——— ГЕОЛОГИЯ —

УДК 553.81(571)

ПЕРВЫЕ U-Pb-SHRIMP-ДАТИРОВАНИЯ ПО ЦИРКОНАМ МАГМАТИЧЕСКИХ КОМПЛЕКСОВ ЮГО-ЗАПАДНОГО ПРИМОРЬЯ

© 2010 г. Академик А. И. Ханчук, член-корреспондент РАН В. Г. Сахно, А. А. Аленичева

Поступило 06.11.2009 г.

Восточная часть Центрально-Азиатского орогенного пояса представлена структурами Юго-Западного Приморья. Здесь выделяется Вознесенский террейн с позднепротерозойской–кембрийской пассивной континентальной окраиной и Лаоелин-Гродековский террейн тыловой части островной дуги [1].

В пределах Вознесенского террейна ранее был выделен Гродековский батолит, представленный силурийскими гранитоидами шмаковско-гродековского комплекса [2].

В последние годы более детальные исследования гранитоидов Юго-Западного Приморья в пределах развития силурийских гранитоидов позволили выделить массивы позднепермско-раннеюрских гранитоидов в западной части Гродековского батолита, параллелизуемые с рязановским и гвоздевским комплексами Южного Приморья (рис. 1) [3]. Было установлено, что с рязановским комплексом связано золоторудное оруденение, поэтому возник вопрос о перспективности золотого оруденения этого района и масштабах его проявления. Не менее интересен вопрос о возможности силурийского гранитоидного магматизма и масштабности его проявления в истории развития этого региона. С этой целью проводилось дополнительное изучение гранитоидных комплексов этого региона с использованием метода U-Pb-SHRIMP-датирования.

В пределах Гродековского батолита выделены три возрастных комплекса: гродековский — позднесилурийско-девонский, рязановский — позднепермский и гвоздевский — раннеюрский [2, 3 и др.]. Гродековский комплекс, по данным этих источников, занимает основную часть батолита. Это крупнозернистые биотит-роговообманковые граниты; рязановский комплекс представлен биотит-роговообманковыми диорит-гранодиорит-гранитными интрузиями; интрузии гвоздевского комплекса имеют ограниченное развитие и известны в основном в северной части батолита, они сложены био-

Дальневосточного отделения

титовыми гранитами, лейкогранитами и гранитпорфирами. Два первых комплекса принадлежат к натровой серии, гвоздевский относится к калиевонизкокальциевой. С гранитоидами рязановского комплекса связаны золоторудные проявления золото-кварц-сульфидного типа. В черносланцевых отложениях, которые встречаются здесь, известны золото-сульфидные рудопроявления. Это позволило выделить Приморскую золоторудную минерагеническую зону [4].

Пространственная совмещенность магматических образований Гродековского батолита и Приморской золотой минерагенической зоны может указывать на генетическую связь магматизма и оруденения. Взаимоотношения и возраст магматических образований Гродековского батолита, а также золотого оруденения обсуждались ранее неоднократно. Результаты, полученные в основном К–Аг- и Rb–Sr-методами, не всегда были надежны, как правило, противоречивы. Вследствие этого возникала возрастная неопределенность магматизма, перспективности золотоносности, а также геодинамической природы региона [5].

В данном сообщении представлены первые результаты U–Pb-датирования магматических комплексов U–Pb-SHRIMP-методом по цирконам. U–Pb-изотопное определение возраста проводилось в Центре изотопных исследований ВСЕГЕИ. Этот метод является непревзойденным по точности и локальности.

Более того, в этих цирконах определялись концентрации редкоземельных элементов (REE), а также Th, U. Датирование проводилось по цирконам, отобранным в 16 точках из различных частей региона с охватом всех магматических комплексов (рис. 1, табл. 1). В каждом образце проанализировано не менее 10 кристаллов.

Наиболее детально анализировались гранитоидные массивы северной части батолита, где были выделены разновозрастные комплексы — рязановский и гвоздевский, в одном из которых выявлена золотоностность.

