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Statistical Estimation of Seismic Hazard Parameters: Maximum Possible 

Magnitude and Related Parameters 

b y  V. F. P i sa renko ,  A. A. L y u b u s h i n ,  V. B. L y s e n k o ,  and  T. V. G o l u b e v a  

Abstract The problem of  statistical estimation of  earthquake hazard parameters 
is considered. The emphasis is on estimation of  the maximum regional magnitude, 

Mmax, and the maximum magnitude, Mmax(T), in a future time interval T and quantiles 
of  its distribution. Two estimators are suggested: an unbiased estimator with the 
lowest possible variance and a Bayesian estimator. As an illustration, these methods 
are applied for the estimation of  Mma x and related parameters in California and Italy. 

Introduction 

Over the past few decades, much effort has been fo- 
cused on obtaining realistic assessments of seismic hazard 
(see Lamarre et al., 1992 and references cited therein for a 
detailed historic survey of the problem). An important com- 
ponent of the hazard assessment is the determination of max- 
imum magnitude, and associated uncertainty. 

The notion of apparent magnitude was introduced by 
Tinti and Mulargia (1985) (see also Kijko and Sellevoll, 
1992). The apparent (i.e., observed) magnitude/9/is equal 
to "true" magnitude M, disturbed by a random error e: 

/17/ = M + e. 

The probability distribution of e depends on the partic- 
ular earthquake catalog and can be modeled by a Gaussian, 
uniform, or some other distribution function. The authors 
mentioned above assumed that the true magnitude distribu- 
tion obeys the Gutenberg-Richter law, but this problem can 
be viewed otherwise. Namely, the Gutenberg-Richter law 
was empirically established using apparent magnitudes. The 
notion of true magnitude is rather vague and even slightly 
mysterious: we cannot flatly assert that there exists a true 
magnitude value M that is measured with a random error e. 
The uncertainty of magnitude is formed not only by mea- 
surement error but it is also an inherent feature of earthquake 
source description. Thus, the apparent magnitude character- 
izes not only earthquake size (energy) but some nuisance 
factors (noise and others). Fortunately, both apparent and 
true magnitudes either satisfy or do not satisfy Gutenberg- 
Richter law simultaneously and with the same slope within 
the whole magnitude range, except at values approaching 
Mma x. We study the problem of estimating Mma x for two 
cases: if/ = M and 37I = M + e. We start with the assump- 
tion that all seismic parameters but Mmax are known without 
error. However unrealistic this assumption seems to be, it 
can be accepted in some practical situations, as we shall 
show later. Under this assumption, we derive a statistically 

optimal Mma x estimator, based on a catalog of arbitrary size 
n. This estimator is unbiased and has the lowest possible 
variance for any finite n. We point out that this result is valid 
for an arbitrary magnitude-frequency law. The explicit form 
of solution allows us to analyze the role of each seismic 
parameter in the Mmax-estimation problem and to draw some 
practical conclusions. Then we generalize these results for 
estimation of an arbitrary function of Mma x. As an example 
of such a function, we study the probability distribution 
function of Mmax(T)--maximal magnitude that will occur in 
a future time interval (t, t + T). Some of these results were 
obtained by Pisarenko (1991) and Pisarenko and Lysenko 
(1994). 

Next we consider the most general case when uncer- 
tainties are present both in magnitude and in all other seismic 
parameters. In this case, there is no unbiased optimal esti- 
mator of Mmax, and we suggest a Bayesian approach to es- 
timate Mma x and related parameters. 

Statistical Estimation of  Mma x 
(Exact Magnitudes and Known Parameters) 

We consider first the situation when magnitude is 
known exactly. Suppose M 1 . . . . .  M n is a sample of main- 
shock magnitudes that can be considered as independent, 
identically distributed random values. If the earthquake cat- 
alog contains aftershocks, it is necessary to eliminate them 
by one of known procedures (see Gardner and Knopoff, 
1974; Molchan and Dmitrieva, 1993). We assume further 
that the magnitude probability distribution function F(x; O) 
(magnitude-frequency law) has the general form 

= IG(x)/G(O), M o<=x<=O, 
F(x; O) [9, x > O, (1) 

where 0 = Mma x is the maximum possible magnitude (un- 
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known parameter to be estimated) and M 0 is the threshold 
of completeness (known parameter). G(x) is given by 

x 

G(x) = l 
MO 

g(u) du, (2) 

where g(u) is some positive integrable function. 
The probability densityflx; 0) has the form 

If(x)/G(O), M o <--_ x <= O, 
f(x; O) = [0, x < mo, x > O. 

