УДК 550.34.1

Мамыров Э. Институт сейсмологии НАН КР, г. Бишкек, Кыргызстан.

ОБОСНОВАНИЕ ВЗАИМОСВЯЗИ МАГНИТУДЫ ПО ОБЪЕМНЫМ ВОЛНАМ С СЕЙСМИЧЕСКИМ МОМЕНТОМ ЗЕМЛЕТРЯСЕНИЙ

Аннотация: В статье дано обоснование взаимосвязи магнитуды по объемным волнам с сейсмическим моментом землетрясений.

Ключевые слова: магнитуда, сейсмический момент, энергетический класс, землетрясение, объёмная волна.

ЖЕР ТИТИРӨӨЛӨРДҮН СЕЙСМИКАЛЫК УЧУРУ МЕНЕН КӨЛӨМДҮҮ ТОЛКУНДАРЫ БОЮНЧА МАГНИТУДАНЫН ӨЗ АРА БАЙЛАНЫШЫН НЕГИЗДӨӨ

Кыскача мазмуну: Макалада жер титирөөнүн көлөмдүү толкундарынын магнитудасы менен сейсмикалык учурдун өз ара байланышынын негизделиши берилген.

Негизги сөздөр: магнитуда, сейсмикалык учур, энергетикалык класс, жер титирөө, көлөмдүү толкун.

EXPLANATION OF THE CORRELATION OF A BODY-WAVE MAG-NITUDE WITH EARTHQUAKE'S SEISMIC MOMENT

Abstract: In the paper the explanation of the correlation of a body-wave magnitude with earthquake's seismic moment is given.

Keywords: magnitude, seismic moment, energy class, earthquake, body wave.

Введение. Магнитуда m_b по объемным волнам является важной шкалой оценки масштабов коровых землетрясений и основана на амплитуде телесейсмических объемных волн. Она определяется формулой [1]:

$$\mathbf{m}_{\mathbf{b}} = \log \left(\mathbf{A}/\mathbf{T} \right) + \mathbf{Q},\tag{1}$$

где Q - функция эпицентрального расстояния и глубины очага, эмпирически определенная Гутенбергом и Рихтером для исключения влияния пути на наблюдаемую амплитуду; A/T - максимум в одной из волновых групп P, PP или SH; A - амплитуда, T - период.

Практическое определение m_b, осуществляемое Геологической службой США для текущих бюллетеней, значительно отличается от методики, предложенной Гутенбергом и Рихтером [1], которые анализировали записи широкополосных приборов, регистрирующих при сильных землетрясениях относительно длиннопериодные P - волны (T= 4-10 сек). Измерения Геологической службы США, обычно, основаны на записях короткопериодных приборов WWSSN, где P-волны практически всегда имеют период около 1 сек [1].

Сейсмологическими службами стран бывшего СССР используется магнитуда m_{pv} по прибору СКМ с пиковой характеристикой Р-волн, максимум которой лежит при периодах 0.5-1.5 сек. В США используются приборы Беньофа с пиковой характеристикой при перио-

дах 0.7-0.8 сек [2-4]. По [3] из-за конструкционных особенностей вышеуказанных приборов шкалы m_{pv} и m_b неидентичны даже для слабых землетрясений.

Для крупных землетрясений с моментной магнитудой $M_w > 6.0$ различие между m_{pv} и m_b становится более существенным из-за дополнительного условия, используемые NEIC при измерении амплитуд: брать максимум среди первых нескольких циклов, из-за чего m_b теряет смысл и быстро насыщается, примерно, на уровне $m_b = 6.4$. В связи с этим были введены новые «исправленные» или пиковые магнитуды m_b^* и \hat{m}_b для крупных землетрясений, для которых были использованы истинные максимальные амплитуды колебаний (T= 1-10 сек), взятых с сейсмограмм [3].

Вместе с тем, до сих пор не существует единой самосогласованной системы функциональных зависимостей различных модификаций магнитуды по объемным волнам с другими магнитудами и сейсмическим моментом M_0 , как опорной шкалы. Во всех обзорах по данной проблеме количественные соотношения между магнитудами и M_0 являются эмпирическими и могут быть использованы только для определенных интервалов M_0 [3, 5-6]. В связи с вышеизложенным, основной целью данной работы является обоснование функциональной связи m_b с максимальной амплитудой сейсмических колебаний и с M_0 , установление управляющих параметров межмагнитудных соотношений и взаимосвязи энергии сейсмического излучения с магнитудой m_b (m_{pv}).

Основные эмпирические соотношения.

