УДК 553.3/.4.078:553.2:551.73

ПЕТРОЛОГИЯ И ГЕОХИМИЯ ИГНИМБРИТОВ КОРГОНСКОЙ СВИТЫ АЛТАЯ

А.И. Гусев, Е.М. Табакаева

Алтайский государственный гуманитарно-педагогический университет им. В.М. Шукшина, Бийск, E-mail: anzerg@mail.ru, tabakaeva16@mail.ru

Приведены данные о составе и петрологических особенностях генерации игнимбритов нижнекоргонской подсвиты коргонской свиты (D₁krg₁). По составу игнимбриты относятся к дацитам, риодацитам и риолитам, которые образуют два вулканических центра: Инской и Щебнюхинский, приуроченных к кальдерам. Они характеризуются повышенной суммой РЗЭ, варьирующей от 155,9 до 350,23 г/т, и негативной аномалией по европию (от 0,42 до 0,95). Игнимбриты относятся к пералюминиевой серии с переменными значениями по железистости и магнезиальности. Генерация их проходила по сложному сценарию: плавление мантийного источника (астеносферного), смешение с нижнекоровым материалом (амфиболиты, граувакки, кислые пелитовые сланцы). В породах отмечаются повышенные концентрации Nb, что позволяет предполагать участие источника NEB-базальтоидов. Весьма высокие отношения Nb/Ta, варьирующие от 36,6 до 135,25, предполагают плавление титансодержащих минералов в мантийном источнике. По соотношениям $\varepsilon Nd(t)$ и $\varepsilon Sr(t)$ породы близки к мантийному источнику обогащенной мантии типа ЕМ ІІ. Высокая флюидонасыщенность расплавов предопределила их металлогенический профиль, включающий оруденение железа, меди и золота. В породах проявлены M- и W-тип тетрадного эффекта фракционирования РЗЭ. Для золотого оруденения важнейшее значение имели такие летучие компоненты, как *CO*₂ и *H*₂*O*, которые обеспечивают проявление ТЭФ РЗЭ W-типа и перенос золота.

Ключевые слова: игнимбриты, дациты, риодациты, риолиты, NEB-базальты, плавление мантийного источника, смешение с коровым материалом, изотопы Sr, Nd. DOI: 10.24411/2410-1192-2019-15403

Дата поступления 12.07.2019

В большом спектре вулканокластических пород наиболее загадочными в генетическом отношении являются игнимбриты, истинная природа которых несмотря на более чем полуторостолетние дискуссии остается до сих пор не до конца решенной. Проблема игнимбривулканизма вызывает также тового большой интерес в связи с тем, что игнимбриты и близкие к ним породы занимают огромные территории на Камчатке, в Приморье, Средней Азии, Алтае, Армении, Родопах, Японии, Италии, Новой Зеландии, США (Йеллоустон) и других регионов мира. Они встречены в различных геотектонических обстановках: активных континентальных окраинах, островных дугах,

континентальных рифтах и зонах коллизий [1-2]. По мнению многих исследователей, игнимбриты (от лат. ignis огонь, limber - ливень) - продукты высокотемпературных и высокоподвижных эксплозивных пирокластических потоков («раскаленных туч»). Впервые такую точку зрения высказали Ч. Добени [3] и Л. Дель-Эрбо [4]. Позже анапредставления логичные развивали А. Ритман [5], А.Н. Заварицкий [6], П. Маршалл [7]. По другой точке зрения, игнимбриты образуются в результате лавовых излияний, в т.ч. в результате ликвационного расщепления расплавов [8-9].

Горный Алтай является регионом, где мощно проявлен девонский вулка-

низм, в продуктах которого зафиксированы игнимбриты. К сожалению, детального описания их петрографии, геохимии и петрологии до сих пор не было. В описании разрезов коргонской свиты игнимбриты просто перечисляются как породные типы. Актуальность детального исследования игнимбритов Алтая очевидна не только в связи с отсутствием их детального описания, но и по той причине, что к ареалам их распространения приурочены проявления железного и золотого оруденения (в Инском вулканическом центре – железа, в Щебнюхинском – железа и золота).

Целью исследования стало проведение петрографических, геохимических и петрологических исследований игнимбритов коргонской свиты девона, определение генезиса и возможных перспектив рудоносности. Изучение игнимбритов осуществлено в процессе геологического доизучения площадей (ГДП-200) с 2001 г. и последующих исследований по гранту РФФИ.

Игнимбриты нижнекоргонской подсвиты Алтая

В пределах распространения вулканитов коргонской свиты $(D_l krg)$ [10] выявлены два крупных вулканических центра (ВЦ) с игнимбритами: Инской и Щебнюхинский, локализованные в пределах нижнекоргонской подсвиты $(D_l krg_l)$ (рис. 1).