For example, the function g(u) = 10 -bu corresponds to the 
well-known Gutenberg-Richter law. We stress that our con- 
siderations are valid for any arbitrary magnitude-frequency 
law satisfying equations (1) and (2). Equations (1) and (2) 
imply that all parameters of seismic process (such as the 
earthquake activity rate and the "slope" of magnitude-fre- 
quency law) are known, with the exception of Mma x. We 
keep this assumption in the present section: later we shall 
consider uncertainty on the other parameters. 

The likelihood function L(O) for this situation is 

L(O) = G-n(O) g ( M ~ ) . . ,  g(M,)H(O - f , ) ,  (3) 

where f n  = max  Mi. H(x) is the Heavyside function: 
l <-i<=n 

0, x < 0 ,  
H ( x ) =  1, x_>--0. 

Only one factor in equation (3) depends both on the un- 
known parameter 0 and on the sample values M 1 . . . . .  M,. 
This factor is the function H(O - fn) .  Thus,/z, is a sufficient 
statistic for parameter 0 (see Rao, 1945). It follows from (3) 
that the 0 value giving the maximum of L is 0 = fn: i.e.,/.t~ 
is a maximum likelihood (m.1.) estimator of the maximum 
magnitude. 

Now we use the result by Rao-Blackwell-Kolmogorov 
(Rao, 1945; Blackwell, 1947; Kolmogorov, 1950) that 
states: the conditional expectation (under fixed sufficient sta- 
tistic f~) of any unbiased estimator 0 of parameter 0 gives 
the unbiased estimator with the lowest possible variance. As 
an unbiased estimator 0, we can take one value, based on 
any single sample, e.g., My It can be verified that the non- 
linear function of M1, 

O(M1) = M 1 + G(M1)/g(M1), (4) 

is an unbiased estimate of 0; i.e., its expectation identically 
equals to 0: 

The distribution function O(x, y) of the pair (M1, fn) is equal 
to 

O(x, y) = Fn(y; O) H(x - y) + F(x; O) F"- l (y;  O) H(y - x). 

Now we can find the density function ~b(x, y) of the pair (Mr, 
/.tn) and the density function ¢(y) offn:  

O2f~(X, y) 
dp(x, y) - - - ,  qb(y) = 

OxOy 

o e  

~ qb(x, y)dx.  
- - c o  

Thus, the conditional density function ~b(x I y) of M 1 = x 
under fixed f ,  = y is equal to 

q~(x I y) - qb(x, y )  _ H ( y  - x )  

4/,y) G(y) (5) 

( 1 - ~ )  g(x) + 6(x - 

Then the best unbiased estimator 0 is given by averaging (4) 
with density (5): 

. = 

0 

f &x) 4,(x I fn),ix = fn 
MO 

a ( f  n) + 
n g(fn) 

1 

- -  - f "  + n f ( f n ; f , ) "  (6) 

This result is well known in mathematical statistics (e.g., 
Kendall and Stuart, 1961, exercise 17.24, chapter 17). 

Since the distribution function of f~ is Fn(x; 0), it is 
easy to derive the variance of 0n: 

var(On) = E(O~ 2) - [E(~.)] 2 

0 

=f(x+m 
MO 

1 
JZ dFn(x; O) - 02 

n f(x; x i  / 

1 1 

(7) 

The variance depends on unknown parameter 0, and there- 
fore, equation (7) cannot be used directly. Fortunately, since 
f ,  is a sufficient statistic, any function of f ,  is an unbiased 
estimator of its expectation, having the lowest possible var- 
iance. Thus, we use as the best unbiased estimator of 

var(0n) the following expression: 

- 1 

n 2 ~2- . (8) J ~,,, fn)" 

E[O(MO] -- O. Equations (6) through (8) can be generalized for estimation 
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of an arbitrary function ~b(0) of  parameter 0. By similar rea- 
soning, we get the best unbiased estimator ~(0): 

,~(0) = 4,~un) + 
4)%u.) 

n fQAn; JAn)" 

The variance of  qb and its best unbiased estimator are, re- 
spectively, 

1 El(q~'(]An) t21 var( ) = : . . . .  , 

n L\ / (p . ;  ]An)] J 

.~ f ~ : "  

does not depend on the choice o f M  o. This conclusion is valid 
unless the magnitude-frequency law deviates significantly 
from a chosen parametric form, which is a truncated expo- 
nential. 