По [4-8] наиболее важным среднестатистическим соотношением между m_b и телесейсмической магнитудой по поверхностным волнам Ms является линейная зависимость Гутенберга - Рихтера [7]:

$$m_b = 0.63 M_s + 2.5.$$
 (2)

Из многочисленных публикаций по данной проблеме, обзор которых выполнен в работах [2-6], мы сочли возможным привести первые критические обобщения Поликарповой [8], которые указывают, что выражение (2) не является универсальным.

Как подчеркнуто в этой работе, отсутствие в литературе исходных данных, по которым рассчитано выражение (2), не дает возможности использовать эту формулу в тех случаях, когда необходимо оценить точность различных расчетов или прогнозировать значение Ms по известным величинам m_b.

Магнитуды Ms из (2) можно было бы определить лишь в том случае, если бы коэффициент корреляции г между m_b и Ms был равен или близок к единице. При $r \neq 1$ коэффициенты линейного соотношения Ms = $a m_b + b$ будут отличаться от тех, которые получаются при пересчете уравнения (2). Так, например, $a \neq r$ /0.63, а должно определятся по формуле $a = r^2/0.63$ [8]:

При эпицентральных расстояниях 2000-11000 км для магнитуды m_{bp} по Р-волнам было получено [8]:

$$m_{\rm bp} = 0.57 (\pm 0.09) \,\mathrm{M_s} + 3.07 (\pm 0.06), \, r = 0.63, \, \mathrm{N} = 196, \tag{3}$$

для магнитуды m_{bs} по S – волнам:

 $m_{bs} = 0.82 (\pm 0.10) \text{ Ms} + 1.99 (\pm 0.06), r = 0.66, N = 183,$ (4) где N - число событий.

Между магнитудами объемных волн m_{bp} и m_{bs} установлены следующие корреляционные зависимости [8]:

 $m_{bp} = 0.69 (\pm 0.09) m_{bs} + 1.24 (\pm 0.06), r = 0.71, N=157,$ (5)

$$m_{bs} = 0.76 (\pm 0.08) m_{bp} + 1.23 (\pm 0.05), r = 0.71, N = 157.$$
 (6)

По Поликарповой [8] для выражений (3) - (6) среднеквадратичное отклонение σ_p составляет 0.44 - 0.53 в интервале $4.2 \le m_{bp} < 7.7$ и $3.5 \le Ms \le 7.5$. Из этих соотношений следует, что они будут, примерно, соответствовать формуле (2), если считать, что m_b в (2) является среднеарифметическим значением m_{bp} и m_{bs} , а в рассматриваемых интервалах магнитуд зна-

(8)

чения m_{bp} из (3) будут превышать m_b по (2) примерно на 0.25 единицы магнитуды. Кроме этого, из (5) - (6) следует, что для указанных эпицентральных расстояний можно принять, что $m_b \approx m_{bp} \approx m_{bs}$ с учетом точности определения магнитуд по объемным волнам.

В связи с «насыщением» магнитуды m_b для крупных землетрясений при $M_s > 7$ в работе [9] эмпирически была введена новая уточненная пиковая магнитуда \hat{m}_b объемных Р-волн, которая может быть рассчитана из следующей корреляционной формулы:

$$\hat{m}_{\rm h} = 2.70 + 0.53 \,\,\rm M_W \tag{7}$$

Для расчетов \hat{m}_b были использованы истинные максимальные амплитуды A_g колебаний Р-волн, взятые с сейсмограмм.

Поскольку значение Mw (M₀, в H • м) определяется из формулы [10]:

$$M_W = 2/3 \log Mo - 6.07,$$

то из (7) - (8) следует, что величина A_g пропорциональна M_0 [9] или $A_g \sim f (M_0^{0.35})$.

Гусевым и др. [3] было показано, что зависимость магнитуды m_{pv} (прибор СКМ) от M_w хорошо аппроксимируется следующей линейной (6.6 $\leq M_W \leq 9.5$) зависимостью:

 $m_{pv} = 2.86 + 0.525 M_W = 0.35 \lg M_0 - 2.75.$ (9)

По Раутиан и др. [11] для землетрясений Центральной Азии соотношение между магнитудой m_b и энергетическим классом K_R выражается следующей эмпирической формулой:

$$m_b = 5.53 + 0.45 (K_R - 14) = 0.45 K_R - 0.77.$$
(10)

По Михайловой и др. [12] для землетрясений Тянь-Шаня статистическая связь К_R с m_{pv} выражается следующими эмпирически соотношением:

$$K_{\rm R} = 0.66 + 2.13 \,\,\rm{m_{pv}} \tag{11}$$

Наши обобщения последних лет [12] показали, что корреляционную зависимость m_{pv} от K_R в интервале $2 \le K_R \le 17$ для землетрясений Тянь-Шаня (1902-2012гг.) можно выразить формулой (N =8593, r = 0.95):

$$m_{\rm pv} = 0.42 \ \rm K_R \ -0.08. \tag{12}$$

При дальнейшем изложении будет сделана попытка физического обоснования эмпирических формул (2), (7), (10) – (12), исходя из единой самосогласованной системы взаимосвязи магнитуд с М₀ и межмагнитудных соотношений, предложенных нами в работах [12-14].