Два образца гранита отобраны из гвоздевского комплекса (обр. 9761-2 и 4990; Цирковый массив), возраст которого ранее определялся как раннеюрский (табл. 1, рис. 2). Цирконы длиннопризматические прозрачные, 90–100 мкм с соот-

Дальневосточный геологический институт

Российской Академии наук, Владивосток

Всероссийский научно-исследовательский геологический институт им. А.П. Карпинского, Санкт-Петербург

Рис. 1. Схема размещения гранитоидных комплексов Юго-Западного Приморья [3] с дополнениями и изменениями авторов. 1 – породы основания (метаморфические, осадочно-вулканогенные и вулканические свиты и комплексы); 2 – средне-позднепалеозойские (Pz_{2+3}) осадочно-вулканогенные и вулканогенные комплексы и свиты (кордонская, владивостокская, барабашский и др.); 3 – мезозойские осадочные и вулканогенные образования позднего триаса и ранней юры; 4 – кайнозойские и современные осадочно-вулканогенные образования; 5–7 – гранитоидные комплексы: 5 – татибинский (γ K₁), 6 – рязановский (γ P₂r), 7 – вознесенский (γ O₃); 8 – места отбора проб на U–Pb-датирование и их номера (см. табл. 1); 9 – участок исследований (на врезке).

ношением 1.5–1, 2.5–1. В каждом из образцов было проанализировано 10 и более цирконов. Возраст пород комплекса по результатам двух анализов определен в пределах 266 ± 3.0 и 265.6 ± 3.0 млн. лет соответственно (рис. 2).

Следующие 10 проб отобраны из различных мест Гродековского батолита (рис. 1) из гранитоидных пород гродековского комплекса, который ранее относился к позднему силуру. На диаграмме конкордий (рис. 2в–к) показаны результаты датирования гранитоидов комплекса по соотношениям 206 Pb/ 238 U в цирконах. Как следует из результатов, исходя из средневзвешенного полученного значения U–Pb, возраст гранитоидов гродековского комплекса варьирует от 268.6 ± 3.0 (ранняя пермь) до 247.6–248 млн. лет (ранний триас), но большая часть дат может быть объединена в три кластера: a) $260 \pm 7.5-263.8 \pm 7.5$; б) $252.7 \pm 2.9-255.7 \pm 2.8$; в) $247.6 \pm 2.5-248.0 \pm 2.0$ млн. лет.

В двух пробах (4592-2 и TP-102) установлены два бимодальных кластера с возрастом 261 ± 3 – 247 ± 6 и 268 ± 2–248 ± 2.4 млн. лет соответственно (табл. 1). Эти даты находятся в пределах основной части импульса гранитоидного магматизма. Результаты могут быть объяснены либо как небольшая потеря радиогенного свинца, либо как процесс длительного становления интрузии с последующим захватом более древних цирконов, о чем свидетельствуют высокие вариации значений среднеквадратичных отклонений (СКВО). На диаграммах конкордий Тер-Вассербурга (рис. 2к–м) эти отклонения отражаются эллипсами ошибок (1 σ).

№ обр.	Координаты			Порода, минераль-	²⁰⁶ Pb/ ²³⁸ U,	Число зерен/
	с.ш.	В.Д.	комплекс, массив (м)	ный состав	млн лет	число опре- делений
9761-2			Рязановский, Цирковый (м)*	Гранит, Ві	266 ± 3	10/10
4990	44°54'29"	131°22'26"	Рязановский, Цирковый (м)*	То же	265.6 ± 3	11/11
5408	45 02 34	131 53 50	Рязановский	Гранодиорит, Bi–Hb	260.1 ± 3	10/10
TP-21			То же	Гранит, Ві	260.1 ± 3	10/10
TP-119			*	Гранодиорит, Hb–Bi	268 ± 3	10/10
4592-2			*	Гранит, Hb–Bi	a) 261 ± 3	7/10
			*	То же	б) 247 ± 6	3/10
16476	44 54 25	131 56 30	*	Гранит, Hb–Bi	263.8 ± 7.5	9/11
16454-1	44 50 10	131 55 40	*	То же	252.7 ± 2.9	10/10
TP-03	44	131	*	Гранодиорит, Hb–Bi	247.6 ± 2.5	10/10
TP-102			*	Диорит, Hb–Bi	a) 248 ± 2.4	8/10
			*	То же	б) 268 ± 2.0	2/10
16475	44 55 35	130 24 21	*	Гранит, Hb–Bi	260.0 ± 7.5	10/10
164495			*	То же	255.7 ± 2.5	10/10
16441	44 45 50	131 52 00	*	»	254.4 ± 3.0	8/10
4629	44 58 42	131 24 21	Дайка	Диорит-порфир, Нb	208 ± 2.0	10/10
1060	44 23 57	131 47 37	Вознесенский*	Лейкограниты, Ві	449.6 ± 5.3	10/10
1082	44 20 39	131 46 20	Вознесенский*	То же	451 ± 5.2	11/11

