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A generalized multicomponent excess function with application to immiscible liquids in the
system CaO-SiO2-TiO2

CHRISTIAN DECAPITANI and MARCUS KIRSCHEN*
Mineralogisch-Petrographisches Institut, CH-4056 Basel, Switzerland

(Received January27, 1998;accepted in revised form August12, 1998)

Abstract—In order to simplify the computation of phase relations in multicomponent systems, a generalized
excess function based on Margules-type polynomials is presented. It includes a versatile extrapolation method
to higher order systems. A less-common formulation of the Gibbs-Duhem equation is used to compute the
activity coefficient from Gxs, omitting additional constraints on the derivatives such as constant (xn 1 xm) or
(xn/xm). The extrapolation of binary excess functions is applied to the ternary model system CaO-SiO2-TiO2

with emphasis on coexisting liquids. Because very few experimental data are available on the miscibility gaps
in this system, we determined the compositions of coexisting liquids at 1600°C and 1 bar. Experimental phase
relations are reproduced in detail using the proposed extrapolation of binary excess functions. An additional
ternary parameter is not required. Non-ideal contributions to the excess Gibbs free energy of the melt in binary
systems are modelled with Margules polynomials. Excess parameters of the melt and thermochemical standard
state values of the liquid oxides and some crystalline compounds were determined using linear programming
methods. Copyright © 1998 Elsevier Science Ltd

1. INTRODUCTION

Calculation of stable phase assemblages in systems containing
non-ideal solutions require the use of computer programs.
Because it is wearisome to adapt the software for each new or
modified solution model, the equations used should be very
general, and include as many of the existing models as possible.
A very useful equation for this purpose is the generalized
polynomial expression proposed by Berman and Brown (1984).
It includes all Margules-type expressions (e.g., Wohl, 1946, as
well as expansions from Jackson, 1989) and of Redlich-Kister
type (Redlich and Kister, 1948). This polynomial expression
can be easily adjusted to include an additional component, but
has no provision for extrapolation to a higher order system.
Empirical models of extrapolation can result in nonpolynomial
expressions. In the first part of this paper we present a general
polynomial excess function that incorporates several existing
models which have already been used for extrapolation into
higher order systems. In a second part we present an elegant
equation that relates the activity coefficients to the excess
Gibbs free energy of a multicomponent system. This relation is
then applied to the general polynomial excess function.

To test the usefulness of the proposed excess function we
modelled the free energy of the melt in the ternary silicate
system CaO-SiO2-TiO2. The shape of the calculated excess free
energy of the melt sensitively reflects the method of extrapo-
lation of the binary interaction parameters. Most models cannot
be extrapolated outside a very narrow range of composition and
temperature. In order to improve existing solution models it is
essential to obtain additional experimental data on silicate
melts at high temperatures. Of special interest are the miscibil-
ity gaps because they allow us to determine mixing properties

of the melts without interference of solids, because two liquids
are in equilibrium. Compositions of coexisting liquids depend
only on the shape of the free energy surface of the melt, and,
therefore, they represent an excellent tool to test the extrapo-
lation behaviour of excess functions. Beside the location of
these miscibility gaps, the orientation of the tie-lines are also of
considerable importance for the evaluation of solution models.
As a model system we chose a molten silicate system in which
the miscibility gap is stable over a broad compositional range:
CaO-SiO2-TiO2. Because experimental data on the tielines of
coexisting liquids were lacking in the literature, we determined
compositions of immiscible liquids and hence, the solvus, in
this system above 1550°C at 1 bar. However, estimation of the
non-ideal contributions to the Gibbs free energy of the melt
within the bounding binary systems requires both solvus and
liquidus data. Beside our experimental data we used published
liquidus data in the system CaO-SiO2-TiO2.