Обоснование количественных соотношений m_b с M₀, Ms, K_R и их управляющие параметры

Ранее нами было показано, что значение модернизированной магнитуды по объемным волнам $m_{bm} = m_b$ можно определить из следующего теоретического соотношения [12-14]:

$$m_{bm} = 6 + lgu = 6.3 + lgb_m = C_1 + A_0 - 2 lgt_0,$$
(13)

где $C_1 = lg [2\Pi (2.34)^{-2} \cdot \mu^{-1} \cdot v_S] + 6.3, \mu$ - модуль сдвига, Па ; и – среднее смещение по разлому, м; b_m - максимальная амплитуда сейсмических колебаний, м; v_S – скорость S – волн, м/с, t₀ –соглег период Брюна [15], с, $A_0 = lg M_0$; M_0 , в Н·м.

Для стандартных величин плотности ρ земной коры ($\rho = 2830$ кг/м³) и скорости $v_s = 3600$ м/с выражение (14) трансформируется следующему виду:

 $m_{bm} = A_0 - 2 \operatorname{lgto} -11.30 = \frac{1}{3} A_0 + \frac{2}{3} \operatorname{lg} \Delta \sigma - 4.80, \quad (14)$

где $\Delta \sigma$ - статическое сброшенное сейсмическое напряжение, Па.

По [10] энергия сейсмического излучения E_{SK} (Дж) равна $E_{SK} = (\Delta \sigma / 2 \mu) M_0$ или (K_{SK} = lg E_{SK}):

$$K_{SK} = 2 A_0 - 3 \lg_{t_0} - 20.61 = A_0 + \lg \Delta \sigma - 10.87.$$
(15)

Модернизированная телесейсмическая магнитуда M_{Sm} (эквивалент M_S и M_W при $\Delta \sigma$ = const) равна:

$$M_{Sm} = (4/3) A_0 - 2 lgt_0 - 16.95 = \frac{2}{3} (A_0 + lg \Delta \sigma) - 10.45 = \frac{2}{3} K_{SK} - 3.2.$$
(16)

При стандартных $E_{SK} / M_0 = 5 \cdot 10^{-5}$ и $\Delta \sigma = 3.67$ МПа = const справедливо равенство $M_{Sm} = M_W$. Здесь же следует подчеркнуть , что в (14) и (16) при A_0 = const, чем больше $\Delta \sigma$, тем больше численные значения магнитуд m_{bm} и M_{Sm} .

Соотношение (2) , (7) –(9) и (16) указывают на то, что между модернизированными магнитудами M_m (m_{bm} , M_{Sm}) и A_0 могут существовать линейные функциональные зависимости вида:

$$M_{m}(m_{bm,} M_{Sm}) = \kappa_{i} + z_{i} A_{0,}$$
(17)

в которой коэффициенты к_i и z_i управляются параметрами a_t и b_t в уравнении:

$$lgt_0 = a_t + b_t A_0.$$
 (18)

В этом уравнении при $\Delta \sigma = \text{const} \ b_t = 1/3 = \text{const}$, а для других случаев величина b_t не является постоянной и отражает увеличение $\Delta \sigma$ с ростом M₀ [12], что приводит к возникновению многочисленных эмпирических формул по зависимости магнитуд от A₀ и межмагнитудных соотношений [12-14].

С учетом (13) – (16) и (17) – (18) для m_{bm} , K_{Sk} и M_{sm} можно записать (для стандартных величин ρ и v_s):

Выражения (19) – (21) позволяют составить самосогласованную систему функциональных зависимостей m_{bm}, M_{Sm} и K_{Sk} от A₀ и lgt₀, на основе которых можно впервые составить физически обоснованные межмагнитудные соотношения.