Таблица 1. Возраст гранитоидов магматических комплексов Юго-Западного Приморья по U–Pb-SHRIMP-датированию цирконов

* Здесь и далее названия комплексов даны по [3], с дополнениями и изменениями авторов.

В совокупности всех определений возраста магматических пород этой части Гродековского батолита U-Pb-методом не были обнаружены гранитоиды с силурийским возрастом. Граниты раннеюрского возраста гвоздевского комплекса (как ранее считалось в [2, 3]), отобранные из Циркового массива (табл. 1), по данным U-Pb-датирования имеют ранне-позднепермский возраст.

Полученные U–Pb-даты для магматических пород укладываются в интервал кристаллизации, соответствующий по времени поздней перми– раннему триасу. Наши датировки опровергают интервал формирования комплексов (от силура до юры) и дают основание параллелизовать с рязановским комплексом.

Таким образом, среди гранитоидов, относимых к рязановскому (пермского возраста), можно выделить несколько фаз: ранняя (ранняя—поздняя пермь) — калиевые гранитоиды с возрастом 265 \pm 0.3—266.0 \pm 3 млн. лет в северо-западной части батолита (Цирковый массив), главная — калиево-натровые граниты, гранодиориты и диориты с возрастом 260.1 \pm 3 млн. лет и поздняя — калиево-натровые граниты и гранодиориты с возрастом 255.7 \pm 2.5—247.0 \pm 6 млн. лет. Эти результаты наиболее наглядно отражены на гистограмме распределения U—Pb-дат и кривых плотности вероятности (рис. 3а) и эллипсов (рис. 36).

Пробы 1060 и 1082 отобраны из гранитоидов Вознесенского блока (террейна), для которого характерно широкое распространение мусковитовых и биотитовых лейкократовых разностей и проявлений протолитионовых типов. В пределах этого блока известны флюоритовые грейзены. Определения возраста интрузий биотитовых и литий-фтористых протолитионовых гранитов Rb–Sr- и Sm–Nd-методом дало 450 млн. лет.

U–Pb-определение возраста по цирконам (табл. 1) показало, что гранитоиды могут быть отнесены к позднему ордовику. Средневзвешенные результаты по 10 и 11 цирконам из двух проб дают весьма небольшое отклонение (рис. 2н, о).

Из анализа всех данных U—Pb-датирования по цирконам из гранитоидов можно сделать следующие выводы.

1. Силурийский возраст гранитоидов гродековского и раннеюрский гвоздевского комплексов, развитых на территории северной части Юго-Западного Приморья (Гродековский батолит), не подтвердился.

2. Среди гранитоидов широко распространен рязановский комплекс.

3. В свете новых изотопных данных ставится под сомнение существование Гродековского батолита силурийского возраста как единой магматогенной структуры.

4. Новые изотопные данные свидетельствуют о значительном распространении потенциально золотоносного позднепермского гранитоидного магматизма на этой территории, расширяют перспективы на обнаружение коренных месторождений золота.

518

Рис. 2. Диаграммы конкордий гранитоидов Юго-Западного Приморья. Использованы анализы проб, отобранных из различных точек. Даны средневзвешенные результаты (см. табл. 1), а на рисунках (от а до м) они показаны утолщенным эллипсом. Индивидуальные анализы изображены тонким эллипсом, отражающим результаты ошибок (2σ). Масштабы для каждой ошибки варьируют. Ошибки результатов анализа наиболее хорошо отражены на диаграммах (от к до м) с использованием отношений 207 Pb/ 206 Pb – 238 U/ 206 Pb (эллипсы ошибок – 1 σ). На (н, о) диаграммах Тера-Вассербурга приведены данные кластеров цирконов по Вознесенскому блоку (террейну), возраст которого – поздний ордовик.

