкого УрО РАН, гл. науч. с., докт. геол.-минерал. н., профессор; *e-mail*: krasnobaev@igg.uran.ru

² Ильменский государственный заповедник, Миасс, директор, канд. геол.-минерал. н.; *e-mail*: valizer@ilmeny.ac.ru

³ Московский государственный университет имени М.В. Ломоносова, геологический факультет, кафедра петрологии, зав. кафедрой, докт. геол.-минерал. н.; Институт экспериментальной минералогии РАН, вед. науч. с.; *e-mail*: alp@geol.msu.ru

в основании разреза древней океанической коры в результате многостадийной магматической кристаллизации в корневой части рифтовой зоны. Амфиболовые габброиды эти авторы рассматривают как продукт фракционированной кристаллизации на более поздней стадии развития магматической системы.

Возрастные изотопные исследования пород Нуралинского массива немногочисленны. Re-Os и Sm-Nd изохронные изотопные системы гарцбургитов, дунитов, верлитов, хромитов и габбро [Tessalina et al., 2007] позволили сделать вывод об отделении мантийного блока и включении его в субконтинентальную литосферу в мезопротерозое — 1249±80 млн лет назад (л.н.). Известна также палеопротерозойская изохронная Sm-Nd датировка (576±18 млн лет), полученная интегрально для лерцолитов, верлитов, клинопироксенитов и выделенных из них ортопироксенов и клинопироксенов [Попов и др., 2008]. С учетом сложной истории существования Нуралинского массива ее, в лучшем случае, можно рассматривать лишь как усредненную, лишенную конкретного геологического содержания. Наиболее надежна датировка цирконов из диоритов — 399±2 млн лет, которая предлагается как соответствующая возрасту габбро-диоритовой интрузии [Ферштатер, 2013]. Цель нашей работы — получение надежных возрастных датировок для пород полосчатого комплекса.

Методы исследования. Для решения возрастной проблемы полосчатого комплекса нами использованы цирконы, выделенные из объемных проб (100-120 кг) верлитов (К2057) и клинопироксенитов (К2058) массива (рис. 1). Общий анализ пород выполнен на спектрометрах СРМ-18 (Россия) и EDX-900 HS («Shimadzu», Япония), а редкие и редкоземельные элементы определены методом масс-спектроскопии с индуктивно связанной плазмой (ICP-MS) на приборе «ELAN 9000» («Perkin Elmer», Канада) в Институте геологии и геохимии УрО РАН. Изотопные анализы выполнены на ионном микрозонде «SHRIMP II» в ЦИИ ВСЕ-ГЕИ по стандартной методике [Williams, 1998], позволяющей получать информацию не только для отдельных зерен, но и для сосуществующих в них генетически различных частей. Традиционно аналитическим исследованиям предшествовали минералогические, на основании которых для анализа выбирали только те участки в гетерогенных зернах, которые соответствовали наиболее важным этапам в их развитии. Анализы РЗЭ в цирконах выполнены методом вторично-ионной масс-спектрометрии на приборе «Cameca IMS-4F» в Институте микроэлектроники и информатики РАН [Федотова и др., 2008]. Измерение включало 5 повторяющихся циклов накопления сигнала. Время накопления определялось автоматически в зависимости от его интенсивности. О точности и пределах определения элементов (ppm) можно

Рис. 1. Схема структурной зональности Урала, по [Пучков, 2010] (*a*), схематическая геологическая карта Нуралинского массива, по [Рудник, 1965; Савельева, 1987; Ферштатер, 2013] (б)

 а — 1 — Предуральский краевой прогиб, 2 — Западно-Уральская мегазона, 3 — Центрально-Уральская мегазона, 4 — Тагило-Магнитогорская зона, 5 — Восточно-Уральская мегазона, 6 — Зауральская мегазона

6 — 1 — верхнепротерозойские отложения: кварциты, слюдяные сланцы; 2–3 — перидотитовый блок (2 — лерцолиты шпинелевые и плагиоклазовые, 3 — дуниты и гарцбургиты);
4 — дунит-верлит-клинопироксенитовый полосчатый комплекс (места отбора верлита — К2057, и клинопироксенита — К2058);
5 — габбро, амфиболиты и диориты; 6 — серпентинитовый меланж

судить по анализам эталона 91500: La $0,02\pm0,01$, Ce $3,4\pm0,1$, Sm $0,48\pm0,05$, Nd $0,18\pm0,01$, Gd $2,3\pm0,2$, Dy 11 ± 1 , Er 32 ± 2 , Yb 78 ± 4 . Надежность методики подтверждается также широкой практикой ее применения.