Магнитуды $\mathbf{m}_{\mathbf{b}}$ и \hat{m}_b : обсуждение расчетных и эмпирических соотношений

При стандартных величинах ρ , v_s , $E_{Sk}/M_0 = 5 \cdot 10^{-5}$ и $\Delta \sigma = 3.67$ Мпа = const на основе (8), (14), (16) и (19) можно записать:

$$m_{\rm bm} = 1/3 \ A_0 - 0.44 = 2.60 + 0.5 \ M_{\rm Sm}. \tag{22}$$

Это соотношение в пределах точности определения магнитуды по объемным волнам удовлетворительно совпадает с выражениями (7) по расчету \hat{m}_b и (9) для определения m_{PV} . Поскольку значения \hat{m}_b пропорциональны M_0 и $A_g \sim f(M_0^{0.35})$ и $m_{bm} \approx \hat{m}_b \approx m_{PV}$, то величина b_m – максимальная амплитуда сейсмических колебаний принята в (13) как основа расчетов m_{bm} , пропорциональна $M_0^{0.33}$ или $b_m \sim f(M_0^{0.33})$. Подобным образом, величина максимальной амплитуды вертикальной составляющей $P - волн - A_{PV}$, по которой рассчитывается значение m_{PV} по (9), пропорциональна $M_0^{0.35}$ или $A_{PV} \sim f(M_0^{0.35})$. Из этих сопоставлений следует, что по физическому смыслу магнитуды m_{bm} , \hat{m}_b и m_{PV} равноценны между собой. Следовательно, магнитуды по объемным волнам функционально взаимосвязаны с величиной среднего смещения по разлому и.

В таблице 1 приведено сопоставление магнитуды \hat{m}_b по [9, 16], определенных по истинным максимальным амплитудам колебаний Р – волн Ag ряда крупных землетрясений, взятых с сейсмограмм в интервале периодов T = 1-10 с, с расчетной m_{bm} по формуле (14). Из представленных данных следует, что в интервале 6.3 < M_W < 9.6 при $\lg\Delta\sigma \ge 7.0$ численное значение m_{bm} равно \hat{m}_b (таблица 1). К примеру для грандиозного землетрясений Тангшань (1960 г.) при $\lg\Delta\sigma = 7.10$ $\hat{m}_b = 7.57$ и $\hat{m}_b = 7.71$, для разрушительного землетрясений Тангшань (1976 г.) при $\lg\Delta\sigma = 7.37$ m_b = 6.3 $\hat{m}_b = 6.9$ и $\hat{m}_b = 6.92$ и т.д. В интервале 6.3 < $\lg\Delta\sigma < 7.0$ значения m_{bm} на 0.30 – 0.70 меньше чем \hat{m}_b (табл.1). Вышеприведенные выводы подтверждаются данными сопоставления расчетных m_{bm} и \hat{m}_b по (7) для землетрясений Курильских островов и Японии ($\varphi = 30 + 40^\circ$, $\lambda = 140 + 150^\circ$) а так же о. Суматра ($\varphi = -10 + 10^\circ$, $\lambda = 90 + 10^\circ$)

100°), за 1993-2012 гг. в интервале $16 \le A_0 \le 22$, приведенных на рисунках 1-2. Для землетрясений этих регионов за указанный период среднее значение $\lg\Delta\sigma$ составляет 7.15 [12] и поэтому величины m_{bm} и \hat{m}_{b} практически равны между собой (рис.1-2).

Соотношения mbm – KSK и mPV - KR.

На основе (19) и (21) функциональную связь mbm от Ksk можно выразить формулой:

$$m_{bm} = \frac{(1 - 2 \cdot b_t)}{(2 - 3 \cdot b_t)} (K_{SK} + 3 a_t + 20.61) - 2a_t - 11.30.$$
(23)

Для землетрясений Тянь-Шаня нами было получена следующая корреляционная зависимость lgt₀ от A₀ [12] :

$$lgt_0 = 0.22 A_0 - 3.45, \tag{24}$$

т.е. в (18) $a_t = -3.45$ и $b_t = 0.22$.

Учитывая, что $m_{PV} \approx m_b + 0.20$ и принимая $m_b = m_{bm}$, а так же то, что $K_{SK} = K_R + 0.66$ [12], выражение (23) с учетом (24) можно привести к следующему виду:

$$m_{\rm PV} = 0.42 \ \rm K_R - 0.58. \tag{25}$$

Рис. 1. Зависимость между магнитудами m_{bm} и \hat{m}_{b} для землетрясений Курильских о-в и Японии $m_{bm} = 1.00(\pm 0.02) \hat{m}_{b} + 0.14(\pm 0.003), N = 521, r = 0.97.$

Рис.2. Зависимость m_{bm} от \hat{m}_{bm} для землетрясений о. Суматра (1993-2012 гг.) m_{bm} = 0.96(±0.02) \hat{m}_{bm} + 0.37(±0.007), N = 637, r = 0.96.

Полуэмпирическое соотношение (25) находится в хорошем согласии с формулами (10) – (11), полученными эмпирически известными сейсмологами СССР.