(9) We mentioned in the Introduction that estimation of 0 
[or qS(0)] with known parameters b and 2 can be considered 
realistic and adequate only when the existing uncertainties 
in b and 2 do not change significantly the results of  esti- 
mation. Now we consider this issue in more detail. We sup- 
pose that from an a priori study, uncertainty in b and 2 can 
be characterized by their standard deviations crb and a2. 

For the moment,  we restrict our analysis to the expo- 
(10) nential Gutenberg-Richter law, although similar reasoning 

can be applied to other, nonexponential frequency-magni- 
tude distributions. So, we assume that 

Now we shall generalize formulas (6) through (10) for 
the case when the earthquake sequence is a Poisson process 
with intensity parameter 2. Suppose we have in a time in- 
terval [ - r, 0] a random number of  earthquakes v~ that obeys 
the Poisson distribution 

exp( - 2~) (2:) k 

k! 
k =  0 , 1 , 2  . . . .  pr(v~ = k) = 

We denote by ]A, the maximum magnitude of the largest 
earthquake to occur in [ - r; O] under condition v, _----- 1. Then 
for any function ~b(O), the estimator 

¢~(0) = ~b(p0 + ¢ ' ~ )  (11) 
v~ f~¢; m) 

is unbiased and has the lowest possible variance, given by 

(12) j 

Since v~ ~ z2 and/t~ ~ 0 as r --* % it can be shown that 

1 ( ¢ ' (z )  _]2 const 
var(q'~O = ~ \f(]A,; ]A~)/ + (2r)---'- ~ .  

For finite T, equation (12) is some function of the unknown 
parameter 0 and cannot be calculated explicitly. But since 
]A, is a sufficient statistic for 0 and since each function of a 
sufficient statistic is the best unbiased estimator of  its own 
expectation, we get the best unbiased estimator for expres- 
sion (12) or, rather, for its main term as v --, c~: 

(13) 
2 1 ¢'Cu~) / 

~( ~:) = :v, f-~d, -~O ] " 

Now we would like to make some comments on the choice 
of  the parameter Mo. Since increasing M o leads to decreasing 
2o and at the same time to increasing f(0; 0), it can be shown 
from equation (13) that for 2~ >> 1, the variance practically 

g(u) = 10 -b" = exp ( - f l u ) ,  fl = b ln(10), (14) 

G(u) = [exp(-f lMo)  - exp(-flu)]/fl .  

Then we derive from equation (l 1) the 0 estimator: 

exp[fl(]A, - Mo)] - 1 

v :  

We shall assume that aft and a~ are small enough, so they 
perturb this estimator by a factor of  (1 + 6), where 5 is a 
sufficiently small number. 

If  this rule is applied to 0~, the results are as follows: 

(u~ - Mo)expLa(m - Mo)] 
5B ~- ]A~v~fl 

exp[fl(p~ - Mo)] 
5 2 ~ o- 2 . 

,~]A:: 

, 
(15) 

If  we take as a practical example v, = 50, ]A~ - M o = 
2, fl = 2, ]A~ = 7.5, 5fl < 0.05, and 5~ < 0.05, then restric- 
tions on a~ and a~ are 

a f t <  0.34; ~r b < 0.15; a;o/2 < 0.69. 

These restrictions are not too severe and often can be met in 
practice. The general case of  uncertainty on fl and 2 is treated 
below. 

Es t ima t ion  o f  Pa rame te r s  C o n n e c t e d  wi th  Mma x 

If  we assume the earthquake sequence to be Poissonian 
and independent of  magnitude, then it is easy to derive the 
probability distribution of Mmax(T)  under the condition of vr 
--> 1 (see Epstein and Lomnitz, 1966; Kijko and Sellevoll, 
1989): 

(I~T(X; 6/) = Pr(Mmax(T) < x)  = 
exp[2TF(x; 0)] - 1 

e x p ( 2 T ) -  1 
(16) 
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Equation (16) for fixed x can be considered a function 
of 0 only, and the estimation method described in the pre- 
vious section can be applied. Similarly, the density function 
at fixed x, i.e., OOr(x; O)/Ox, can be estimated, as well as that 
of any other interesting parameter connected with the 
M~ax(T) distribution. We restrict ourselves to @~(x; 0) and 
its quantiles x~, i.e., the roots of the following equation: 