Инской вулканический центр (ИВЦ) развит в районе хребта Плешивый Белок, на водоразделе рек Ионыш, Тулата и Иня, где картируется крупный палеовулканический аппарат, в центральной части сложенный жерловосубвулканическим телом риолитов и игнимбритов, усложненной линзовидной формы, локализованный в агломератовых туфах и туфобрекчиях дацитов и риолитов с редкими прослоями туфов андезитового состава. В верхах нижнекоргонской подсвиты картируются участки послойных выделений гематита и магнетита.

Щебнюхинский вулканический центр (ЩВЦ) приурочен к одноименной вулкано-тектонической структуре, где представлен обломочными, сваренными, спекшимися туфами, игнимбритами и игниспумитами, реже лавами, туфолавами и лавобрекчиями риолитов, риодацитов, реже дацитов. Дациты и их туфы развиты преимущественно в низах разреза. Обычны фациальные изменения, заключающиеся в колебаниях соотношений разностей пород, размерности фьямме в игнимбритах, изменчивости текстурно-структурных особенностей и соотношения вкрапленников кварца, плагиоклаза, калишпата в вулканитах, разнообразие окраски. Особенно сложные вариации отмечаются вблизи жерловин.

Для верхних частей подсвиты характерно развитие спекшихся туфов и игнимбритов, лав и туфолав риолитов. К верхней части разреза подсвиты местами приурочены также гематитсодержащие туфы и согласные слоистые гематит-магнетитовые руды. Последние образуют пластовые и линзообразные тела согласные с вмещающими породами мощностью от нескольких десятков см до 20 м и протяженностью от нескольких метров до 500 м. Мощность подсвиты составляет до 1650 м.

Оба вулканических центра рассматриваются как кальдерные образования, сильно нарушенные процессами складчатости и инъецированные субвулканическими телами и дайками кислого состава. К Щебнюхинской субвулканической интрузии тяготеют россыпи золота.

Игнимбриты дацитового и риолитоидного состава характеризуются массивной, полосчато-флюидальной текстурой, афировой и мелкопорфировой структурой. Основная масса пород обычно фельзитовая и сферолитовая. Игнимбриты по объему содержат от 20 до 35 % кристаллокластов, спекшегося вулканического стекла – 30-32, фьямме – от 30 до 40 %. Кристаллокластиты имеют размеры 0,3-3,3 мм и представлены плагиоклазом, кварцем, биотитом, имеющим остроугольные формы. В риолитах появляется также калиевый полевой шпат, а в риодацитах – амфибол и гиперстен. Плагиоклаз по составу варьирует от олигоклаза (An₂₁₋₃₄) до андезина (An₃₂₋₄₆). Последний преобладает в породах, что является аномальным для кислых вулканитов.

Рис. 1. Положение Инского и Щебнюхинского вулканических центров на структурно-тектонической схеме западной части Алтае-Саянской складчатой области и полезных ископаемых на этап О₁-Р₁

(составлена А.И. Гусевым с использованием материалов С.П. Шокальского, Г.А. Бабина,

Н.А. Берзина, М.М. Буслова и др.).

Структурно-вещественные комплексы активной континентальной окраины: 1 – вулканогенные образования нижнего-среднего девона (а – без игнимбритов, б – с игнимбритами: базальты, трахибазальты, андезиты, риолиты и их туфы, игнимбриты); 2 – туфогенные образования ордовика – нижнего девона (конгломераты, песчаники, алевролиты, аргиллиты).

Коллизионные комплексы: 3 – граниты, умеренно-щелочные граниты (І-типа), кварцевые сиениты среднего девона; 4 – габбро, диориты, тоналиты, граниты (І-типа) нижнего силура-нижнего девона; 5 – габбро, плагиограниты среднего кембрия; 6 – глубинный разлом.

Наименование прогибов: Т – Тельбесский; АЧ – Ануйско-Чуйский; Л – Лебедской; У – Уйменский.

Глубинные разломы: I – Бийский; II – Тельбесский (ответвление Бийского); III – Чарышско-Теректинский; 7 – кремнисто-метабазальтовые океанические образования (С₃-O).

Типы оруденения: 8 – золото-медно-скарновый; 9 – медно-молибден-золото-порфировый;

10 – медно-золото-порфировый; 11 – золото-порфировый; 12 – скарново-золото-порфировый;

13 – жильный золото-сульфидно-кварцевый; 14 – золото-черносланцевый. Вулканические центры: И – Инской; Щ – Щебнюхинский.

Биотит по оптическим показателям близок к аннит-сидерофиллиту. Общая железистость его (f=50-52), глинозёмистость составляет 34,4. Связующая масса игнимбритов представлена вулканическим стеклом, часто спекшимся. Нередко проявлена псевдофлюидальная микротекстура. В вулканическое стекло погружены фьямме зеленовато-серого и буровато-серого оттенков размерами от 2-4 до 15 см в поперечнике, часто «растрепанные» по краям, сложенные зеленовато-серым разложенным вулканическим стеклом, сильно хлоритизированным, либо кислой лавой тонкокристаллического сложения. Фьямме нередко подчеркивают флюидальность игнимбритов, располагаясь удлинениями в одном направлении (рис. 2), что указывает на признак течения лавы.

