— ГЕОЛОГИЯ —

УДК 552.2:551.72(571.5)

ПОЗДНЕМЕЗОЗОЙСКИЕ ПОСТКОЛЛИЗИОННЫЕ ВЫСОКОКАЛИЕВЫЕ ГАББРОИДЫ ДЖУГДЖУРО-СТАНОВОГО СУПЕРТЕРРЕЙНА

© 2010 г. И. В. Бучко, А. А. Сорокин, А. М. Ларин, С. Д. Великославинский, член-корреспондент РАН А. П. Сорокин, Н. М. Кудряшов

Поступило 29.10.2009 г.

Джугджуро-Становой супертеррейн является одним из основных структурных элементов южного обрамления Северо-Азиатского кратона и сложен главным образом докембрийскими метаморфическими породами, которые прорваны крупными интрузиями гранитоидов. К настоящему времени установлено, что последний этап регионального метаморфизма, а также большая часть гранитоидов в пределах этой структуры имеет не докембрийский [4], как это считалось ранее, а мезозойский возраст [5, 6, 8]. Это обстоятельство является основанием для пересмотра традиционных представлений об истории тектонического развития Джугджуро-Станового супертеррейна. В последние годы значительное количество публикаций было посвящено исследованию гранитоидов супертеррейна [1, 7–9], в то время как геохимическое и геохронологическое изучение ультрабазит-базитового магматизма является не менее информативным для тектонических реконструкций [2, 3]. Интересный объект для подобных исследований – Верхнеларбинский массив высококалиевых габброидов, обладающих резко аномальными геохимическими характеристиками по сравнению с другими базитультрабазитовыми комплексами региона. Интрузив находится в западной части Джугджуро-Станового супертеррейна, в пределах Иликанского блока.

Верхнеларбинский массив — одно из многочисленных сравнительно небольших по размерам тел базитов, прорывающих супракрустальные породы иликанской серии станового комплекса, метамор-

Институт геологии и природопользования Дальневосточного отделения

Российской Академии наук, Благовещенск Амурской обл. Институт геологии и геохронологии докембрия

Российской Академии наук, Санкт-Петербург

Институт геологии

Кольского научного центра

физованные в условиях амфиболитовой фации, и позднемезозойские граниты (142–138 млн. лет [5, 6]) позднестанового комплекса (рис. 1).

В его строении участвуют габброиды, без признаков метаморфических преобразований.

Габброиды представляют собой среднезернистые породы, сложенные клинопироксеном (до 40%), амфиболом (до 15–20%), плагиоклазом (до 50%), кварцем (до 3%), биотитом и апатитом. Клинопироксен наблюдается в резорбированных выделениях размером до 2 мм, сцементированных первичным амфиболом, и обладает одинаковым идиоморфизмом с плагиоклазом. При этом в краевых частях его зерен довольно часто отмечается развитие калиевого полевого шпата.

Габброиды массива относятся к субщелочной калиевой серии (Na₂O + K₂O = 5.91-7.47%; $Na_2O/K_2O = 0.2-0.4$). На диаграмме K_2O-SiO_2 их фигуративные точки попадают в поле пород шошонитовой серии. Габброиды характеризуются также низкими содержаниями титана (TiO₂ 1.28-1.34%), магния (MgO 3.20-4.71%, Mg# 31.1-36.1), при высоких содержаниях P₂O₅ (до 1.51%) (табл. 1). Для этих пород типично сильное обогащение рядом некогерентных элементов: Rb (до 101 ppm), Ва (до 6519 ppm), Sr (1428 ppm), Zr (до 510 ppm). На спайдерграмме, нормированной к примитивной мантии, фиксируются положительные аномалии Ba, K, LREE, P, Zr и отрицательные аномалии Nb, Ta, Ti, Sr. Распределению REE в габброидах Верхнеларбинского массива свойственно значительное обогащение LREE ((La/Yb), до 110), с отрицательной европиевой аномалией (Eu/Eu* = = 0.65 - 0.73).

По своим геохимическим характеристикам породы массива обнаруживают сходство с базитами шошонитовой серии постколлизионной геодинамической обстановки.

Для U–Pb-геохронологических исследований использован образец габбро (обр. И-749), отобранный на правобережье р. Верхняя Ларба.

Российской Академии наук, Апатиты Мурманской обл.

Рис. 1. Схематическая геологическая карта фрагмента Иликанского блока. Составлена по материалам [4] с уточнениями авторов. *1* – гнейсы, кристаллические сланцы, амфиболиты иликанской серии; *2* – биотитовые граниты позднестанового комплекса; *3* – раннемеловые габброиды; *4* – граниты, гранодиориты порфировидные тындинско-бакаранского комплекса; *5* – раннемеловые андезиты, дациты и их туфы; *6* – верхнечетвертичные и современные отложения; *7* – разломы: *a* – установленные, *б* – перекрытые четвертичными отложениями; *8* – место взятия пробы на геохронологические исследования. На врезке звездочкой показано положение Верхнеларбинского массива. МОСП – Монголо-Охотский складчатый пояс.