Измерения РЗЭ в кристаллах проводились в тех же точках (кратерах), что и при U-Pb датировании.

Результаты исследований и их обсуждение. РЗЭ в ультрамафитах. Состав исследованных верлитов и клинопироксенитов приведен в табл. 1 и на рис. 2. Для сравнения приведены также спектры редкоземельных элементов (РЗЭ) пород перидотитового комплекса и амфиболового габбро Нуралинского массива. Все они близки ранее опубликованным данным [Ферштатер и др., 2013]. Совокупность редкоземельных особенностей пород массива образует классическую последовательность, обусловленную общностью происхождения

Рис. 2. РЗЭ в верлитах (1) и клинопироксенитах (2) полосчатого комплекса, дунитах (3), гарцбургитах (4), лерцолитах (5) перидотитовой серии и габбро (6) Нуралинского массива. ПМ — примитивная мантия [Богатиков и др., 1987]

из единого лерцолитового источника, испытавшего разделение на комплиментарные фракции вследствие частичного плавления.

Морфология и внутреннее строение кристаллов циркона. Клинопироксениты содержат цирконы, сочетание минералогических особенностей которых характеризуют и специфические условия их образования, и сложную историю существования (рис. 3, А). На фоне вариаций типичных, хорошо известных признаков отдельных зерен особое внимание привлекают кристаллы, испытавшие своеобразное расщепление (развальцовку) с последующим восстановлением обособленности, но уже при новом облике кристалла (кристалл 1). Пилообразные контуры таких зерен свидетельствуют об активном участии их в тектонических процессах и об огромном давлении, испытанном ими.

Дробление и растворение, которые сопровождались нивелировкой возникшего при этом рельефа, обеспечили некоторым кристаллам сочетание первичных (следы идиоморфизма) и вторичных (появление округлости) особенностей облика (кристалл 2), в совокупности исключающих появление вопросов об их окатанности (терригенности). У шарообразного зерна с округлым ядром (кристалл 3) еще просматриваются следы исходного идиоморфного облика, хотя его большая часть и перекрыта новообразованной тонкой пленкой. У гетерогенного зерна, ранняя генерация которого включает зоны и секториальности, первичное включение выделяется исключительно высоким идиоморфизмом и четкими реберными границами (кристалл 4). У других подобных ему зерен также просматриваются следы поверхностного растворения (кристаллы 5, 7, 8). Совокупность всех этих минералогических признаков и формирует конечный облик кристаллов, а прозрачность большинства из них в сочетании с алмазным блеском отражает высокую кристалличность их матрицы. В целом, исключив кристалл 3, можно говорить о сходстве условий формирования большинства кристаллов клинопироксенитов, о соответствии их

Состав петрогенных (масс. %) редкоземельных и редких (г/т) элементов в верлитах и клинопироксенитах Нуралинского массива