Петро-геохимия игнимбритов нижнекоргонской подсвиты

Согласно Петрографического кодекса России, игнимбриты по составу относятся к вулканическим породам подотряда нормально- и низкощелоч-

ных пород, семействам дацитов, риодацитов и риолитов [13]. В них переменные соотношения Na₂O и K₂O: преобладание калия над натрием наблюдается только в риолитах, а во всех остальных разностях натрий превышает содержания калия. Это низкофосфористые породы с высокими содержаниями Zr, Nb и относительно пониженными - Та, Сs. Отмечаются значительные колебания золота – от 20 до 194 мг/т. Все породы характеризуются повышенной суммой РЗЭ, варьирующей от 155,9 до 350,23 г/т и негативной аномалией по европию (от 0,42 до 0,95). Соотношение легких и тяжелых РЗЭ сильно варьирует (от 3,8 до 16,2) и свидетельствует о высокой фракционированности редкоземельных элементов. В породах проявлен ТЭФ РЗЭ М- и W-типа, что указывает на обогащенность расплава флюидными компонентами разного состава: F, Cl, CO₂ и H₂O. Представительные анализы игнимбритов сведены в таблице 1.

Рис. 2. Игнимбриты Щебнюхинского вулканического центра с фьямме (темные выделения) в верхнем течении реки Щебнюхи

Таблица 1

Представительные анализы игнимбритов нижнекоргонской подсвиты

Оксиды, %,	1	2	3	4	5	6	7	8	9
SiQ ₂	67.10	69.92	70.3	71.58	71.3	76.31	76.42	75.07	75.7
TiO ₂	0.52	0.22	0.32	0.39	0.27	0.70	0.88	0.13	0.22
Al_2O_3	14,44	17,45	14.7	13,1	17.3	12,07	11,59	12,7	12,45
Fe ₂ O ₃	2,45	0,65	1,05	1,73	0,7	1,45	1,56	1,4	1,0
FeO	2,40	0,21	1,98	2,27	1,25	0,50	0,42	0,51	1,33
MnO	0,08	0,03	0,12	0,1	0,12	0,04	0,03	0,03	0,07
MgO	1,37	0,75	0,8	0,37	0,9	0,72	0,74	0,76	0,4
CaO	1,75	0,28	1,24	1,75	1,34	0,41	0,44	0,30	1,05
Na ₂ O	4,72	4,31	4,12	3,96	4,2	2,04	1,20	2,16	3,14
K ₂ O	2,55	3,40	3,56	3,48	3,5	5,92	6,01	5,78	3,32
P_2O_5	0,12	0,04	0,05	0,07	0,08	0,04	0,03	0,04	0,04
Sc	12,1	5,3	6,0	4,0	3,8	3,7	3,4	3,5	2,4
V	6,5	8,8	8,1	7,5	4,3	8,0	7,4	7,5	6,3
Co	7,1	4,2	3,8	3,6	4,1	3,0	3,1	3,2	2,6
Cu	15,8	10,2	11,6	12,5	14,7	3,7	3,4	3,3	3,9
Zn	20,2	15,1	15,6	14,2	15,2	8,3	8,7	8,8	7,4
Li	20,5	22,0	20,5	21,5	19,7	22,4	23,1	24,1	25,2
Rb	230	80	91	51.5	95,6	102	113	105	108
Cs Sm	4,9	3,5	3,8 55 9	64.2	1,8	4,3	6,2 22	5,7	5,5 24
SI Po	43,5	9,0	33,8 422	04,5 820	127 504	245	23	22	219 219
Da Ga	20	290	425	029	177	245	220	223	210
Nh	45.5	29,3 54 1	21,0 11.8	23,8	17,7	20,3	23,8 52.6	24,7 51.8	23,1 51.0
V	39.5	35.6	44,0	11 6	44,5	35.3	35.6	3/ 9	33.8
I a	19.5	85 7	317	$^{+1,0}_{24,1}$	36.1	100.01	100.7	99.8	102.4
Ce	39.7	44.8	52.8	51.9	72 5	117.0	58.9	50.8	59 1
Pr	4.7	28.9	8.0	7.1	9.7	9.4	9.5	9.8	9.5
Nd	26,8	12,5	28,9	29,4	34,8	51,8	45.7	26,5	52,1
Sm	3,78	8,8	6,9	6,4	6,9	10,1	10,0	10,8	9,9
Eu	1,53	1,4	1,36	1,3	1,5	1,56	1,4	1,0	1,2
Gd	6,45	5,9	7,5	7,0	6,7	7.6	5,6	1,5	7,1
Tb	0,91	0,9	1,1	1,0	1,21	1.31	0,9	1,6	1,3
Dy	5,1	4,9	6,0	5,8	7,1	5,6	4,8	4,2	5,0
Ho	1,11	1,0	1,22	1,2	1,4	1,2	1,0	1,1	0,9
Er	3,25	3,1	3,6	3,7	3,9	3,3	2,9	2,5	2,7
Tm	0,55	0,53	0,65	0,6	0,64	0,51	0,5	0,47	0,56
Yb	3,37	3,5	4,4	4,2	3,8	4,8	5,4	5,5	4,4
Lu	0,43	0,25	0,5	0,6	0,64	0,74	0,5	0,5	0,63
Au	155	20	45	43	30 21	1/5	194	24	182
U Th	1,5	2,5	2,0	2,1	5,1 7 1	3,0 12,1	2,8	2,9	5,0 11.7
	<i>J</i> ,0 <i>A</i> 03	10,0	0,5	0,2	6.5	13,1	7,0	11,0	11,7
Ta	4,93	5,8	1.2	0.9	0,5	0,73	3,1 1 1	4,0	0,9
	330	300	305	283	281	290	292	295	293
εNd(t)	-	- 500	-	205	-0.1			0.8	
$\varepsilon Sr(t)$	_	_	_	_	21.3	_	_	26.7	_
ΣREE	200.85	237.78	194.9	155.9	231.2	350.23	283,4	216.07	290.6
Eu/Eu*	0,95	0,57	0,69	0,55	0,68	0,53	0,53	0,45	0,42
Th/U	4,46	4,32	2,5	2,9	2,3	4,37	2,71	3,8	3,9
Nb/Ta	119,7	135,25	37,3	36,6	40,3	78,6	47,8	129,5	74,1
(La/Yb) _N	3,82	16,2	4,8	3,8	6,3	13,7	12,3	12,0	15,4
(Sm/Yb) _N	1,2	2,7	1,7	1,6	1,95	2,26	1,99	2,1	2,43
(Gd/Yb) _N	1,54	1,36	1,37	1,34	1,41	1,27	0,74	0,22	1,3
$TE_{1,3}$	0,85	1,24	0,94	0,97	1,05	0,81	0,75	1,4	0,78