2. LIST OF SYMBOLS

G Gibbs free energy
G# molar Gibbs free energy
Gmix Gibbs free energy of mixing
G# mix molar Gibbs free energy of mixing
Gxs excess Gibbs free energy
G# xs molar excess Gibbs free energy
F# tangent hyperplane
R gas constant
T absolute temperature
ln natural logarithm
p pressure
nc number of components
mi chemical potential of component i
mi

0 chemical potential at reference state
ni number of moles
xi mole fraction
ai activity
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gi activity coefficient
W(i1 i2 . . . ip) Margules parameter as indexed by Berman and

Brown (1984) (W5 WH2TWS1pWV)
pi degree of Margules polynomial term i
Si sum of mole fractions involved in the Margules

polynomial term i
qj number of indices equal to j in the Margules

parameter
fjnmk excess Gibbs free energy parameters as indexed

by Bale et al. (1977)
Mi Margules-type interaction parameters, from

Hillert and Wang (1988)

3. THE GENERALIZED EXCESS FUNCTION

In the geological literature many excess functions have been
proposed and used which are based on polynomial expressions
in terms of the mole fractions (e.g., Redlich and Kister, 1948;
Thompson, 1967; Bale et al., 1977; Jackson, 1989; Mukho-
padhyay et al., 1993). Starting from a nth degree polynomial
and considering the boundary conditions that G# xs must be zero
if x 5 1 for one of the endmembers, Berman and Brown (1984)
derived a generalized Margules function. Any given polyno-
mial excess function can be converted to the following formula
given by these authors:

G# XS5 O
i151

nc21 O
i25i1

nc

. . . O
ip5ip21

nc

W~i1i2 . . . ip!xi1xi2 . . . xip (1)

where the multiple-index (i1 i2 . . . ip) codes the appearance of
mole fraction xi (i 5 1, . . . ,nc) in the Margules polynomial
term and p is the degree of polynomial. Bale et al. (1977)
presented a similar general polynomial for the excess Gibbs
free energy, but the indices of the parameters have different
meanings. Their notation as well as all subsequent modifica-
tions of it, as presented in this paper, are given in Appendix A.
The strength of Eqn. 1 is that for any polynomial of degree p it
contains exactly the maximum number of independent param-
eters. However, because all of the terms are required to be of
the same polynomial degree, we have no information on the
minimum number of required solution parameters. For exam-
ple, Hillert and Wang (1988) proposed an asymmetric model
where G# xs 5 M0 x1x2 1 M3 x1

4x2. By multiplying with 1 5
(x11x2), we convert this equation into the generalized Mar-
gules equation as G# xs 5 (M0 1 M3) x1

4x2 1 (3M0) x1
3x2

2 1
(3M0) x1

2x2
3 1 M0 x1x2

4. The fact that only two solution param-
eters are needed may not be noted if the generalized Margules
equation is used to fit G# xs. Even if the number of parameters
needed does not increase, there may be theoretical consider-
ations that lead us to prefer an expression with mixed polyno-
mial degrees, e.g., G# xs 5 W12 x1x2 1 W112 x1

2x2 instead of
G# xs 5 (W121W112) x1

2x2 1 W12 x1x2
2. Therefore, as a first

modification we generalize Margules Eqn. 1 by inserting an
additional summation over all polynomial degrees. To be im-
plemented into a Gibbs free energy minimization algorithm, it
is desirable that the excess function be formulated in a very
general way, so as to encompass all of the usual polynomial
models. Although the resulting expression contains more than
the maximum number of independent parameters, it does pro-

vide the flexibility needed to handle a variety of different
models.

In order to simplify the following discussion all of the
summations in the generalized Eqn. 1 are replaced by one
single symbol:

G# XS5 O
i

W~i1i2 . . . ip!xi1xi2 . . . xip (2)

where i denotes the summation index over all Margules poly-
nomial terms i of degree p5 pi. The only important restriction
that applies to this formulation is, that W(i1 i2 . . . ip

) must be zero
if (i 1 i2 . . . ip) are all the same number.