ДОКЛАДЫ АКАДЕМИИ НАУК том 431 № 4 2010

Рис. 3. Гистограмма распределений U–Pb-дат и кривые плотности вероятности, построенные с помощью ISOPLOT [8] (3а); 36 – на диаграмме Тера-Вассербурга приведены некоторые кластеры цирконов по позднепермско-раннетриасовому гранитоидному комплексу (рязановскому), отражающие многофазность становления интрузий, обсуждаемых в тексте.

Позднепалеозойский гранитоидный магматизм развит к западу от рассматриваемой территории, где он слагает плутоны на протяженной площади Северо-Восточного Китая и Монголии вдоль северной границы Герцинского орогенного пояса (палеоокеана).

Следует подчеркнуть, что в связи с новыми данными несколько иначе могут быть рассмотрены вопросы геодинамического режима этого региона. На основе данных по U-Pb-датированию цирконов из магматитов этого региона можно усомниться в коллизионной природе гранитоидов. В проанализированных цирконах (их более 150) не встречены кристаллы с унаследованными ксеногенными ядрами докембрийского возраста, что свидетельствовало бы об анатектоидном характере расплавов, заимствованных из нижнекорового протолита при его плавлении. Таким образом, пермские гранитоиды имеют рифтогенную природу и связаны с тыловой частью пермской островной дуги. Вознесенские гранитоиды позднеордовикского возраста несут признаки внутриплитного магматизма.

Результаты исследований позволяют считать, что позднепермско-раннетриасовый магматизм Юго-Западного Приморья, так же как и в других регионах мира, отражает глобальную систему перестройки — начало распада Пангеи, которая знаменуется формированием рифтов и излиянием огромных объемов траппов (Pangean flood basalts) Сибири (P–T–J), Юго-Западного Китая (P–T) и других регионов земного шара [6, 7 и др.], а в Центрально-Азиатском поясе этот этап проявился объемным гранитоидным магматизмом и эксплозивным вулканизмом, сопровождавшимся выбросом огромного количества углеродсодержащих газов, что привело к глобальным катастрофическим последствиям: изменению среды, появлению бескислородной обстановки в океанах и на шельфе, вымиранию организмов, парниковым явлениям, что, в конечном итоге, способствовало накоплению черносланцевых отложений, сорбции золота в углесодержащих осадках с последующим формированием золоторудных месторождений при внедрении гранитных массивов.

Авторы благодарят С.В. Коваленко и Т. Кутуб-Заде за предоставленные образцы.

Работа выполнена при финансовой поддержке Роснедра по Госконтракту № АЛ-20-06/35, а также ОНЗ РАН № $9-1-\Pi 14-02$.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ханчук А.И*. В кн.: Рудные месторождения континентальных окраин. Владивосток: Дальнаука, 2000. С. 5–34.
- 2. Геология СССР. Т. 32. М.: Недра, 1969. 696 с.
- Государственная геологическая карта Российской Федерации 1:1000 000 (третье поколение). Дальневосточная серия. Лист L-52 (Пограничный), L-53 (Ханка), К-53 (Находка) / Под ред. С.В. Коваленко. СПб: Картограф. фабрика ВСЕГЕИ, 2006.
- Аленичева А.А., Салтыкова Т.Е., Коваленко С.В. и др. В кн.: Золото Северного обрамления Пацифики. Магадан: СВКНИИ ДВО РАН, 2008. С. 193–194.
- 5. *Рязанцева М.Д., Куприянова И.И., Беляцкий Б.В. и др.* // Тихоокеан. геология. 2003. Т. 226. № 5. С. 87–102.
- Bowring S.A., Erwing D.H., Iin Y.G. et al. // Science. 1998. V. 280. P. 1039–1045.
- Puffer I.H. In: Pangea: Clobal Environments and Resources. Alberta: Canad. Soc. Petrol. Geol. Calgary, 1994. 982 p.
- 8. *Ludwig K.R.* // Berkeley Geochronol. Centr. Spec. Publ. 2003. V. 4. 70 p.

ДОКЛАДЫ АКАДЕМИИ НАУК том 431 № 4 2010