OZ(Xa;O) = a, 0 < a <  1. (17) 

It should be noted that all mentioned parameters are 
functions of 0, and their simple estimators could be obtained 
by inserting the 0 estimator into corresponding function. 
This method corresponds to the maximum likelihood (m.1.) 
principle: any function of an m.1. estimator is an m.l. esti- 
mator of this function. But since equations (16) and (17) are 
nonlinear, substituting the 0 estimator will lead to biased 
estimators with variances larger than given by equation (12), 
while equation (11) gives an unbiased estimator with the 
lowest variance. Asymptotically, as z ~ % these estimators 
are of course equivalent, but for finite r, their difference can 
be appreciable. In our examples (see below), this difference 
sometimes went up to 0.75 of a magnitude unit. 

Using equation (17), one gets the following equation for 
the a quantile x~: 

G(O) ] 
x a = xa(O ) = h[--~--ln(1 + a[exp(2T) - ll) , 

where h[.] is the inverse function with respect to G(x). Thus, 
from equations (11) and (16), one gets the best unbiased 
estimators for ~r(x; 0) and x~(0): 

~(x;  0) = O~(x; ~ )  + 

o 
a-O Or(x;/zO 

v~f(#~; /zO 

2T F(x; u~) r 
= Or(x;/~0 /Or(x;/zv) + 

L 

& ( o )  = & ( ~ O  + - -  
v~f(u~; /~3' 

' 1], exp(2T) - 
(18) 

where x~o(izO is the following derivative: 

Xa,o(UO - O0 o=ff  

The variances corresponding to these estimators are 
given by equation (13): 

1 

Vr 

.---. 1 
Var(Xa ) ---- ..~ 

V, 

0 0  -,2 

( 1 9 )  

x•,.;•0.]2. (20) 
_ f ~ ' p , )  

For the sake of brevity, the quantile formula given by 
equation (18) is written out only for the Gutenberg-Richter 
law (see equation 14): 

1 
~a(0) = M o - ~ In[1 - ~c(1 - exp[-fl(u~ - Mo)])] 

F 

1¢(1 - exp[-fl(/z~ - M0)] ) + 
five[1 - ~c(1 - exp[-fl(u~ - Mo)])]' 

where 

K = 
ln(1 + a[exp()IT) - 1]) 

)IT 

The variance estimators, given by equations (19) and 
(20), are equal to 

1I ( 1)]2 ~ ( ~ P T )  = ~ 2T  F(x; tz~) ~7(x; ,u,) + 
V. c 

1 I tc(1 - expi-fl(u~ - Mo)]) ]2 
v a r < )  = 8(1 - -  --- 

Estimation for Nonuniform Magnitude Distribution 

We now generalize our estimation problem for the case 
when the magnitude distribution (magnitude-frequency law) 
depends on time. In other words, instead of assuming equa- 
tion (1), we assume that the ith term of the sample M 1 . . . . .  
M, has a distribution function given by 

IGi(x)/Gi(O), Moi ~ x ~ O, 
Fi(x; O) = [0, x > O, i = 1 . . . . .  n. 

By the above reasoning, it can be shown that for an 
arbitrary function ~b(0), there exists an unbiased estimator 

q~ with the lowest possible variance: 

]_1 
4, = 4¢,Un) + '~ ' (~n)  fLUn;F ,O • (21) 

Its variance is equal to 
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vat(@ E[~b'~,)  { " \ -~]2 

and the best unbiased estimator of this variance is 

~aar(~) = ' (~ . )  I jL" . ; / 2 .  - ( 23 )  

Table 1 
The Characteristics of the Italian Catalog by Tinti and Mulargia 

(1984) 

Subcatalog 1 Subcatalog 2 

Time period 1717-1818 1819-1979 
Number of earthquakes 7 38 
Maximum observed magnitude 6.6 6.6 
Threshold of completeness 5.4 4.8 

Equations (21) and (23) can be used to combine several sub- 
catalogs with different thresholds of completeness. For ex- 
ample, suppose we have a catalog consisting of two subca- 
talogs, covering two different time spans: 

first subcatalog: k; bi; Moa;fl(x; 0); M1 . . . . .  M~ 

second  subcatalog: l; b 2, m02; f2(x; 0); m k +  1 . . . . .  m k +  1. 