5. EXTRAPOLATION TO HIGHER ORDER SYSTEMS

We now examine how the polynomial excess function be-
haves if an additional component is added to the system. Three
frequently used models are considered here for the extrapola-
tion from binary to ternary systems: those proposed by Kohler
(1960), Toop (1965), and Muggianu et al. (1975). From these
three basic models several additional extrapolation procedures
can be derived (e.g., Chou, 1987; Choi, 1988; see Hillert, 1980,
for a review). All of these models consist of two parts: first,
ternary solution points are projected into the binaries to eval-
uate the contribution of the binary excess function. In the case
of the Kohler model, the ternary point (x1, x2, x3) is projected
into the binary (x#11x#2 5 1) by x# i 5 xi/(x11x2), i 5 1, 2.
Second, the value of the binary excess free energy is weighted
depending on the ternary composition (e.g., Kohler:
(x1 1 x2)

2). The models by Muggianu et al. (1975) and Hillert
(1980) retain a polynomial character of the expression for the
binary Margules terms when extrapolated into the ternary sys-
tem (although with additional terms), so that G# xs can be ex-
pressed with Eqn. 2. Because the Kohler- and Toop-type ex-
trapolations include a nonlinear substitution, a polynomial form
is not retained. In order to incorporate the Kohler model into
the generalized excess function, the following modification is
made:

G# XS5 O
i

W~i1i2 . . . ip!

xi1xi2 . . . xip

~Si!
ki

(3)

where Si is the sum of mole fractions involved in polynomial
xi1xi2 . . . xip. Si and the exponent ki are defined for each
Margules polynomial term i. For example, for the Kohler
extrapolation of a binary subregular solution G# xs 5
x1x2(W112x1 1 W122x2) into a ternary system, Eqn. 3 becomes
G# xs 5 W112x1

2x2/(x1 1 x2) 1 W122x1x2
2/(x1 1 x2). Here S5

x1 1 x2 and k 5 1 for both terms. In Kohler’s original
formulation the binary mole fractions x1,2 are replaced by
x1,2/(x1 1 x2) and then the excess terms are weighted with (1
2 x3)

2 5 (x1 1 x2)
2 when extrapolated into the ternary system

in order to diminish nonideal binary contributions with increas-
ing x3. The choice of a squared weighting factor keeps the
binary regular solution expression G# xs 5 W12x1x2 the same,
because the weighting factor (x1 1 x2)

2 cancels with 1/(x1 1
x2)

2 in the substituted excess term (Kohler, 1960). This restric-
tion relates the exponent k in Eqn. 3 to the degree p of the
extrapolated Margules polynomial as k5 p 2 2 when a
squared weighting factor is used (Kohler, 1960). For the sake of

3754 C. DeCapitani and M. Kirschen



generality we assume here that k can be any real number and
that each term in the original polynomial equation could be
split into several terms with different k values. The use of k as
a real number is equivalent to a variable power of the weighting
factor (instead of 2 in the case of Kohler’s extrapolation). It
turns out that variation of k controls the declining of the binary
or higher excess functions in higher order systems. At constant
(x1/x2) the contribution to the multicomponent excess function
decreases proportionally to (x1 1 x2)

p2k. As an example we
illustrate the extrapolation of a binary subregular solution into
a hypothetical ternary system using different values of k. In
Fig. 1 the calculated miscibility gap is shown assuming ideal
interactions for 123 and 223 binaries. The binary excess
function (122) is expressed by a third degree Margules poly-
nomial (p5 3): G# xs 5 W112x1