	1							r			T					
<u>№№</u> п/п	Дата	Время	φ	λ	Dept h h, km	$log_{10}M_0,$ N ⁻ m	$\log_{10}t_0$ to, sec	m _e	$\hat{m}_{_{\hat{a}}}$	m _{em}	Ms	Mw	M _{sm}	$\log_{10}\Delta\sigma, \Delta\sigma, Pa$	Region	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
1	1960/5/22	19:11:17.5	-38.29	-73.05	35	23.35	2.17		7.57	7.71	8.5	9.6	9.76	7.10	Great Chilean	
2	1963/10/13	5:17:55.1	44.76	149.80	26	21.85	1.88		7.23	6.79	8.1	8.5	8.35	6.47	Great Alaska	
3	1964/3/28	3:36:12.7	61.02	-147.63	6	22.96	2.15		7.64	7.36	8.4	9.2	9.29	6.77	Rat Island	
4	1965/2/4	5:01:21.7	51.21	178.50	29	22.15	1.94		7.19	6.97	8.2	8.7	8.63	6.59	Kurile Isl.	
5	1967/7/22	16:56:55.3	40.63	30.74	4	20.20	1.32		6.38	6.26	7.1	7.4	7.28	6.50	Tyrkey	
6	1968/5/16	0:49:0.4	40.90	143.35	26	21.45	1.71		7.18	6.73	8.1	8.3	8.16	6.58	Tokachi-oki	
7	1969/8/11	21:27:37.6	43.48	147.82	46	21.34	1.71		6.90	6.62	7.8	8.2	8.01	6.47	Kurile Isl.	
8	1971/2/9	14:00:41.0				19.08	0.85	6.2	6.41	6.08	6.7	6.6	6.73	6.79	San Fernando	
9	1974/10/3	14:21:34.5	-12.25	-77.52	36	21.18	1.65		7.0	6.68	7.6	8.1	7.92	6.49	Haicheng, China	
10	1975/2/4	11:36:7.1	40.67	122.65	16	19.61	1.05		6.76	6.21		7.0	7.03	6.72	Peru	
11	1976/2/4	9:01:7.2	15.14	-89.78	16.3	20.31	1.14	6.2	6.66	6.73	7.5	7.5	7.78	7.15	Gua temala	
12	1976/5/29	12:23:29.9	24.39	98.65	15	19.09	0.72	6.1	6.5	6.35	6.9	6.7	7.00	7.19	Longlin, China	
13	1976/5/29	14:00:33.2	24.29	98.58	15	19.05	0.73	6.0	6.5	6.29	7.0	6.6	6.93	7.12	Longlin, China	
14	1976/7/27	19:42:11.1	39.52	118.03	15	20.44	1.11	6.3	6.9	6.92	7.9	7.6	8.01	7.37	Tangshan, China	
15	1976/7/28	10:45:45.9	39.75	118.78	15	19.55	0.88	6.3	6.7	6.49	7.4	7.0	7.29	7.47	Tangshan, China	
16	1976/8/16	14:6:55.0	32.63	104.42	15	19.11	0.73	6.1	6.9	6.35	6.9	6.7	7.01	7.18	Songpan, China	
17	1976/8/16	16:11:38.7	7.07	123.75	33	21.04	1.34	6.4	7.26	7.06	7.9	8.0	8.35	7.28	Mindanao	
18	1976/8/21	21:49:57.8	32.37	104.29	15.3	18.50	0.52	6.1	6.7	6.16	6.4	6.3	6.61	7.20	Songpan China	
19	1976/8/23	3:30:11.5	32.11	104.21	19.6	18.66	0.58	6.2	6.6	6.20	6.7	6.4	6.71	7.18	Songpan China	
20	1976/11/6	18:4:16.0	27.50	101.40	22.7	18.56	0.54	5.8	6.5	6.18	6.5	6.3	6.65	7.20	Yanyuan, China	
21	1976/11/15	13:53:7.2	39.45	117.71	15	18.63	0.56	6.0	6.3	6.21	6.3	6.4	6.71	7.21	Tangshan, China	
22	1976/11/24	12:22:25.3	38.88	43.96	15	19.62	0.90	6.1	6.58	6.52	7.3	7.0	7.34	7.16	Sumbawa	
23	1977/8/19	6:9:33.1	-11.14	118.23	23.3	21.55	1.48	7.0	7.47	7.29	7.9	8.3	8.75	7.37	Iran	
24	1978/9/16	15:36:13.5	33.37	57.02	11	20.12	1.34	6.5	6.9	6.14	7.4	7.3	7.13	6.36	Oaxaca	
25	1978/11/29	19:53:2.9	16.22	-96.56	16.1	20.72	1.36	6.4	6.87	6.70	7.7	7.7	7.89	6.90	Tyrkev	
26	1979/3/14	11:7:31.1	17.78	-101.37	26.7	20.23	1.27	6.5	6.71	6.39	7.6	7.4	7.41	6.69	Petatlan	
27	1979/10/15	23:17:0.8	32.62	-115.57	12	18.86	0.78	5.7	5.92	6.00	6.9	6.5	6.57	6.78	Imperial Yallev	
28	1979/12/12	8:00:7.0	2.32	-78.81	19.7	21.23	1.35	6.4	6.91	7.23	7.7	8.1	8.58	7.44	Colymbia	
29	1980/1/1	16:42:49.8	38.80	-27.74	10	19.45	1.00	6.0	6.3	6.15	6.7	6.9	6.92	6.71	Azores Isl.	
30	1980/2/7	10:49:26.3	-54.29	158.43	15	19.36	1.01	6.1	6.2	6.04	6.5	6.8	6.79	6.59	Macguarie Isl	
31	1980/7/17	19:43:3.1	-12.44	165.94	34	20.68	1.24	5.8	6.79	6.90	7.9	7.8	8.07	7.22	Eureka	
32	1980/10/10	12625:25.5	36.14	1.41	12	19.70	1.00	6.5	6.5	6.40	7.3	7.1	7.32	6.36	Santa Grus Isl	
33	1980/11/8	10:27:45.9	41.14	-124.36	15	20.05	1.00	6.2	6.7	6.75	7.2	7.3	7.72	7.31	El Asnam. Algeria	
34	1981/1/23	21:13:55.6	30.86	101.35	10	18.86	0.78	5.7	6.5	6.00	6.8	6.5	6.57	6.78	Daofu. China	
35	1981/2/24	20:53:49.2	38.07	23.04	10	18.95	0.78	5.9	6.6	6.09	6.7	6.6	6.69	6.97	Greece	
36	1981/4/24	21:50:14.3	-13.51	166.43	44.4	19.55	0.90	6.1	6.2	6.45	6.9	6.8	7.25	7.11	Yanuati Isl	
37	1981/4/27	18:17:40.0	-57.58	147.86	10	18.91	0.78	5.7	6.1	6.05	6.5	6.5	6.64	6.83	Macguarie Isl	
38	1981/7/28	17:22:43.6	30.01	57.8	15.2	19.95	1.15	5.7	6.9	6.35	7.1	7.2	7.28	6.76	Kurile Isl	
39	1991/9/3	5:35:50 1	42.97	147.87	35.7	18.88	0.70	6.6	6.5	6.18	6.6	6.5	6.76	7.04	Papua, New Guinea	
57	1//1////	5.55.50.1	12.71	117.07	55.1	10.00	0.70	5.0	5.5	0.10	0.0	5.5	0.70	,.04	- upuu, men Guined	