Таблица 1

Компо- нент	1	2	3	4	5	6	
SiO ₂	48,36	52,91	35,59	41,15	42,84	42,86	
TiO ₂	0,13	0,18	0,02	0,01	0,05	1,00	
Al ₂ O ₃	1,43	2,20	0,52	0,78	1,88	16,43	
Fe ₂ O ₃	2,98	-	6,45	5,15	3,97	7,45	
FeO	2,40	3,11	1,70	2,80	4,60	7,50	
MnO	0,09	0,07	0,12	0,13	0,13	0,23	
CaO	27,43	18,36	0,08	0,55	1,79	11,9	
MgO	14,00	22,58	42,16	39,66	39,87	6,78	
Na ₂ O	0,05	0,07	0,01	0,04	0,05	0,71	
K ₂ O	0,03	0,05	0,01	0,02	0,04	0,35	
V	146,6	141,8	4,01	22,89	46,15	314,4	
Cr	704,1	1485	412,1	1655	1287	36,06	
Со	63,61	26,52	92,15	89,10	90,0	27,47	
Ni	381,3	151,7	1880	1763	1712	24,00	
Cu	14,62	13,20	6,91	2,36	33,49	55,08	
Zn	15,40	12,27	17,77	25,29	27,14	69,33	
Rb	0,20	0,44	0,08	0,23	0,33	3,02	
Sr	22,80	34,35	0,56	1,82	2,30	580,9	
Y	2,94	3,85	0,05	0,11	1,39	17,20	
Zr	2,01	3,18	0,77	0,28	0,86	15,86	
Nb	0,49	0,37	0,90	0,07	0,01	3,26	
Мо	0,27	0,33	0,23	0,07	0,20	0,51	
Cd	0,03	0,06	н/о	0,01	0,01	0,26	
Sn	0,19	0,25	0,19	0,03	0,11	0,81	
Sb	0,09	0,10	0,06	0,03	0,09	0,15	
Ba	4,21	6,51	1,33	1,67	4,45	80,5	
La	0,46	0,32	0,02	0,02	0,05	4,29	
Ce	1,90	1,20	0,03	0,05	0,11	12,6	
Pr	0,35	0,24	0,01	0,01	0,02	1,94	
Nd	1,91	1,53	0,03	0,03	0,14	9,77	
Sm	0,52	0,57	0,01	0,01	0,06	2,63	
Eu	0,16	0,20	0,01	0,01	0,02	0,86	
Gd	0,63	0,75	0,01	0,01	0,15	3,06	
Tb	0,11	0,13	0,01	0,01	0,03	0,51	
Dy	0,72	0,89	0,01	0,02	0,24	3,53	
Но	0,15	0,18	0,01	0,01	0,06	0,76	
Er	0,38	0,48	0,01	0,02	0,16	2,26	
Tm	0,05	0,07	0,01	0,01	0,03	0,32	
Yb	0,30	0,43	0,02	0,02	0,21	2,20	
Lu	0,04	0,06	0,01	0,01	0,03	0,33	
Hf	0,10	0,15	2,52	0,01	0,04	0,78	
W	0.47	0.49	0.38	0.20	0.40	0.78	

Примечения. 1 — верлит, 2 — клинопироксенит, 3 — дунит, 4 — гарцбургит, 5 — лерцолит, 6 — габбро.

Таблица 🛛	2
-----------	---

U-Pb возраст цирконов из верлитов и клинопироксенитов массива Нурали

							1							
Кри-	20651 ~	Соде	ержани	ie, ppm	<u>232</u> Th	Возраст, млн лет**		Изотопные отношения					DI	
сталл, ²⁵⁶ Рb _c ,% -		U	Th	²⁰⁶ Pb*	²³⁸ U	$\frac{\frac{206}{238}}{\text{Pb}}$	D, %	²⁰⁷ Pb* / ²⁰⁶ Pb*, ±%		²⁰⁷ Pb*/ ²³⁵ U, ±%		²⁰⁶ Pb*/ ²³⁸ U, ±%		Rho
Верлит (К2057)										1				
1.1	0,31	177	84	11,20	0,49	458,0±4,6	-12	0,0548	4,1	0,557	4,2	0,0737	1,0	0,245
1.2	0,08	183	133	11,50	0,75	456,0±4,1	-9	0,0551	3	0,556	3,1	0,0732	0,9	0,299
1.3	0,00	80	51	5,04	0,66	457,0±5,7	-21	0,0538	4,2	0,545	4,4	0,0735	1,3	0,295
2.1	0,00	252	214	15,90	0,88	457,0±3,7	-16	0,0543	2,3	0,550	2,5	0,0735	0,8	0,337
2.2	0,00	122	37	7,66	0,32	455,0±5,7	5	0,0566	4,2	0,570	4,4	0,0731	1,3	0,293
3	0,00	148	130	9,08	0,91	445,0±4,3	7	0,0566	3	0,558	3,1	0,0715	1,0	0,319
4.1	0,67	551	801	34,60	1,50	451,0±3,8	23	0,0587	3,7	0,586	3,8	0,0724	0,9	0,230
4.2	0,60	199	151	12,50	0,78	453,0±5,6	7	0,0568	5,8	0,570	6,0	0,0728	1,3	0,215
5.2	9,91	281	86	22,20	0,32	511±11	-10	0,0560	27	0,640	27,0	0,0825	2,3	0,084
5.1	0,58	160	164	11,90	1,06	532,0±5,8	-16	0,0559	5,1	0,663	5,2	0,0860	1,1	0,217
6.1	0,33	194	153	12,10	0,81	449,0±5,4	5	0,0565	4,1	0,562	4,3	0,0722	1,2	0,289
6.2	1,87	179	24	10,20	0,14	408±10	-99	0,0460	23	0,415	23	0,0654	2,5	0,109
						Клиноп	ироксе	енит (K20	58)			•		
1	0,00	87	74	5,35	0,88	445,4±5,8	-18	0,0538	5,2	0,531	5,4	0,0715	1,3	0,249
2	0,00	283	146	17,80	0,53	454,1±3,6	2	0,0563	2,9	0,566	3	0,0729	0,83	0,274
3.1	0,00	4	1	0,25	0,35	425±27	-20	0,0530	24	0,500	25	0,0681	6,6	0,261
3.2	0,00	164	5	8,96	0,03	396,9±4,1	20	0,0566	4	0,495	4,2	0,0635	1,1	0,258
4.1	0,00	89	68	5,48	0,78	444,7±5,8	-8	0,0550	5,3	0,541	5,4	0,0714	1,3	0,247
4.2	0,00	106	71	6,46	0,69	441,0±6,2	-27	0,0529	4,9	0,516	5,1	0,0708	1,5	0,288
5.1	0,00	95	70	5,83	0,77	446,2±5,7	-16	0,0541	5,1	0,535	5,3	0,0716	1,3	0,252
5.2	0,00	73	29	4,46	0,41	445,3±6,6	23	0,0585	6	0,577	6,1	0,0715	1,5	0,250
6	0,00	121	66	7,43	0,57	444,1±4,8	0	0,0557	4,3	0,548	4,4	0,0713	1,1	0,254
7.1	0,00	117	57	7,38	0,51	456,7±5,9	5	0,0567	4,4	0,573	4,6	0,0734	1,3	0,293
7.2	0,00	148	124	8,81	0,87	431,1±4,8	13	0,0569	4,6	0,543	4,8	0,0691	1,2	0,240
8.1	0,00	98	80	6,09	0,84	451,5±5,5	-31	0,0526	4,9	0,526	5,1	0,0725	1,3	0,249
8.2	0,00	214	10	8,57	0,05	293,7±2,9	11	0,0530	4,1	0,340	4,2	0,0466	1	0,240