2x2 1 W122x1x2
2. To extrapolate

this binary polynomial with a cubic (x1 1 x2)
3, quadratic (x1 1

x2)
2 or linear weighting factor (x1 1 x2), k is set equal to 0, 1,

or 2, respectively. In addition, the miscibility gap is also shown
for k 5 1.5. The original Kohler extrapolation (k5 p 2 2)
corresponds to k5 1. This general extrapolation is also feasible
with negative values of k. In this case the extrapolated Mar-
gules term with polynomial degree p is multiplied by 1/S2k 5
S? k ? resulting in a polynomial with degree (p1 ?k ?). In other
words, the use of negative k values increases the degree of the
binary excess polynomial for extrapolation purposes without
increasing the number of binary excess parameters to be fitted.
In the sense of the original Kohler extrapolation, the use of
negative k is equivalent to a weighting factor with degree
(x1 1 x2)

p1 ? k ? which causes an marked decrease of the binary
excess function value in a multicomponent system. This cor-
responds to the observation that the functional value of the
binary excess polynomial in a higher component system de-
clines the more drastically the higher the polynomial degree is.

6. COMPUTATION OF ACTIVITY COEFFICIENTS

In order to compute phase equilibria in systems containing
multicomponent complex solutions, it is necessary to calculate
all activity coefficients. The Gibbs-Duhem equation establishes
the fundamental relation between the Gibbs free energy
G 5 Snimi and the chemical potentialsmi 5 (G/ni)p,T,nj,jÞi of
a solution. Ifmi is expressed asmi 5 mi

0 1 RT ln(ai) (where
mi

0 5 mi
0(p,T) denotes the chemical potential at the standard

reference state), the Gibbs-Duhem equation will apply to each
part of the Gibbs energy function (G5 Snimi

0 1 Gmix,id 1
Gxs); thus, for Gmix 5 Sni RTln(ai), (Gmix/ni)p,T,nj,jÞi 5
RTln(ai). In a more figurative sense, this implies that the
tangent hyperplane to any point n0 5 (n1, n2, . . . , nnc) on the
Gmix hypersurface has a function value of RT ln(aj) for nj 5 1
and niÞj 5 0. This relation is commonly used in graphical
representations for RT ln(aj) of binary systems (e.g., Anderson
and Crerar, 1993). For the representation of RT ln(aj) in mul-
ticomponent systems we use the mathematical expression for
the tangent hyperplane F# to a given function F at point n0:

F# 2 F~n0! 5 O
i51

nc SF~n0!

ni
D

p,T,nj, jÞi

~ni 2 ni
0! (4)

where ni are the coordinates of a point on the tangent hyper-
plane. Applying this to the Gibbs free energy we set F5 Gmix.
It remains to be proven that for nj 5 1 and niÞj 5 0 the function
value on the tangent hyperplane is F# 5 RT ln(aj).

F# 2 Gmix~n0! 5 O
i51

nc SGmix~n0!

ni
D

p,T,nj, jÞi

~ni 2 ni
0! (5)

Because nj 5 1 and niÞj 5 0:

F# 2 Gmix~n0! 5 SGmix~n0!

nj
D

p,T,ni,iÞj

2 O
i51

nc

ni
0SGmix~n0!

ni
D

p,T,nj, jÞi

(6)

Substituting (Gmix /ni)p,T,nj,jÞi 5 RT ln(ai) in Eqn. 6 we
obtain

F# 2 Gmix~n0! 5 RT ln~aj! 2 Sni
0RT ln~ai! (6a)

Because the last summation term is equal to2Gmix at n0, we
have shown that F# 5 RT ln(aj) at nj 5 1, niÞj 5 0. Up to this
point all compositional variables were defined as ni (number of
moles of component i). It is often more useful to transform to
mole fractions, xi. The step from ni to xi may seem confusing,
because the substitution xi 5 ni/(n1 1 n2 1 . . . 1 nnc) into
Gmix(n) yields a different function G# mix(x). It is usually pointed
out that the number of independent variables in G# mix(x) is nc
21 (e.g., Mukhopadhyay et al., 1993). This is correct, in
principal, but because the function G# mix(x) is still defined over
the whole nc-dimensional space, a mathematical analysis may
include all nc variables. We have to keep in mind, however,
that thermodynamic interpretations are restricted to the section
where 0# xi # 1 andSxi 5 1. If we superimpose the n- and
x-coordinates, Gmix(n) and G# mix(x) are identical within the
hyperplane defined bySni 5 1. Because all points with nj 5 1
and niÞj 5 0 fulfill the condition thatSni 5 1, and because