(оксиды в %, элементы – г/т, золото – мг/т)

Примечание. Силикатные анализы на главные компоненты, а также на элементы выполнены методом ICP-MS и ICP-AES в Лаборатории ИМГРЭ (Москва). Изотопный анализ на Nd и Sr проводился на многоколлекторном масс-спектрометре Finnigan MAT-262 в лаборатории ГЕОХИ (Москва). N – элементы нормированы по [11]. Eu^{*}= (Sm_N+Gd_N)/2. TE_{1,3} – тетрадный эффект фракционирования РЗЭ по В. Ирбер [12]. Инской вулканический центр: 1 – дацит, 2-3 – риодацит, 6-7 – риолиты; Щебнюхинский вулканический центр: 4-5 – риодациты, 8-9 – риолиты. Прочерк – анализы не проводились.

На канонических диаграммах фигуративные точки составов игнимбритов попадают в поле пералюминиевых пород (рис. 3*a*), а по соотношению железа и магния занимают поля и железистых, и магнезиальных разностей. При этом некоторые анализы риодацитов и риолитов Инского ВЦ целиком попадают в магнезиальное поле, а Щебнюхинского ВЦ – и в железистое, и магнезиальное поля диаграммы (рис. 3*б*).

Некоторые петрологические особенности генерации игнимбритов

Игнимбриты рассматриваются А.А. Маракушевым как вулканические породы, относящиеся к своеобразной серии *II*, фенокристаллы которой имеют оскольчатую форму, а сами породы объединяются во флюид-порфировый комплекс, подчеркивающий их активный флюидный режим, который обусловливает высокую вязкость расплава [16]. По данным [16] игнимбриты и все вулканиты серии *II* образуются в аэральных условиях в орогенный этап развития регионов.

Некоторые соотношения элементов позволяют реставрировать особенности формирования магматических пород. К числу таких соотношений элементов относятся La/Nb и Ce/Y. На соответствующей диаграмме расположение составов игнимбритов таково, что фигуративные точки располагаются в близи трендов плавления мантии и смешения с корой, и в то же время основной тренд составов вулканитов нижнекоргонской свиты почти параллелен тренду смешения с корой (рис. 4).

Следовательно, в игнимбритах обоих вулканических центров выявляются комбинированные процессы: и плавление мантийного субстрата, и смешение с корой. Мантийный субстрат адресуется в астеносферный источник. В ультракислых разностях игнимбритов – риолитах, предполагается литосферный источник, реализуемый в результате смешения астеносферного материала с коровым.

Большое значение в понимании генезиса пород имеет источник плавления мантийного субстрата, за счет которого образуются породы. Считается, что плавление источника пород, содержащего фазы Ті-обогащенных ингредиентов (рутила, ильменита), будет генерировать расплавы с высоким отношением Nb/Ta (>25), в то время как плавление источника с амфиболом приводит к формированию расплавов с более низким отношением Nb/Ta (<25) [19-20]. В игнимбритах обоих ареалов отношения Nb/Ta варьируют от 36,6 до 135,25 и предполагают плавление титансодержащих минералов в мантийном источнике.