Примечания. Pb_c и Pb^{*} — общий и радиогенный свинец, соответственно; ^{**} — коррекция по ²⁰⁴Pb; Rho — коэффициент корреляции; D — дискордантность. Ошибка калибровки стандарта для K2057 — 0,35%, для K2058 — 0,26%.

магматическому типу с общей историей развития. Контрастность катодолюминесцентных снимков (CL) и однородность вторичной электронной эмиссии (BSE) кристаллов свидетельствуют об отсутствии у сосуществующих генераций значительных внутренних напряжений, что обеспечивает им высокую устойчивость при метаморфизме.

Цирконы верлитов по внешним признакам сопоставимы с цирконами из клинопироксенитов (рис. 3, Б). Заметно выделяется кристалл 3, история существования которого подобна таковой у кристалла 1 из клинопироксенита. Широкополосная зональность кристалла 1, разный микрорельеф граней кристаллов 5 и 6, обогащенность ураном ранней генерации кристалла 4, испытавшего дробление и заполнение полостей трещин флюидной субстанцией, подвергнутой расшифровке, создают минералогическую специфику цирконов верлитов. Игольчатое включение минерала в кристалле 2 отличается от подобного в кристалле 4 клинопироксенитов сосуществованием с прилипшей «каплей» расплава. Точечные включения проявляют следы дробления кристалла 6, у которого в процессе роста сменился облик головки {311}→{111}. Принципиальные различия между цирконами верлитов и клинопироксенитов не обнаружены, что, вероятно, отражает их связь с единым магматическим источником.

Геохимия U-Th. В распределении этих элементов (табл. 2) в цирконах клинопироксенитов просматриваются три главные особенности (рис. 4). Прежде всего это относится к кристаллам основной группы, ранние генерации которых близки по содержанию U и Th и образуют компактный ареал. Вторую группу составляют поздние генерации кристаллов 5 и 8, отражающие разнонаправленное по-

Рис. 3. Минералого-геохимические и возрастные особенности цирконов из верлитов (А) и клинопироксенитов (Б) Нуралинского массива. Цифры — номера кристаллов и кратеров, содержание U и Th — г/т, ²⁰⁶Pb/²³⁸U — возраст (Т), млн лет, см. табл. 2; *a* — CL, *б* — BSE, *в* — оптика, проходящий свет; 3.2 — анализы только РЗЭ

Рис. 3. Окончание

ведение U в новообразованных зонах, и кристалл 2, претерпевший существенное растворение. Однако основная отличительная особенность цирконов из клинопироксенитов отмечена для зерна 3, ранняя генерация («ядро») которого поражает уникальной стерильностью (U 4 г/т, Th 1 г/т).