Using (21), we can get three 0 estimators, corresponding 
respectively to the first subcatalog, second subeatalog, and 
the full catalog: 

01 = /21 "J¢- [k f1~l; Pl)]-a; 

Pa = max(M1 . . . . .  Mk); 

02 = /22 q- [ l f2Q/2 ; /22) ] - l ;  

/22 = max(Mk+l . . . . .  M~+I); 

03 = /'13 q- [kf lQ/3; /23)  -t- l f2Q23;/23)]-1;  

/23 = max(/q, [/2)" 

0 = 7.10 + 0.36. 

Comparing this standard deviation with 0.26, we see, as 
pointed out above, that the effect of joint use of independent 
subcatalogs is not additive. 

We conclude that in similar situations old subcatalogs 
can sometimes be used in 0 estimation despite their uncer- 
tainties. 

Est imation with Uncertainties in Magni tude 
and b, 2 Parameters  

Now we consider the most general case when uncer- 
(24) tainties are present both in magnitude and in other parame- 

ters. In this case, there exists no sufficient statistics but a 
trivial one; i.e., the whole sample Mi . . . . .  Mn and the ap- 

(25) proach described above is not applicable. To estimate pa- 
rameters in this situation, we use the Bayesian approach (see 
Ibragimov and Hasminskii, 1979; Dong et aL, 1984; La- 
marre et al., 1992; Savage, 1994). We assume that any ob- 

(26) served magnitude ~ / i s  the sum of a true magnitude M and 
some random error e with known probability density: 

Using equation (23), one can estimate the contribution 
of each subcatalog to the combined estimator (26) and to its 
variance. It turns out that the combined estimator has less 
variance as compared with variance of any linear combina- 
tion of the estimators 01 and 02. This follows from the in- 
verse quadratic dependence of estimator variance on the size 
of the catalog. 

As an example, we consider two subcatalogs of 
Southern Italy covering the areas 36030 ' =< ~b = 39050 ' and 
14030 ' =< 2 =< 17°20 ', taken from Kijko and Sellevoll (1989) 
and Tinti and Mulargia (1984). The Gutenberg-Richter law 
(equation 14) is assumed. The catalog characteristics are 
given in Table 1. The slope of the magnitude-frequency law 

was estimated by Kijko and Sellevoll (1989) as/~ = 1.93. 
From equations (21) and (23), we get 

01 = 7.28 _+ 0.68; 02 = 7.03 _+ 0.43; 03 = 6.86_+ 0.26. 

Performing optimal weighting of 01 and 02, with 
weights proportional to the inverse variances, we get the 
following estimate: 

/9/ = M + e. (27) 

The observed magnitude/~ is called apparent magnitude 
(Tinti and Mulargia, 1984). 

We restrict ourselves to the Gutenberg-Richter law, to 
facilitate the exposition. The results can be generalized for 
an arbitrary magnitude-frequency law, since the Bayesian 
approach is essentially numerical and does not need any spe- 
cific analytic properties of distributions. 

We assume that the true distribution Ft(x; t; O) depends 
on time and at the moment t has the form 

I 0 i - exp [ - t i x  + tiM(t)] 
Ft(x; ti; 0) = exp [ - t i 0  + tM(t)] ' 

1, 

x < M(O, 

M(t) <- x <= O, 

x > O .  

The dependence of the lower threshold M(t) on t is as- 
sumed known. It describes the evolution of this threshold in 
the given catalog. Distribution Ft(x; ti; O) depends on t only 
through M(t). 
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The Poissonian rate 2(0 depends on t, too, because M(t) 
varies in time. In order to describe this dependence, we de- 
note by 20 the rate corresponding to the magnitudes above 
some fixed threshold Mo. Then we get 

1 - exp[ - f l0  + flM(t)l 
2(0 = 2o (28) 

1 - exp( - f l0  + flMo) 

Equation (28) describes as well the periods of absence 
of registration that correspond to M(t) = 0, 2(0 = 0. 