Рис. 3. Диаграммы Al₂O₃/(Na₂O+K₂O) – Al₂O₃/(CaO+Na₂O+K₂O): a – по [14] и Fe₂O₃ /(Fe₂O₃+MgO) – SiO₂; б – по [15] для игнимбритов нижнекоргонской подсвиты. Породы Инского ВЦ: 1 – дациты, 2 – риодациты, 4 – риолиты. Породы Щебнюхинского ВЦ: 3 – риодациты, 5 – риолиты.

На диаграмме соотношений La и Nb составы пород показывают значительный разброс. Игнимбриты дацитового и риодацитового составов попадают в поле астеносферного источника, или тяготеют к нему, а ультракислые разности – риолиты близки к полю литосферного источника (рис. 5).

Ключевое значение для понимания генезиса игнимбритов имеют аномально

высокие концентрации в них Nb (от 32,9 до 54,1 г/т). Это свидетельствует об образовании их за счет плавления высоко-Nb базальтов (NEB). Возможно, такими высоко-Nb базальтами могли быть метабазиты засурьинской, или метабазиты средне-кумирской свит, имеющие высокие концентрации Nb [21-22].

Рис. 5. Диаграмма La-Nb по [18] для игнимбритов нижнекоргонской подсвиты Поля на диаграмме: Ast – поле лав, производных астеносферного источника, La/Nb от 0,6 до 0,9; Lit – литосферный источник, La/Nb>2. Остальные условные обозначения см. на рисунке 3.

Материал земной коры, который подвергался плавлению, можно определить с помощью экспериментальных диаграмм, построенных для главных компонентов составов пород (рис. 6). По большинству соотношений главных компонентов игнимбриты нижнекоргонской подсвиты содержат материал, в котором плавились амфиболиты, граувакки, реже – кислые пелиты (рис. 6 *a*-*в*). По соотношениям А/СNК – SiO₂ игнимбриты располагаются вблизи фанерозойских кратонных сланцев и палеозойских граувакк (рис. 6*d*).

Обсуждение результатов

Таким образом, сценарий формирования игнимбритов включает в себя сложное взаимодействие мантийных и коровых процессов. Вначале глубинный магматический очаг сформировался как результат выплавления астеносферного материала базальтоидного состава, а затем в результате частичного плавления высоко-ниобиевых базальтоидов, крайними членами дифференциации которого были кислые расплавы. Эти расплавы, взаимодействуя с нижне-коровыми образованиями, представленными амфиболитами, граувакками и кислыми пелитами (типа мусковитовых сланцев), смешивались с ними и давали материнский глубинный расплав, из которого образовались последовательные дифференциаты – игнимбриты дацитового, риодацитового и риолитового составов. В ультракислых разностях игнимбритов отмечается наличие литосферного источника.

а, b, c – диаграммы композиционных экспериментальных расплавов из плавления фельзических пелитов (мусковитовых сланцев), метаграувакк и амфиболитов для игнимбритов нижнекоргонской подсвиты; d – диаграмма SiO₂ – A/CNK) для игнимбритов нижнекоргонской подсвиты.

Тренд известково-щелочного фракционирования вулканических пород орогенных регионов – по [23-24]. А – Al₂O₃, CNK – сумма CaO, Na₂O, K₂O. Остальные условные обозначения см. на рисунке 3. По соотношениям єNd(t) – єSr(t) игнимбриты риодацитового и риолитового состава Щебнюхинского вулканического центра располагаются вблизи тренда обогащенной мантии типа ЕМ II (рис. 7). Модельный Sm-Nd возраст протолита составил 1020 и 920 млн. лет. Такой сложный сценарий генерации игнимбритов, которые характеризуются высокой флюидной составляющей, вероятно, обусловил их способность к рудогенезу. И действительно, пространственно с проявлениями игнимбритового вулканизма в Алтайском регионе ассоциируют месторождения и проявления железа (Коргонское месторождение) и ряд проявлений меди и золота (Банное 1, Банное 2), а также Красноярское эпитермальное субвулканическое золото-серебряное месторождение. В связи с тем, что в игнимбритах проявлены М- и Wтип тетрадного эффекта фракционирования РЗЭ, построена диаграмма Au – TE_{1,3} (рис. 8).

Рис. 7. Диаграмма єSr(t) – єNd(t) для игнимбритов нижнекоргонской подсвиты Щебнюхинского вулканического центра.

Типы мантии по Зиндлеру и Харту [25]: ЕМ I и ЕМ II – обогащенная мантия типов I и II; PREMA – примитивная мантия; HIMU – мантия с высоким изотопным уран-свинцовым отношением. I – риодацит, 2 – риолит.

Рис. 8. Диаграмма Au-TE_{1,3} по [26] для игнимбритов нижнекоргонской подсвиты. Желтое поле – концентрации золота в изверженных породах по [27]; содержания золота в хондритах по [28]. Условные обозначения – на рисунке 3.