Эволюцию цирконов, ритмично чередующихся с дунитами верлитов и клинопироксенитов, объединяет тренд (Тр), а повышенное содержание U и Th при их значительной вариации в цирконах из верлитов по сравнению с цирконами из клинопироксенитов связано с разновременностью образования пород (рис. 4). Наблюдаемые между ними различия отражают вариации химического состава в магматической камере.

Возраст цирконов. Основная разновидность цирконов верлитов образует компактный кластер с возрастом T_1 =453±3 млн лет (табл. 2, рис. 5). Просматривается участие и более раннего им-

пульса с T=528 \pm 10 млн лет, зафиксированного обеими генерациями кристалла 5. Термальное воздействие интрузии (габброидов?), возможно, уменьшило возраст внешних зон некоторых зерен до T₂=408 \pm 20 млн лет (кристалл 6).

Для цирконов из клинопироксенитов возрастные данные оказались близки к таковым у цирконов из верлитов. Для основной разновидности получена устойчивая датировка $T=446,5\pm1,7$ млн лет. Имеются также и меньшие значения возраста $T_1=397,2\pm4,1$ млн лет, что, вероятно, связано с термальным воздействием. Постколлизионные процессы, повлиявшие на Нуралинский массив, оказались существенно моложе — $T_2=293,7\pm2,9$ млн лет.

Небольшое возрастное различие между верлитами и клинопироксенитами, подобное геохимическому (рис. 4), вероятно, связано с длительностью куммулусной кристаллизации и неоднородностью

Таблица З

Содержание РЗЭ (г/т) в цирконах из верлитов и клинопироксенитов Нуралинского массива

	Верлит, кратер*										
Компонент	3.1	3.2	2	1.1	1.2	1.3	4.1	4.2	5.1	5.2	
La	0,20	0,09	3,86	2,42	27,62	40,02	0,82	0,62	2,26	0,50	
Ce	23,60	17,0	79,4	72,30	417,0	406,1	199,0	51,6	50,30	49,8	
Pr	0,62	0,12	1,35	1,63	27,91	36,93	1,09	0,56	0,87	0,82	
Nd	9,09	1,66	10,08	11,12	192,8	252,6	13,94	4,98	7,18	5,88	
Sm	11,60	3,10	9,50	13,20	110,4	134,7	29,90	6,90	7,60	5,40	
Eu	2,06	0,64	3,42	2,97	20,64	27,01	3,70	0,74	1,71	1,50	
Gd	38,42	14,06	42,97	39,8	151,0	154,9	146,7	32,37	34,77	15,90	
Tb	- 1	-	_	_	_	_	_	_	_	_	
Dy	109,4	50,3	145,9	126,6	228,0	157,0	515,1	138,2	156,3	56,0	
Но	_	-	_	_	_	_	_	_	_	_	
Er	216,4	104,7	344,0	286,7	434,0	220,0	1034,1	331,1	374,0	123,0	
Tm											
Yb	421,0	218,0	810,0	620,0	965,0	510,0	1825,0	706,0	727,0	260,0	
Lu	75,50	40,90	160,6	112,3	175,0	97,00	307,6	128,4	122,4	45,00	
Сумма	908	451	1612	1290	2749	2036	4077	1402	1484	564	
SI/SII	2,	01	-		0,63		2,	91	2,	63	
(Sm/La) _N	93,59	57,86	3,94	8,74	6,40	5,39	58,72	17,83	5,41	17,36	
(Yb/La) _N	3109	3744	309	378	51,42	18,77	3290	1669	472,3	772,3	
Ce/Ce*	16,24	39,76	8,40	8,81	3,63	2,56	50,96	21,21	8,67	18,89	
Eu/Eu*	0,30	0,29	0,52	0,39	0,49	0,57	386,3	0,15	0,32	0,49	
	Клинопироксенит, кратер*										
Компонент	1	3.1	3.2	4.1	4.2	5.1	5.2	8.1	8.2		
La	0,08	0,04	0,04	0,92	0,37	0,12	0,13	0,06	0,05		
Ce	16,1	1,10	2,20	22,3	29,2	15,3	9,00	19,8	3,10		
Pr	0,15	0,01	0,02	0,39	0,32	0,30	0,06	0,24	0,03		
Nd	3,31	0,05	0,18	3,91	2,13	3,75	0,63	4,30	0,15		
Sm	5,87	0,08	0,26	4,96	1,50	5,18	1,16	6,53	0,26		
Eu	1,78	0,07	0,13	1,23	0,55	1,89	0,43	1,69	0,08		
Gd	22,9	0,83	1,17	20,05	6,42	20,7	5,62	24,3	1,24		
Tb	_	-	-	_	_	_	_	_	_		
Dy	63,20	2,70	2,90	68,90	23,90	71,00	26,40	70,10	5,90		
Но	-	-	-	_	-	_	_	_	_		
Er	120,9	4,00	3,10	163,5	66,40	154,5	79,80	157,4	20,20		
Tm											
Yb	233,2	6,10	4,40	339,7	197,1	356,2	218,7	332,8	70,20		
Lu	41,50	0,80	0,40	62,50	43,10	70,50	44,60	62,50	15,00		
Сумма	509	15,8	14,7	688	371	699	387	680	116		
SI/SII	-	- 1,07		1,85		1,81		5,85			
(Sm/La) _N	119,0	2,82	11,52	8,68	6,50	68,50	13,93	165,39	7,92		
(Yb/La) _N	4343	204	178	546	785	4332	2421	7748	1988		
Ce/Ce*	35,23	11,27	19,68	9,04	20,40	19,40	24,45	39,13	20,22		
Eu/Eu*	0,47	0,87	0,71	0,37	0,54	0,56	0,51	0,41	0,42		