Таблица 1. Сопоставление магнитуды $\hat{m}_{\hat{a}}$ (Houtson, Kanamori, 1986; Zhuo, Kanamori, 1987) и расчетных m_{sm} для ряда крупных землетрясений земного шара

Таблица 1.	(Продолжение) Сопоставление магнитуды $\hat{m}_{\hat{a}}$ (Houtson, Kanamori, 1986; Zhuo,
	Kanamori, 1987) и расчетных m _{вт} для ряда крупных землетрясений земного ша-
	pa

№ № п/п	Дата	Время	φ	λ	Depth h, km	$\log_{10}M_{0},$ N \cdot m	log10t0 t0, sec	m _e	$\hat{m}_{_{\hat{a}}}$	m _{øm}	Ms	Mw	M _{sm}	log10Δσ, Pa 0 Δσ	Region
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
40	1981/11/6	16:47:51	-3.18	143.72	15	18.96	0.84	6.2	6.2	5.98	6.9	6.6	6.59	6.70	Loayltu Isl.
41	1981/11/24	23:30:41.9	-22.19	170.32	23.3	19.13	0.87	5.7	6.2	6.09	6.7	6.7	6.75	6.79	Kermades Isl.
42	1981/12/24	5:33:33.3	-29.81	-177.55	19.4	19.32	1.08	6.1	6.4	5.86	6.8	6.8	6.58	6.34	Iran
43	1982/8/5	20:33:2.0	-12.52	166.01	23.9	19.50	0.98	6.2	6.3	6.24	7.1	6.9	7.02	6.82	Santa Grus Isl.
44	1982/12/19	17:44:21.8	-24.31	175.0	29.2	20.30	1.33	6.0	6.4	6.34	7.7	7.5	7.39	6.57	Tonga Isl.
45	1983/4/3	2:50:26.4	8.85	-83.25	28	20.26	1.27	6.5	6.6	6.42	7.2	7.4	7.52	6.71	Panama
46	1983/5/2	23:43:44.7	36.42	-120.66	14.5	18.60	0.79	6.2	6.0	5.72	6.5	6.3	6.25	6.49	Akito Oki, Japan
47	1983/5/26	3:0:18.3	40.44	138.87	12.6	20.66	1.30	6.8	7.2	6.76	7.7	7.7	7.93	7.02	Coolinga
48	1983/10/4	18:52:37.8	-26.01	-70.56	38.7	20.53	1.46	6.4	6.8	6.31	7.3	7.6	7.50	6.41	Chili
49	1983/10/28	14:6:22.5	44.35	-113.98	13.7	19.49	1.00	6.2	6.6	6.19	7.3	6.9	6.97	6.75	Idaho
50	1983/11/16	16:13:5.9	19.40	-155.59	11	19.03	0.78	6.3	6.7	6.17	6.6	6.6	6.90	6.95	Hawaii
51	1983/11/30	17:46:28.9	-6.35	71.75	10	20.61	1.23	6.6	7.1	6.85	7.5	7.7	8.00	7.18	Chugos Arch
52	1984/2/7	21:33:36.1	-9.81	160.42	21.9	20.40	1.33	6.5	6.7	6.44	7.5	7.5	7.52	6.67	Solomon Isl.
53	1984/3/19	20:28:39	40.38	63.37	15	19.55	0.78	6.5	6.7	6.69	7.0	7.0	7.49	7.47	Uzbekistan