Fig. 1. Different extrapolation methods of non-ideal binary solution
parameters on a hypothetical ternary system are illustrated with the
extension of the calculated ternary miscibility gap. For simplicity, 2–3
and 1–3 interactions are assumed to be ideal. The subregular binary
solution 1–2 is modelled with a 2-parameter Margules polynomial
(p 5 3) and extrapolated using different values for k (dashed lines).
k 5 1 yields the original Kohler extrapolation (solid line).
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their functional value on the tangent hyperplane are RT ln(aj),
Eqn. 6 is equally valid for both Gmix(n) and G# mix(x). Therefore
we can write

RT ln ~aj! 5 G# mix 1 SG# mix

 xj
D

p,T,xk,kÞj

2 O
i51

nc

xiSG# mix

 xi
D

p,T,xk,kÞi

(7)

whereG# mix/xj is the partial derivative (with all other vari-
ables p, T, xkÞj fixed). Equivalent expressions given in the
literature sometimes require differentiation with constant
(xm 1 xn) (i.e., [G# mix/xm]xk, kÞm,n, Berman and Brown,
1984) or constant (xm/xn) (i.e., [G# mix/xi]xm/xn, iÞm,n, Darken
and Gurry, 1953; Ghiorso, 1990). Any restriction on the eval-
uation of the derivatives/xi seems to introduce an artificial
complication to the resulting equations. We believe that this
complication stems from the formal restriction of thermody-
namic functions to the hyperspace section whereSxj 5 1,
which is not a fundamental restriction from a mathematical
point of view. In fact, Eqn. 7 operates with the directional
derivative on G# mix pointing straight to pure component j. This
may be seen using a slightly different approach in Appendix B.
The advantage of the formula presented here is that even for
more complex solution models all required derivatives can be
looked up in mathematical tables or computed using mathe-
matical software libraries like Mathematica™ or Maple™. For
any real solution, deviation from ideality (ai 5 xi) is expressed
by activity coefficientsgi (ai 5 xigi). The Gibbs free energy of
mixing is separated into ideal and nonideal contributions as
G# mix 5 RTSxiln(xi) 1 G# xs. Substituting G# mix in Eqn. 7, the
derivatives of the ideal terms RTSxiln(xi) on the right hand side
and Rtln(xj) cancel, and Eqn. 7 is converted to a relation
between the activity coefficients and the excess free energy
(Redlich and Kister, 1948; DeCapitani, 1994):

RT ln ~g j! 5 G# xs 1 SG# xs

 xj
D

p,T,xk,kÞj

2 O
i51

nc

xiSG# xs

 xi
D

p,T,xk,kÞi

(8)

In Fig. 2, the differences in direction of differentiation vectors
between Eqn. 8 and the representations of Berman and Brown
(1984) (their Eqn. 15) and Ghiorso (1990) (his Eqn. 1) is
shown. Berman and Brown (1984) applyG# mix(x1, x2, . . . ,
xm, . . . ,xn, . . . ,xnc)/xm where all variables but xm and xn 5
1 2 Sxi are fixed. Their formulation represents partial deriva-
tives as tangents of G# xs in the binary plane xm 1 xn 5 1 and the
summation is taken over all such planes. Ghiorso (1990) con-
strained the derivativeG# mix/xi along a compositional join
given by constant mole-fraction ratios of all other solution
components (xm/xn where m,nÞi, see Fig. 2). In contrast to
these approaches, Eqn. 8 operates with the directional deriva-
tive pointing straight to pure component j and the summation is
taken over all of the partial derivatives. For a binary system,
Eqn. 8 reduces to