Примечания: SI/SII — сумма РЗЭ в ранней-поздней генерациях гетерогенных кристаллов; $(Sm/La)_N$, $(Yb/La)_N$, Ce/Ce^* , Eu/Eu^* — нормированные до деления на хондрит, по [Mc Donough, Sun, 1995]; $Ce/Ce^*=Ce/(La \cdot Pr)^{1/2}$; $Eu/Eu^*=Eu/(Sm \cdot Gd)^{1/2}$. Кратер* — точка анализа в соответствующем кристалле см. в табл. 2 и на рис. 3.

Рис. 4. U–Th (по ²⁰⁶Pb/²³⁸U, млн лет) и Th в цирконах верлитов (1) и клинопироксенитов (2) Нуралинского массива. Ранние и поздние генерации цирконов соединены стрелками. Тр — тренд, отражающий эволюцию цирконов верлитов (вверху) и клинопироксенитов (внизу). Пунктир отделяет ранние и поздние генерации цирконов

вещества в магматической камере. Усредненная датировка полосчатого комплекса составляет 450±4 млн лет.

РЗЭ в цирконах. У большинства кристаллов из обеих проб (рис. 6–7, табл. 3) присутствует четкая цериевая аномалия Ce/Ce*, а европиевая Eu/ Eu* — менее выражена или даже отсутствует. Их соотношения между собой и с основным спектром РЗЭ существенно варьируют.

Оценка этих вариаций позволяет решать вопросы генетической природы кристаллов, о принадлежности их к магматическому (М) или гидротермальному (Н) типам. В последнем случае речь

Рис. 5. U-Рb возраст цирконов верлитов (*a*) и клинопироксенитов (*б*) Нуралинского массива, Т — возраст, млн лет

также идет и о метасоматических разновидностях. Промежуточную зону между типами М и Н целесообразно закрепить за позднемагматическими (MI) разновидностями цирконов. С учетом анализа РЗЭ спектров эталонных объектов [Hoskin et al., 2003; Hoskin, 2005] из цирконов верлитов к типу М можно отнести кристаллы 3 и 4, а из цирконов клинопироксенитов — уверенно лишь кристалл 1 и частично — кристаллы 5 и 8. Наиболее близкими цирконам типа Н можно считать лишь поздние генерации кристалла 1 (1.2 и 1.3), что лишь подтверждает магматическую природу основной части цирконов, верлитов и клинопироксенитов. Остальные кристаллы обеих пород можно относить к типу MI, а кристалл 3 из клинопироксенитов к особому типу с аномальным распределением (особенно в генерации 3.1) редких земель.

Для конкретной оценки природы цирконов целесообразно использовать координаты Хоскина [Hoskin et al., 2003; Hoskin, 2005], учитывающие взаимосвязь La, Ce и Sm в структуре РЗЭ-спектров цирконов. По этим показателям у цирконов из клинопироксенитов совместимость с типом Н

рует лишь кристалл 4, причем это относится к его обеим генерациям.