На графике видно, что уменьшение величины ТЭФ РЗЭ W-типа влечет за собой резкое увеличение концентраций золота в игнимбритах, а увеличение ТЭФ РЗЭ M-типа – слабое увеличение концентраций золота. Из этого следует сделать вывод, что наиболее благоприятные условия для переноса золота и его отложения создавали флюиды с такими летучими компонентами, как CO₂ и H₂O, которые и обеспечивают проявление ТЭФ РЗЭ W-типа.

Заключение

Игнимбриты нижнекоргонской подсвиты по составу относятся к дацитам, риодацитам и риолитам. По сумме петрографических и петро-геохимических признаков они являются лавовыми образованиями, формировавшимися по сложному сценарию. Мантийная составляющая их находилась в астеносфере. Источник расплавов близок к обогащенной мантии типа ЕМ II. Глубинный очаг испытывал мантийно-коровое взаимодействие и процессы смешения с нижнекоровыми источниками (амфиболиты, граувакки, пелитовые сланцы). Важная диагностическая роль принадлежит процессам ассимиляции материала высоко-Nb базальтоидного источника (предположительно метабазальтоиды средне-кумирской толщи), что отразилось на высоких концентрациях ниобия во всех разностях игнимбритов.

Глубинный магматический очаг характеризовался большой насыщенностью флюидами сложного состава, что приводило к взрывным процессам и образованию кальдерных построек. С другой стороны, флюидный режим обеспечивал генерацию оруденения железа, меди, золота. Для золота важнейшее значение в переносе и отложении имели такие летучие компоненты во флюидах, как CO₂ и H₂O.

Работа выполнена при поддержке гранта РФФИ и Министерства образования и науки Алтайского края «Петрология магматизма и генезис оруденения Коргоно-Красноярского рудного района Алтайского края» (номер проекта: 18-45-220022, код и название конкурса: p_a, Конкурс проектов 2018 года фундаментальных научных исследований, проводимый ФГБУ «Российский фонд фундаментальных исследований» совместно с субъектами Российской Федерации).

Список литературы

1. Леонов В.Л., Гриб Е.Н. Структурные позиции и вулканизм четвертичных кальдер Камчатки. – Владивосток: Дальнаука, 2004. – 189 с.

2. Гребенников А.В., Щека С.А., Карабцов А.А. Силикатно-металлические сферулы и проблема механизма игнимбритовых извержений (на примере Якутинской вулкано-тектонической структуры) // Вулканология и сейсмология. – 2012. – № 4. – С. 3-22.

3. Daubeny C. A description of active and extinct volcanos: with remarks on their origin, their chemical phenomena, and the character of their products, as determined by the condition of the earth during the period of their formation: being the substance of some lectures delivered before the University of Oxford, with much additional matter. – London, 1826. – 466 p.

4. Dell'Erba L. Considerazioni siilla genesi del piperno. Atti R. Acad. Sci. lis. e mat. Napoli, 1892. – V. 5. – Ser. 2. – № 3. – 18-29.

5. Ритман А. Вулканы и их деятельность. – М.: Мир, 1964. – 437 с.

6. Заварицкий А.Н. Игнимбриты Армении // Изв. АН СССР. Сер. геол. – 1947. – № 3. – С. 3-18.

7. Marshall P. Acid rocks of Taupo-Rotorua volcanic district // Trans. Roy. Soc. N. Z. – 1935. – V. 64. – Pt. 3. – P. 81-131.

8. Маракушев А.А. Петрогенезис и рудообразование (геохимические аспекты). – М.: Наука, 1979. – 264 с.

9. Steiner A. Origin of ignimbrite of the North Island, New Zealand; a new-petrogenetic concept // N. Z. Geol. Surv. Bull. – 1960. – 68 p.

10.Шокальский С.П., Бабин Г.А., Владимиров А.Г., Борисов С.М. и др. Корреляция магматических и метаморфических комплексов западной части Алтае-Саянской складчатой области. – Новосибирск: Изд-во СО РАН, филиал «Гео», 2000. – 187 с.

11.Anders E., Grevesse N. Abundances of the elements: meteoric and solar // Geochim. Cosmochim. Acta. – 1989. – V. 53. – P. 197-214.

12. Irber W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites // Geochim. Cosmochim. Acta. – 1999. – V.63. – N_{2} 3/4. – P. 489-508.

13.Петрографический кодекс России. Магматические, метаморфические, метасоматические, импактные образования. – СПб: Изд-во ВСЕГЕИ, 2009. – 200 с.

14.Maniar P.D., Piccoli P.M. Tectonic discrimination of granitoids // Geological Soc. America Bulletin. – 1989. – V.101. – P. 635-643.

15. Villaseca C., Barbero L., Herreros V. A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts // Trans. of Royal Soc. of Edinburg Earth Science. – 1998. – V. 89. – P. 113-119.

16. Маракушев А.А. Петрогенезис. – М.: Недра, 1988. – 293 с.