We observe a sample of apparent magnitudes Xl . . . . .  
xv in a time interval ( - r, 0), where earthquake occurrences 
at times t I . . . . .  tv are generated by a Poisson process with 
time-varying rate 2(0. Below, we denote this sample by x. 
According to the Bayesian approach, we assume parameters 
(20, r ,  0) to be random values with known a priori density 
p(2o, r ,  0). This assumption represents a well-known weak 
point of the Bayesian approach, but a consoling fact is that 
the final estimators depend weakly on this a priori distri- 
bution, and for large samples, this dependence practically 
vanishes. Thus, we have a set of four random values (2 o, r ,  
0, x), one of them, x, being vectorial. Three values (20, r ,  
0) are nonobservable, and x is observed. We denote byf(2o, 
fl . . . .  ) the probability density of random values indicated by 
its arguments 2 o, fl . . . . .  whereas the conditional density, 
say, of 20 under given x, is denoted by f(2o I x), where the 
argument of condition is separated by the vertical bar. Our 
aim is to find an a posteriori (conditional) densityfl2o, r ,  0 
I x) under given x. Knowing this function, we can estimate 
any function ~20, r ,  0) of nonobservable parameters: 

alp= f f ~ 4)(2o, fl, O) f(2o, fl, O I x)d2odfldO. (29) 

Equation (29) is evaluated numerically. The consistency 
of Bayesian estimators and their optimal properties as sam- 
ple size tends to infinity are well known (Ibragimov and 
Hasminskii, 1979). 

From Bayes formula, we have 

0 

k = l  m ~  

2(tk)fk(xk l fl, 0), 
(30) 

where C is some normalizing constant; ;~(t) is the Poissonian 
rate, corrected for magnitude uncertainty; andf~(x~ I r ,  0) is 
the a posteriori density of the apparent magnitude xg, oc- 
curring at time tk. 

The corrected rate ;L(t) corresponds to apparent magni- 
tudes, whereas 2(0 corresponds to true magnitudes. In case 
of a homogeneous catalog, 2(t) does not depend on t, and 
the term e x p ( -  Xr)2 v in equation (30) is proportional to the 
Poisson probability exp( -2r)2~/v!. For the sake of simplic- 

ity, we assume further on that the random error distribution 
is uniform: 

I2@(t) ' Ixl =< A(t), 
n,(x) = (31) 

0, Ixl > A(t), 

where A(t) is the known function characterizing the evolu- 
tion of the magnitude uncertainty in the given catalog. 

It can be shown (see Molchan and Podgayetskaya, 
1973) that 

2(t) = 2(t)[exp(flA[t]) - exp(-flA[t])l/2flA(t). (32) 

In accordance with equation (27), the density of appar- 
ent magnitude at time tk under condition M >= M(tk) is the 
convolution of true magnitude density and error density (31) 
taken for x ----- M(t~): 

I Ck(fl, 0) h(flAk) exp(-fix), 

~Ck(fl, 0) [exp(flAk - fix) - fk(x I fl, 0) = / 2flAk exp(--flO)], 

10, x < M(tk), 

M(tk) <= x <= 0 -- &, 
O -  A~<=x<=O + Ak, 
x > 0  + Ag, 

(33) 

where Ak = A(tk) and h(x) = [exp(x) - exp( -x)l/2x; Ck(fl, 
0) is a normalizing constant given by 

Gq~, 0) = 
2Akfl 2 exp(fl0) 

expLS(0 + Ak- M[tk])] -- exp[fl(0-- A k-  M[tk])] -- 2flAk" 

Thus, we can expressf(xl2o, r ,  0) using equations (30) 
through (33). According to the Bayes formula, we have 

f(2o, r ,  0, x) = f(x I 20, r ,  0)p(2o, r ,  0), (34) 

f(2o, r ,  0 1 x) = f(2o, r ,  0, x)/f(x), (35) 

wheref(x) is the a priori density of x: 

f(x) = f f f f(2o, O, x) dO. 

Collecting equations (32) through (36), we finally get 

(36) 
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0 

k = l  

0 /ff  2(t~)f~(x~ It, 0)p(20,/~, 0) exp - 2(u)du 

i(tj)f~% I z, w)p(y, z, w) dy & dw. 

(37) 

If  we assume that the a priori density p(2 o, fl, 0) is a 
constant within a parallelepiped 

21 ~ ) ~ o ~ 2 2 ;  fll =<fl Nil2; 01 N 0=< 02, 

then equation (37) is simplified: 

f(2o,/L 0 1 x) = 

0 

e x p ( - /  2(t)dt)kO12(tk)fk(xklfl, O) 

22 ~2 02 0 

/ f  dy/ dzf d w e x p ( - f  2(u)du)j~_ 1 2(tj)f~(xjlz, w). 
2] /~l 0l - r  

(38) 
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Figure 1. Subdivision of California into four 
regions for regional study of seismic hazard parame- 
ters. Shallow M >= 5.0 mainshocks are shown, 1932- 
1992. 