При сопоставлении распределения цирконов из обеих проб в координатах Хоскина (рис. 7) отчетливо заметны принципиальные различия между ними. Цирконы из клинопироксенитов явно тяготеют к М-типу, а цирконы из верлитов занимают промежуточное положение между типами М и Н, явно эволюционируя в сторону последнего (см. кристалл 1). Это, по-видимому, отражает большую лефектность матриц кристаллов циркона из верлита, что может быть связано и с длительностью их радиационного облучения, и с повышенным содержанием U и Th (рис. 5). При этом все цирконы из обеих разновидностей пород принадлежат к единому магматическому источнику.

Заключение. Состав РЗЭ в верлитах и клинопироксенитах отражает их генетическую общность с породами перидотитовой серии. Минералогическое сходство цирконов в обеих пробах отражает близость условий их образования. Возраст пород полосчатого комплекса оценивается усредненной датировкой 450±4 млн лет. По составу РЗЭ цирконы из клинопироксенитов отличаются более высокой сохранностью и сходством с магматическим типом, чем цирконы из верлитов, испытавшие воздействие метаморфизма, с которым связано появление цирконов с возрастом 294 млн лет.

Позднеордовикская датировка пород полосчатого комплекса коренным образом отличается от предыдущей датировки этих пород с помощью Re-Os метода [Tessalina et al., 2007]. Возраст кристаллизации пород полосчатого комплекса в зоне спрединга хорошо согласуется с временем формирования вулканогенно-кремнистого комплекса с подушечными базальтами (поляковская свита), находящегося в тектоническом меланже в нескольких километрах от массива Нурали. Афировые базальты поляковской свиты по распределению РЗЭ соответствуют базальтам срединно-океанического хребта (СОХ) [Савельев и др., 2006] и, возможно, представляют верхнекоровую часть офиолитового разреза.

Дунит-верлит-клинопироксенитовый полосчатый комплекс, образование которого, вероятно, связано с кумулусной кристаллизацией из габброидного расплава в зоне спрединга (задугового?), относится к нижнекоровой части разреза офиолитового комплекса. Мантийная часть офиолитового комплекса, представленная в массиве дунитами, гарцбургитами и лерцолитами, связана с полосчатым комплексом и по геохимическим, и по возрастным параметрам.

Благодарности. Авторы выражают глубокую признательность А.Ю. Бычкову и В.В. Масленникову за конструктивные замечания, которые позволили значительно улучшить структуру статьи.

роксенитов (б) Нуралинского массива. Анализы (табл. 3) выполнены в точках (см. рис. 3), ранее использованных при определении возраста. Все элементы нормированы на хондрит, по [McDokonghaad et al., 1995]

не наблюдается. Резко аномальными выглядят спектры РЗЭ для обеих разновидностей кристалла 3, хотя их Се аномалии наиболее представительны, а Еи аномалии практически отсутствуют. У остальных кристаллов сходство с М-цирконами проявляется по-разному. Окончательный вывод следует из анализа рис. 7, где связь спектра РЗЭ с природой кристаллов проявляется наглядно. Принадлежность к М-типу демонстрируют только ранние(!) генерации кристаллов 1, 5 и 8, а поздние, даже после изменений состава, не покидают зон влияния М-типа, приближаясь к типу МІ. Какихлибо геохимических особенностей, свойственных гидротермальным цирконам, у них не наблюдается. Принадлежность к типу МІ уверенно демонстри-

Рис. 6. Спектры РЗЭ в цирконах верлитов (а) и клинопи-

а

верлит

10000

Рис. 7. Генетическая классификация цирконов верлитов и клинопироксенитов Нуралинского массива, по [Hoskin et al., 2003; Hoskin, 2005]. Все элементы нормированы на хондрит, по [McDokonghaad et al., 1995]. Поля: М — магматических, Н — гидротермальных цирконов. Ранние (*a*), а также поздние (*б*) генерации цирконов соединены стрелками

СПИСОК ЛИТЕРАТУРЫ

Богатиков О.А., Косарева Л.В., Шарков Е.В. Средние химические составы магматических горных пород. М.: Недра. 1987. 152 с.

Денисова Е.А. История деформации Нуралинского ультраосновного массива (Южный Урал) // Изв. АН СССР. Сер. геол. 1985. № 8. С. 25–38.