17.Barbarin B. A Review of the relationships between granitoid types, their origins and their geodynamic environments // Lithos. – 1999. – V. 46. – Issue 3. – Pp. 605-626.

18.DePaolo D.J., Daley E.E. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension // Chem. Geol. -2000. - V. 169. - Is. 1-2. - P. 157-185.

19.Foley S.F., Tiepolo M., Vannucci R. Growth of early continental crust controlled by melting of amphibolite in subduction zones // Nature. – 2002. – V. 417. – P. 837-840.

20.Hoffmann J.E., Münker C., Næraa T., Rosing M.T., Herwartz D., Garbe-Schönberg D., Svahnberg H. Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs // Geochimica et Cosmochimica Acta. – 2011. – V. 75. – P. 4157-4178.

21. Гусев А.И. Петрология и геодинамическая обстановка генерации метабазальтов засурьинской свиты Горного Алтая // Успехи современного естествознания. – 2014. – № 7. – С. 64-70.

22. Гусев А.И. Геохимия и петрология метабазальтов средне-кумирской толщи Горного Алтая // Успехи современного естествознания. – 2014. – №7. – С. 70-75.

23.Ewart A. A review of the mineralogy and chemistry of Tertiary – Recent dacitic, latitic, rhyolitic and related salic rocks // Trondjemites, Dacites and Related Rocks. – Amsterdam, 1979. – P. 13-121.

24.Ewart A. The mineralogy and petrology of Tertiary – Recent orogenic volcanic rocks: with special reference to the andesitic-basaltic compositional range // Andesites: Orogenic Andesites and Related Rocks. – Chichester, 1982. – P. 25-95.

25.Zindler A., Hart S.R. Chemical geodynamics // Ann. Rev. Earth Planet. Sci. 1986. – V.14. – P. 493-571.

26. Гусев А.И., Табакаева Е.М. Магматизм и эпитермальное Ag-Au оруденение Красноярского рудного поля Горного Алтая // Изв. Томского политехнического университета. – 2019. – Т. 330. – № 1. – С. 26-38.

27.Виноградов А.П. Среднее содержание химических элементов в горных породах // Геохимия. – 1962. – № 7. – С. 555-571.

28. Wasson J.T., Kallemeyn G.W. The Solar System: chemistry as a key to its origin – Compositions of chondrites // Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences. – 1988. – V. 325. – № 1587. – P. 535-544.

References

1. Leonov V.L., Grib Ye.N. Strukturnye pozitsii i vulkanizm chetvertichnykh kalder Kamchatki. – Vladivostok: Dalnauka, 2004. – 189 s.

2. Grebennikov A.V., Shcheka S.A., Karabtsov A.A. Silikatno-metallicheskiye sferuly i problema mekhanizma ignimbritovykh izverzheny (na primere Yakutinskoy vulkano-tektonicheskoy struktury) // Vulkanologiya i seysmologiya. -2012 - N = 4 - S. 3-22.

3. Daubeny C. A description of active and extinct volcanos: with remarks on their origin, their chemical phenomena, and the character of their products, as determined by the condition of the earth during the period of their formation: being the substance of some lectures delivered before the University of Oxford, with much additional matter. – London, 1826. – 466 p.

4. Dell'Erba L. Considerazioni siilla genesi del piperno. Atti R. Acad. Sci. lis. e mat. Napoli, 1892. – V. 5. – Ser. 2. – № 3. – 18-29.

5. Ritman A. Vulkany i ikh deyatelnost. – M.: Mir, 1964. – 437 s.

6. Zavaritsky A.N. Ignimbrity Armenii // Izv. AN SSSR. Ser. geol. – 1947. – № 3. – S. 3-18.

7. Marshall P. Acid rocks of Taupo-Rotorua volcanic district // Trans. Roy. Soc. N. Z. – 1935. – V. 64. – Pt. 3. – P. 81-131.

8. Marakushev A.A. Petrogenezis i rudoobrazovaniye (geokhimicheskiye aspekty). – M.: Nauka, 1979. – 264 s.

9. Steiner A. Origin of ignimbrite of the North Island, New Zealand; a new-petrogenetic concept // N. Z. Geol. Surv. Bull. – 1960. – 68 p.

10.Shokalsky S.P., Babin G.A., Vladimirov A.G., Borisov S.M. i dr. Korrelyatsiya magmaticheskikh i metamorficheskikh kompleksov zapadnoy chasti Altaye-Sayanskoy skladchatoy oblasti. – Novosibirsk: Izd-vo SO RAN, filial «Geo», 2000. – 187 s.

11.Anders E., Grevesse N. Abundances of the elements: meteoric and solar // Geochim. Cosmochim. Acta. – 1989. – V. 53. – P. 197-214.

12.Irber W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites // Geochim. Cosmochim. Acta. – 1999. – V.63. – N_{2} 3/4. – P. 489-508.

13.Petrografichesky kodeks Rossii. Magmaticheskiye, metamorficheskiye, metasomaticheskiye, impaktnye obrazovaniya. – SPb: Izd-vo VSEGEI, 2009. – 200 s.