Equations (37) through (38) give the desired a poster- 
iori density of nonobservable parameters (20, fl, 0) given the 
observed vector x. 

Examples  

We have used the catalogs for California and Southern 
Italy to illustrate our method. California was divided into 
four parts, shown in Figure 1, and Southern Italy was 
bounded by latitude 41.5. The characteristics of the subca- 
talogs are given in Table 2. Since uncertainties in 2, b pa- 
rameters give rise to perturbation characteristics dp, d~ that 
are less than 0.06, we can apply unbiased estimators given 
by equation (11). The results of estimation are shown in 
Table 2. We see that in all cases, the standard deviations of 
Bayesian estimators are reasonable, varying from 0.33 up to 
0.46. For unbiased estimators, we get one case (Ca3) with 
very large standard deviation (0.96) while all other standard 
deviations range from 0.4 to 0.54. It is evident that the un- 
biased estimator for Ca3 is rather uncertain, because of the 
large standard deviation, although its value 8.06 does not 
seem suspect. On the whole, we have good agreement be- 
tween the unbiased and Bayesian estimators. So, we may 
conclude that the unbiased estimator can be used i f @  6;~ are 
not too large (less, than, say, 0.05). The Bayesian procedure 
is more stable but, of course, more time-consuming. 

Having analyzed quantile estimators, we can deduce 
that for a = 0.9 and T = 50, they are as a rule less than the 
estimators of Mma x. Only for T ~ 100 do these quantiles 
become comparable with Mma x. The scatter of quantile es- 

timators is rather low; e.g., for T = 30, their standard de- 
viations range from 0.26 to 0.29 (see Table 2). 

The family of probability densities of Mm~x(T) and "tail" 
probabilities P{Mmax(T) > M} for true and apparent maxi- 
mal magnitude Mmax(T ) are shown in Figures 2 and 3. The 
apparent and true magnitude distributions differ little if T is 
not very large, with the true magnitude being strictly higher. 
The average of maximal deviations 

max[F(x) - F ( x ) ]  
x 

is 0.08 _+ 0.04(T = 10) and 0.13 _+ 0.07(T = 50). Also, 
we compared the quantiles of apparent and true magnitude 
distributions. The results are shown in Table 3. We see that 
only for a high significance level a (a = 0.98) and large T 
(T = 50) does this difference became appreciable (0.25). 

We would like to point out that by including random 
error on magnitude, one can get an estimate of the true mag- 
nitude maximum less than the maximum of the sample 
M1 . . . . .  M R, while usually seismologists believe that the 
true maximum magnitude exceeds max(M1 . . . . .  Mn). 

Discussion 

We have suggested two methods for estimation of 0 = 
Mmax: unbiased and Bayesian estimators. The latter are, in 
general, more stable, but the former are much simpler. In 
good situations, their efficiency is almost the same. The Bay- 
esian approach needs an a priori distribution for unknown 
parameters. It is an undesirable but unfortunately inherent 



Cat 94 7.2 0.88 1.33 7.65 __+ 0.45 7.85 __+ 0.40 7.58 + 0.29 

Ca2 85 7.2 0.90 1.25 7.74 -+ 0.54 7.91 --+ 0.43 7.56 + 0.26 

Ca3 52 7.1 0.98 0.68 8.06 - 0.96 7.86 +- 0.46 7.06 _ 0.27 

Ca4 54* 7.7 0.75 0.82 8.09 --- 0.40 8.02 + 0.33 7.98 + 0.28 

Southern Italy 44 7.1 0.76 0.48 7.59 _+ 0.49 7.78 _+ 0.42 7.40 + 0.29 

*Number  of  earthquakes in Ca4 is taken for M =< 5.6. 
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Table 2 
The Characteristics of Subcatalogs of Shallow (h ---< 100 km) Mainshocks of California (1932-1992) and Southern Italy (1900-1994) 

and Results of Estimation 

Figure 2. Statistical characteristics of seismic hazard parameters of the Ca4 region 
in California. Probability densities of Mmax(T). T = 5, 10, 20, 30, 50, and 100 yr (from 
left to right). Magnitude uncertainty A is 0.5. 