<u>Примечание</u>: для землетрясений N1 – 10 log₁₀t₀ вычислены по данным Δσ Kasachara (1984) и Purcaru and Berkhemer (1982); для остальных землетрясений N11-52 приведены данные по Global CMT Cataloge, для землетрясения N53 – данные по каталогу Землетрясений в СССР за 1984 г.

Соотношения $M_{Sm} - m_{bm}$ и $M_S - m_b$.

На основе (19) – (20) функциональную зависимость $M_{Sm} = M_S$ от $m_b = m_{bm}$ можно представить следующей формулой:

$$M_{Sm} = \frac{\left(4/3 - 2 \cdot b_t\right)}{\left(1 - 2 \cdot b_t\right)} (m_{bm} + 2 a_t + 11.30) - 2a_t - 16.95.$$
(26)

Подставляя в (26) значения *b*_t и *a*_t по (24), для землетрясений Тянь-Шаня получим:

$$\begin{array}{l}
M_{Sm} = 1.59m_{bm} - 3.06, \\
m_{bm} = 1.92 + 0.63M_{Sm}.
\end{array}$$
(27)

Выражение (27) находится в хорошем согласии с корреляционной зависимостью $M_S = 1.57 m_b - 3.05$, представленной на рис.3, а так же с формулами (2) - (3). Для землетрясений Курильских остовов и Японии за 1993-2011 гг. нами было получено [12]: $lgt_0 = 0.32 A_0 - 5.43$. По этой формуле расчетную зависимость m_{bm} от M_{Sm} на основе (19) – (20) можно записать в следующем виде: $m_{bm} = 0.52 M_{Sm} + 2.74$, а корреляционная зависимость представлена формулой [12]: $m_b = 0.52 M_S + 2.78 N = 514$, r = 0.84.

На рис.4 приведена корреляционная зависимость lgt₀ от A₀ для землетрясений Южной Америки ($\phi = -40 - 0^{\circ}$, $\lambda = -85 - 65^{\circ}$) за 1993 – 2012 гг. по глобальному каталогу СМТ (N = 576, r = 0.99)

 $lgt_0 = 0.32 (\pm 0.004) A_0 - 5.48 (\pm 0.03).$ (28) По этим данным расчетная зависимость $m_{bm} = m_b$ от $M_{Sm} = M_S$ выражается формулой:

$$\begin{split} m_{bm} &= 2.77 + 0.52 \ M_{Sm}, \end{split} \tag{29} \\ \text{которая находится в хорошем согласии с эмпирическими выражением (N = 547, r = 0.82):} \\ m_b &= 2.64 \ (\pm 0.02) + 0.52 \ (\pm 0.03) \ M_S, \end{split} \tag{30}$$

представленного на рис.5.

Особо следует подчеркнуть, что эмпирические и теоретические зависимости $m_b = m_{bm}$ от $M_S = M_{Sm}$ для крупных землетрясений земного шара полностью совпадают с обобщениями соотношениями (7) и (9). Таким образом, в зависимости от величины управляющих параметров at и bt в (18) возникают многочисленные эмпирические межмагнитудные соотношения и зависимости магнитуд от M_0 и энергии сейсмического излучения. Сопоставление инструментальных значений m_b , \hat{m}_b и m_{PV} с расчетной магнитудой m_{bm} показывает, что эти разновидности магнитуд по объемным волнам функционально взаимосвязаны с сейсмическим моментом и со средним смещением по разлому и.