Выделение акцессорного циркона из этого образца проводилось с применением тяжелых жидкостей по стандартной методике [10]. Для изотопных исследований использовался смешанный трассер ²⁰⁸Pb-²³⁵U. Изотопные анализы выполнены на многоколлекторном масс-спектрометре Finnigan MAT-262. Точность определений изотопных отношений 0.5-0.7%. Холостое загрязнение не превышало 100-200 пг для свинца и 10-50 пг для урана. Обработка экспериментальных данных проводилась при помощи программ PbDAT [11] и ISOPLOT [12]. При расчете возрастов использованы общепринятые значения констант распада урана [13]. Поправки на обычный свинец введены в соответствии с модельными величинами [14]. Все ошибки приведены на уровне 2σ.

Циркон, выделенный из габбро, представлен дипирамидально-длиннопризматическими прозрачными кристаллами желтоватого пвета (рис. 2). Хорошо развиты грани призм {100} и {110}, а также пирамид {111}, ребра граней четкие, $K_v = 6-7$. Для U–Pb-геохронологических исследований использованы пять разноразмерных фракций циркона (табл. 2). Четыре из них оказались конкордантными (рис. 3). Среднее значение возраста, рассчитанное для этих фракций по отношению 206 Pb/ 238 U, составляет 134 ± 4 млн. лет (рис. 3). Одна из проанализированных фракций циркона дискордантна, а ее возраст (²⁰⁷Pb/²⁰⁶Pb) достигает 181 ± 10 млн. лет, что, по-видимому, обусловлено присутствием некоторой доли унаследованного свинца. С учетом морфологических особенностей изученного циркона есть все основания полагать, что полученная оценка возраста

ПОЗДНЕМЕЗОЗОЙСКИЕ ПОСТКОЛЛИЗИОННЫЕ ...

Компонент	Обр. И-749	Обр. И-747	Компонент	Обр. И-749	Обр. И-747	Компонент	Обр. И-749	Обр. И-747
SiO ₂	50.68	51.79	Ba	3718	6519	Lu	0.18	0.12
TiO ₂	1.34	1.28	Ga	24	19	Y	20.02	16.07
Al_2O_3	13.64	13.75	La	221.12	191.17	Th	15	13
Fe ₂ O ₃	8.35	7.08	Ce	437.09	392.55	U	2	2
MnO	0.20	0.17	Pr	38.63	39.67	Zr	510	470
MgO	4.71	3.20	Nd	144.02	136.38	Hf	1	1
CaO	6.34	6.65	Sm	18.20	17.70	Nb	11	9
Na ₂ O	1.60	1.31	Eu	3.80	4.05	Та	0	0
K ₂ O	4.31	6.16	Gd	16.6	15.3	Мо	1	1
P_2O_5	1.51	1.45	Tb	1.28	1.19	Zn	325	409
П.п.п.	2.81	3.69	Dy	4.67	4.2	Со	22	19
Сумма	95.49	96.53	Но	0.68	0.57	Ni	106	105
Cs	1	1	Er	2.15	1.73	Sc	10	10
Rb	77	101	Tm	0.19	0.14	V	97	93
Sr	788	1428	Yb	1.38	1.06	Cr	211	186

Таблица 1. Химический состав габбро Верхнеларбинского массива

Примечание. Основные петрогенные компоненты приведены в мас. %, элементы примеси – в г/т.

Таблица 2. Результаты U–Pb-геохронологических исследований цирконов из габбро Верхнеларбинского массива (обр. И-749)

№ п.п.	Размер фрак-	Содержание, мкг/г					Изотопные отношения					
	ции, мкм, навеска, мг	Pb		U		²⁰⁶ Pb/ ²⁰⁴ Pb*		²⁰⁷ Pb/ ²⁰⁶ Pb*		²⁰⁸ Pb/ ²⁰⁶ Pb*		
1	-250 + 150, 1.8	8.4		345.5		451		0.08100 ± 16		0.2208 ± 2		
2	-200 + 150, 3.1	12.5		507.9		331		0.09371 ± 7		0.2145 ± 1		
3	-150 + 100, 2.4	13.2		489.7		527		0.10694 ± 11		0.2630 ± 5		
4	-100, 4.3	9.3		403.8		796		0.06697 ± 5		0.1900 ± 1		
5	+150, 1.9	11.0		440.0		344		0.0	0.09109 ± 4		0.2289 ± 1	
№ п.п.	Размер фрак-	Изотопные отношени			R	Pho	Возраст, млн. лет					
	навеска, мг	²⁰⁶ Pb/ ²³⁸ U	207	'Pb/ ²³⁵ U	Л		²⁰⁶ Pb/ ²³⁸ U		²⁰⁷ Pb/ ²³⁵ U		²⁰⁷ Pb/ ²⁰⁶ Pb	
1	-250 + 150, 1.8	0.02109 ± 6	0.02109 ± 6 0.1417 ±		0.42		134.6 ± 0.5		134.6 ± 1.7		135 ± 29	
2	-200 + 150, 3.1	0.02075 ± 6	$\pm 6 0.1422 \pm 7$		0.	.56 132.4 ±		0.4	135.0 ± 0.7		181 ± 10	
3	-150 + 100, 2.4	0.02125 ± 6 0.14		429 ± 10	0.	.47	135.5 ± 0.4		135.6 ± 0.9		138 ± 15	
4	-100, 4.3	0.02082 ± 5	0.1	398 ± 6	0.	.64	132.8 ±	0.3	132.9 ± 0.5	5	134 ± 8	
5	+150, 1.9	0.02088 ± 6	0.1	402 ± 10	0.	.47	133.2 ±	0.3	133.3 ± 0.9)	133 ± 15	