Книппер А.Л., Шараськин А.Я., Савельева Г.Н. Геодинамические обстановки формирования офиолитовых разрезов разного типа // Геотектоника. 2001. № 4. С. 3–21.

Краснобаев А.А., Русин А.И., Анфилогов В.Н. и др. Цирконология лерцолитов Нуралинского массива // Докл. РАН. 2017. Т. 475, № 6. С. 593-598.

Малич К.Н., Аникина Е.В., Баданина И.Ю. и др. Вещественный состав и осмиевая изотопия первичных и вторичных ассоциаций минералов платиновой группы магнезиальных хромититов Нуралинского лерцолитового массива (Ю. Урал, Россия) // Геология рудных месторождений. 2016. Т. 58. С. 3–22.

Попов В.С., Кременецкий А.А., Беляцкий Б.В. Доордовикский Sm-Nd изотопный возраст ультрамафических пород в офиолитовых поясах Урала: уточненные данные // Мат-лы Междунар. науч. конф. «Структурно-вещественные комплексы и проблемы геодинамики докембрия фанерозойских офиолитов». Екатеринбург: ИГГ УрО РАН. 2008. С. 100–103. *Пучков В.Н.* Геология Урала и Приуралья (актуальные вопросы стратиграфии, тектоники, геодинамики и металлогении). Уфа: ИГ УНЦ РАН, 2010. 279 с.

Рудник Г.Б. Петрогенезис ультраосновных пород Нуралинского массива на Южном Урале // Соотношение магматизма и метаморфизма в генезисе ультрабазитов. М.: ИГЕМ АН СССР, 1965. С. 68–101.

Савельева Г.Н. Габбро-ультрабазитовые комплексы офиолитов Урала и их аналоги в современной океанической коре. М.: Наука, 1987. 245 с.

Савельева Г.Н. Офиолиты варисцид Европы и уралид: обстановки формирования и метаморфизм // Геотектоника. 2011. № 6. С. 24–39.

Савельева Г.Н., Денисова Е.А. Структура и петрология ультраосновного массива Нурали на Южном Урале // Геотектоника. 1983. № 2. С. 42-57.

Савельев Д.Е., Сначев А.В., Пучков В.Н., Сначев В.И. Петрогеохимические и геодинамические особенности формирования ордовикско-раннесилурийских базальтов Восточного склона Южного Урала // Геол. сб. № 5. Информ. мат-лы ИГ УНЦ РАН, 2006. С. 86–104.

Федотова А.А., Бибикова Е.В., Симакин С.Г. Геохимия циркона (данные ионного микрозонда) как индикатор генезиса минерала при геохронологических исследованиях // Геохимия. 2008. № 9. С. 980–997. Феритатер Г.Б. Палеозойский интрузивный магматизм Среднего и Южного Урала. Екатеринбург: ИГГ УрО РАН, 2013. 368 с.

Ферштатер Г.Б., Беа Ф. Геохимическая типизация уральских офиолитов // Геохимия. 1996. № 3. С. 195–218.

Hoskin P.W.O. Trace-element compusition of hydrothermal zircon and the alternation of Hadean zircon from the Jack Hills, Australia // Geochim et. Cosmochim. Acta. 2005. Vol. 69, N 3. P. 637–648.

Hoskin P.W.O., Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis // Rev. Mineral. Geochem. 2003. Vol. 53. P. 27–62.

Grieco G., Diella V., Chaplygina N.L., Savelieva G.N. Platinum group elements zoning and mineralogy of chromitites from the cumulate sequence of the Nurali massif (Southerm Urals, Russia) // Ore Geol. Rev. 2007. Vol. 30. P. 257–276.

McDonough W.F., Sun S.S. The composition of the Earth // Chem. Geol. 1995. Vol. 120. P. 223–253.

Pertsev A.N., Spadea P., Savelieva G.N., Gareggo L. Nature of the transition zone in the Nurali ophiolite, southern Urals // Tektonophys. 1997. Vol. 276. P. 163–180.

Tessalina S.G., Bourdon B., Gannoum A. et al. Complex proterozoic to paleozoic history of the upper mantle recorded in the Urals lherzolites massifs by Re–Os and Sm–Nd systematics // Chem. Geol. 2007. Vol. 240. P. 61–84.

Williams I.S. U-Th-Pb geochronology by ion microprobe // Applications in microanalytical techniques to understanding mineralizing processes // Rev. Econ. Geol. 1998. Vol. 7. P. 1–35

Поступила в редакцию 25.08.2017