Рис. 3. Зависимость M_S от m_b для землетрясений Тянь-Шаня по данным IDC, ISC, NEIC, GS, HRV, SU, AS. $M_S = 1.57(\pm 0.03) m_b - 3.05(\pm 0.02), N = 1183, r = 0.95.$

Рис. 4. Зависимость $logt_0$ от $logM_0$ для землетрясений Южной Америки (1993-2012 гг.) $logt_0 = 0.32(\pm 0.004) \ logM_0 - 5.48(\pm 0.003), N = 576, r = 0.99.$

Рис. 5. Зависимость m_b от M_S для землетрясений Южной Америки (1993-2012 гг.) $m_b = 0.52(\pm 0.03)M_S + 2.64(\pm 0.02), N = 547, r = 0.82.$

Выводы

- Впервые дано физическое обоснование многочисленных эмпирических формул по взаимосвязи магнитуды по объемным волнам коровых землетрясений с сейсмическим моментом, энергетическим классом и магнитудой M_S.
- 2. На основе обобщения большого количества инструментальных данных по коровым землетрясениям различных регионов доказано, что параметры уравнения увеличения «углового» периода (или сброшенного сейсмического напряжения) с ростом сейсмического момента являются управляющими межмагнитудных соотношений и зависимостей магнитуд от сейсмического момента и энергетического класса.
- 3. Численное значение магнитуды по объемным волнам коровых землетрясений пропорционально десятичному логарифму среднего смещения по разлому, выраженного в микронах.

Работа выполнена в рамках исследований по проекту МНТЦ КР – 201

Литература

- 1. Аки К., Ричардс П. Количественная сейсмология, теория и методы, т.1. пер. с английского, Москва: Мир, 1983. 520 с.
- 2. Антонова Л.В., Антикаев Ф.Ф., Курочкина Р.И., Нерсесов И.Л., Раутиан Т.Г., Халтурин В.И. Основные экспериментальные закономерности динамики сейсмических волн. Москва: Наука, 1968. 285с.
- 3. Гусев А.А., Мельникова В.Н. Связи между магнитудами- среднемировые и для Камчатки // Вулканология и сейсмология, 1990. - №6. – С. 55-63.
- 4. Запольский К.К., Нерсесов И.Л., Раутиан Т.Г., Халтурин В.И. Физические основы магнитудной классификации землетрясений (магнитуда и энергетическая классификация землетрясений, т. 1. Москва: ИФЗ Ан СССР, 1974. - С. 79-131.
- 5. Chen P., and H. Chen. Scaling Law and its applications to earthquake statistical relations // Tectonophysics, 1989. №166. P. 53-72.
- 6. Utsu T. Relationships between magnitude scales In Book International Handbook of earthquake and Engineering Seismology, 2002.- part A. Academic Press.-P.733-746.
- 7. Gutenberg B. and C.F. Richter. Earthquake magnitude, intensity, energy and acceleration (second paper)//Bull. Seismol. Soc. Am., 1956 *a.* P. 46, 105-145.
- 8. Поликарпова Л.А. О соотношениях магнитуд, определяемых по продольным, поперечным и поверхностным волнам // Магнитуда и энергетическая классификация землетрясений, т. 2. Москва: ИФЗ АН СССР, 1974, -Р. 69-73.
- 9. Houston, H., and H. Kanamori. Source spectra of great earthquakes: teleseismic constraints on rupture process and strong motion.// Bull. Seism. Soc. Am., 1986. №76. P. 19-42.
- 10. Kanamori H. The energy released in great earthquakes// J. Geophys. Res., 1977. -№82. P.2981-2987.
- 11. Rautian T.G., V.J. Khalturin, K. Fujita, K.G. Mackey and et al. Origins and methodology of the Russian energy K-class system and its relationship to magnitude scales// Seismol. Res. Letters, 2007. № 78. P. 579-590.
- 12. Мамыров Э. Землетрясения Тянь-Шаня: магнитуда, сейсмический момент и энергетический класс. Бишкек: Инсанат, 2012. 234 с.
- 13. Mamyrov E. Relations among earthquake source parameters derived from Debye solid-body model// J.Geodynamics, 1996. № 22. P.137-143.
- 14. Мамыров Э. Особенности сейсмодинамики Тянь-Шаня. Очерки рельефа и морфотектоники Тянь-Шаня. Новосибирск: ГЕО, 2009. С. 91-118.
- 15. Brune J.N. Tectonic stress and the spectra of seismic shear waves from earthquakes// J. Geophys. Res., 1970. - № 75. – P. 4997-5009. Correction in J. Geophys. Res. 1971.- №76. – P. 5002.
- 16. Zhuo, Y., and H. Kanamori. Regional variation of the short period (1 to 10 second) source spectrum// Bull. Seismol. Soc. Am., 1987- № 77. P. 514-529.