14.Maniar P.D., Piccoli P.M. Tectonic discrimination of granitoids // Geological Soc. America Bulletin. – 1989. – V.101. – P. 635-643.

15. Villaseca C., Barbero L., Herreros V. A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts // Trans. of Royal Soc. of Edinburg Earth Science. – 1998. – V. 89. – P. 113-119.

16. Marakushev A.A. Petrogenezis. – M.: Nedra, 1988. – 293 s.

17. Barbarin B. A Review of the relationships between granitoid types, their origins and their geodynamic environments // Lithos. – 1999. – V. 46. – Issue 3. – Pp. 605-626.

18.DePaolo D.J., Daley E.E. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension // Chem. Geol. -2000. - V. 169. - Is. 1-2. - P. 157-185.

19.Foley S.F., Tiepolo M., Vannucci R. Growth of early continental crust controlled by melting of amphibolite in subduction zones // Nature. – 2002. – V. 417. – P. 837-840.

20.Hoffmann J.E., Münker C., Næraa T., Rosing M.T., Herwartz D., Garbe-Schönberg D., Svahnberg H. Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs // Geochimica et Cosmochimica Acta. – 2011. – V. 75. – P. 4157-4178.

21.Gusev A.I. Petrologiya i geodinamicheskaya obstanovka generatsii metabazaltov zasuryinskoy svity Gornogo Altaya // Uspekhi sovremennogo estestvoznaniya. – 2014. – \mathbb{N}_{2} 7. – S. 64-70.

22.Gusev A.I. Geokhimiya i petrologiya metabazaltov sredne-kumirskoy tolshchi Gornogo Altaya // Uspekhi sovremennogo estestvoznaniya. – 2014. – №7. – S. 70-75.

23.Ewart A. A review of the mineralogy and chemistry of Tertiary – Recent dacitic, latitic, rhyolitic and related salic rocks // Trondjemites, Dacites and Related Rocks. – Amsterdam, 1979. – P. 13-121.

24.Ewart A. The mineralogy and petrology of Tertiary – Recent orogenic volcanic rocks: with special reference to the andesitic-basaltic compositional range // Andesites: Orogenic Andesites and Related Rocks. – Chichester, 1982. – P. 25-95.

25. Zindler A., Hart S.R. Chemical geodynamics // Ann. Rev. Earth Planet. Sci. 1986. – V.14. – P. 493-571.

26.Gusev A.I., Tabakayeva Ye.M. Magmatizm i epitermalnoye Ag-Au orudeneniye Krasnoyarskogo rudnogo polya Gornogo Altaya // Izv. Tomskogo politekhnicheskogo universiteta. – 2019. – T. 330. – No 1. – S. 26-38.

27. Vinogradov A.P. Sredneye soderzhaniye khimicheskikh elementov v gornykh porodakh // Geokhimiya. – 1962. – \mathbb{N}_{2} 7. – S. 555-571.

28. Wasson J.T., Kallemeyn G.W. The Solar System: chemistry as a key to its origin – Compositions of chondrites // Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences. – 1988. – V. 325. – N_{2} 1587. – P. 535-544.

PETROLOGY AND GEOCHEMISTRY OF IGNIMBRITES

OF THE KORGON SUITE OF ALTAI

A.I. Gusev, E.M. Tabakaeva

The Shukshin Altai State Humane-Pedagogical University, Biisk E-mail: anzerg@mail.ru, tabakaeva16@mail.ru

The data on the composition and petrological features of the generation of ignimbrites of the lower Korgon subsuite of the Korgon formation $(D_1 krg_1)$ are given. The composition of ignimbrites belongs to dacites, rhyodacites, and rhyolites, which form two volcanic centers: Inskoy and Shchebnyukhinsky, which are associated with calderas. They are characterized by high sum of REE, ranging from 155,9 to 350,23 g/t, and negative europium anomaly (from 0,42 to 0,95). Ignimbrites belong to peraluminium series with variable values of mafic index and magnesium number. They were generated according to a complex scenario: melting of a mantle source (asthenospheric), mixing with lower crustal material (amphibolites, greywacke, acidic pelitic slates). The high concentration of Nb, ratio Nb/Ta, ranging from 36,6 to 135,25, suggest melting titanium-bearing minerals of mantle source, participation of the source of NEB-basaltoids. Ratio of $\varepsilon Nd(t)$ and $\varepsilon Sr(t)$ in rocks is near to source of enriched mantle type II. The high fluid saturation of the melts predetermined their metallogenic profile, including the mineralization of iron, copper and gold. M- and W-type tetrad effects of rare-earth elements fractionation are manifested in rocks. The major importance for gold ore mineralization had been volatile components such as CO_2 and H_2O , that provided of manifestation of TEF REE W-type and gold transfer in fluids.

Keywords: ignimbrites, dacites, rhyodacites, rhyolites, NEB-basalts, melting of mantle source, mixing with crust material, isotopes of Sr, Nd.

Received July 12, 2019