Table 3 
Differences between Quantiles of Apparent and True Mm~x(T ) 

Distributions, Averaged on Subcatalogs of Table 2 

(xa[apparent Mm~(T)] - xa[true Mmax(T)]) 
Significance 

Level a T = 10 T = 50 

0.50 0.08 + 0.01 0.10 -4- 0.02 

0.90 0.10 _+ 0.02 0.15 _+ 0.03 

0.98 0.16 _+ 0.03 0.25 _+ 0.05 

property of the Bayesian approach. However, a posteriori 
estimators depend weakly on this a priori distribution. The 
example of 0 estimation in the Ca3 region shows that un- 
certainty of the unbiased estimator can sometimes be rather 
high. This case is explained, in our opinion, by a pronounced 
deviation of the empirical magnitude-frequency law from the 
straight-line Gutenberg-Richter dependence: the empirical 
curve is higher at large magnitudes. 

The bias and standard deviation of estimators were eval- 
uated by a parametric version of the standard bootstrap 

method (Efron and Tibshirani, 1986). We investigated nu- 
merically the influence of magnitude noise on the estimation 
of 0 and related parameters. We can conclude that for mod- 

erate error levels (z~ =< 0.5), the difference between the es- 
timated distributions of apparent and true magnitudes is neg- 
ligible. Say, for T = 50 and for all considered subcatalogs 
of California and Italy, 0.9 quantiles differ by more than 0.15 
of a magnitude unit. For lesser quantile levels, the differ- 
ences were still lower. 

If noise level becomes larger (z~ -- 1.0), then the dif- 
ference between apparent and true estimators is more appre- 
ciable, in particular for large numbers of observed earth- 
quakes. 

The seismicity can be described also by an alternative 
characteristic, namely, by the probability of occurrence of 
an M -> 7 earthquake (Savage, 1994). But in our opinion, 
this characteristic is less adequate and full. On the one hand, 
the probability of an M ~ 7 can be obtained from the 
Mmax(T)-distribution function. On the other hand, it does not 
include any weaker earthquake with M < 7, although an M 
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Figure 3. Statistical characteristics o f  seismic hazard parameters of  the Ca4 region 
in California. "Tall" probabilit ies 1 - @ (M) = Pr (Mmax (7) > M). T = 5, 10, 20, 
30, 50, and 100 yr (from left to right). Magnitude uncertainty A is 0.5. 

= 6.9 earthquake is almost as dangerous as an M = 7 one. 
Besides, we have incorporated in the Mmax(T) estimation all 
associated uncertainties, unlike the approach in the cited ar- 
ticle. 

It is interesting to compare our estimates of Mm~ based 
on a 60-yr catalog with magnitudes of the largest historical 
earthquakes in California: Fort Tejon, 09.01.1857, M = 8.2 
(region Ca4); Owens Valley, 26.03.1872, M = 8.3 (region 
Ca4); and San Francisco, 18.04.1906, M = 8.3 (region Ca3) 
(Iacopi, 1964). All three historical earthquake magnitudes 
are close enough to our estimates, and the corresponding 
differences are less than the estimated standard deviations. 
This fact is not very surprising for the Ca4 region, since 
maximum observed magnitude in our catalog for this region 
is 7.7. But it is noteworthy for the Ca3 region, where max- 
imum observed magnitude in our catalog is 7.1. 

In order to get reasonable estimators of 2, b parameters, 
it is enough to use an instrumental catalog for the period of 
50 yr or more. Historical catalogs where intensities are con- 
verted into magnitudes by some empirical relation are not 
necessary for 2, b estimation. The situation with 0 estimation 
is quite different. We find that additional catalogs (including 
historical ones) are useful for Mm~, estimation despite their 
magnitude uncertainty. 

We have described our two methods for estimating 
maximum magnitudes. It goes without saying that these 
methods are easily extended to the distribution of seismic 
moment, too, connected with magnitude M by functional re- 
lation: 

M = a log(mo) + b, 

where a and b are some constants. 

We would like to stress once more that the suggested 
methods are applicable not only to the Gutenberg-Richter 
magnitude-frequency law but to any arbitrary law. For ex- 
ample, the Gaussian distribution for M or gamma distribu- 
tion for mo (see Kagan, 1991) could be used as well. 
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