Примечания. Звездочкой отмечены изотопные отношения, скорректированные на бланк и обычный свинец; Rho – коэффициент корреляции отношений 207 Pb/ 235 U $-^{206}$ Pb/ 238 U, величины ошибок (2 σ) соответствуют последним значащим цифрам.

Рис. 2. Микрофотографии циркона из габбро Верхнеларбинского массива (обр. И-749), выполненные на сканирующих электронных микроскопах: I–IV – ABT-55, в режиме вторичных электронов; V–VIII – CamScan, в режиме катодолюминесценции.

соответствует возрасту становления Верхнеларбинского массива.

Возраст формирования габброидов Верхнеларбинского массива отвечает раннемеловому эпапу геологического развития Джугджуро-Станового супертеррейна. Внедрение этих габброидов произошло вскоре после коллизии Сибирского кратона и Амурской микроплиты (138–142 млн. лет [5, 6]), приведшей к региональному метаморфизму амфиболитовой фации и становлению плутонов гранитов позднестанового комплекса.

Таким образом, возрастное положение и геохимические особенности габброидов Верхнеларбинского массива позволяют предполагать, что его формирование связано с постколлизионным этапом развития Джугджуро-Станового супертеррейна в позднем мезозое.

Рис. 3. Диаграмма с конкордией для цирконов из габбро Верхнеларбинского массива (обр. И-749). Номера точек соответствуют порядковым номерам в табл. 2.

Исследования выполнены при поддержке РФФИ (проект 09–05–00394) и Президиума ДВО РАН (проекты "Крупные магматические провинции Восточной Азии: металлогения, модели магматизма и рудообразования" и "Геодинамическая эволюция восточной части Центрально-Азиатского подвижного пояса в палеозое и мезозое").

СПИСОК ЛИТЕРАТУРЫ

- 1. Антонов А.Ю., Дриль С.И., Банковская Е.В. // Тихоокеан. геология. 2001. Т. 20. № 4. С. 61–75.
- 2. Бучко И.В., Сальникова Е.Б., Сорокин А.А. и др. // ДАН. 2005. Т. 405. № 4. С. 514-518.
- 3. Бучко И.В., Сальникова Е.Б., Ларин А.М. и др. // ДАН. 2007. Т. 413. № 5. С. 651-654.
- Глуховский М.З., Коген В.С., Фролова З.Б. Геологическая карта СССР 1:200000. Лист N–51-V. Сер. Становая. Объяснительная записка. М.: НПО "Аэрогеология", 1981.
- 5. Ларин А.М., Котов А.Б., Сальникова Е.Б. и др. // Петрология. 2000. Т. 8. № 3. С. 267-279.
- 6. Ларин А.М., Котов А.Б., Сальникова Е.Б. и др. // Петрология. 2001. Т. 9. № 4. С. 442-457.
- 7. Ларин А.М., Сорокин А.А., Котов А.Б. и др. // ДАН. 2006. Т. 409. № 2. С. 222–226.
- 8. Сальникова Е.Б., Ларин А.М., Котов А.Б., и др. // ДАН. 2006. Т. 409. № 5. С. 652-657.
- 9. Стриха В.Е.// ДАН. 2006. Т. 409. № 4. С. 539-542.
- Krogh T.E. // Geochim. et cosmochim. acta. 1973. V. 37. P. 485–494.
- 11. Ludwig K.R. // US Geol. Surv. Open-File Rept 88– 542. 1991. 35 p.
- 12. *Ludwig K.R.* ISOPLOT/Ex.Vers. 2.06. // Berkeley Geochronology Center Spec. Publ. 1999. № 1a. 49 p.
- 13. *Steiger R.H., Jager E.* // Earth and Planet. Sci. Lett. 1976. V. 36. № 2. P. 359–362.
- 14. *Stacey J.S., Kramers I.D.* // Earth and Planet. Sci. Lett. 1975. V. 26. № 2. P. 207–221.

ДОКЛАДЫ АКАДЕМИИ НАУК том 431 № 3 2010