RTln~g1! 5 G# xs 1 ~1 2 x1! ~G# xs/x1!x2 2 x2 ~G# xs/x2!x1

(8a)

and

RTln~g2! 5 G# xs 1 ~1 2 x2! ~G# xs/x2!x1 2 x1 ~G# xs/x1!x2

(8b)

here x1 and x2 are considered as independent variables in
G# xs(x1,x2). Applying Eqn. 8 to a binary subregular solution
G# xs 5 W112x1

2x2 1 W122x1x2
2 yields for the activity coefficients

gi:

RTln~g1! 5 W112 ~2x1x2 2 2x1
2x2! 1 W122 ~x2

2 2 2x1x2
2!

(8c)

and

RTln~g2! 5 W112 ~x1
2 2 2x1

2x2! 1 W122 ~2x1x2 2 2x1x2
2!

(8d)

which are equivalent to the expressions given by Berman and
Brown (1984) and Thompson (1967) after rearrangement. In
order to calculate the activity coefficients from the generalized
excess function, we substitute Eqn. 3 in Eqn. 8 and collect all
Margules terms:

RT ln ~g j! 5 O
i

W~i1i2 . . . ip!

xi1xi2 . . . xip

~Si!
ki

F ~1 2 pi 1 ki! 1
qj

xj
2

ki

Si
SSi

 xj
D

xk,kÞj

G (9)

where Si is the sum of mole fractions involved in polynomial
xi1xi2 . . . xip and qj is the number of indices i1, i2, . . . , ip equal
to j (note, that

O
j51

nc

qj 5 pi andO
j51

nc

xjSSi

 xj
D

xk,kÞj

5 Si).

For example, we calculate the activity coefficients in a ternary
system G# xs 5 W112x1x1x2/(x11x2) 1 W122x1x2x2/(x11x2)

Fig. 2. The directions of differentiation vectors of Berman and
Brown (1984) and Ghiorso (1990) formulas and Eqn. 8 are shown when
projected on a ternary system (x1 1 x2 1 x3 5 1). Derivatives along
fixed (xm 1 xn) and (xm/xn) are indicated with dashed and dash-dotted
lines, respectively, whereas directions of partial derivatives are drawn
with solid lines. All three methods yield the same value for RT ln(ai)
after summation.
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where a binary subregular solution is extrapolated according to
Kohler (p5 3, k 5 1, S5 x1 1 x2) and 123 and 223 binaries
are assumed to be ideal solutions (G#

13
xs 5 G# 23

xs 5 0):

RT ln~g1! 5 W112x1x1x2/~ x1 1 x2! z ~21 1 2/x1 2 1/

~ x1 1 x2!! 1 W122x1x2x2/~ x1 1 x2!

z ~21 1 1/x1 2 1/~ x1 1 x2!! (10)

RT ln~g2! 5 W112x1x1x2/~ x1 1 x2!

z ~21 1 1/x2 2 1/~ x1 1 x2!! 1 W122x1x2x2/~ x1 1 x2!

z ~21 1 2/x2 2 1/~ x1 1 x2!! (11)

and

RT ln~g3! 5 W112x1x1x2/~ x1 1 x2! z ~21!

1 W122x1x2x2/~ x1 1 x2! z ~21! (12)

7. APPLICATION TO THE LIQUID MISCIBILITY GAP IN
THE CAO-TIO 2-SIO2 SYSTEM

To test the capability of the modified Kohler extrapolation,
we chose to model the miscibility gap in the CaO-TiO2-SiO2

system. Published experimental phase equilibrium data were
reviewed in order to determine binary solution parameters. No
data on immiscible liquids in the ternary system CaO-TiO2-
SiO2 were available. Therefore, coexisting liquids were syn-
thesized at ambient air pressure using a Rh/Pt resistance fur-

nace and quenched from 1600°C. Reagent grade chemicals
(Merck: CaCO3, TiO2, and quartz powder) were used as start-
ing material. Temperature was controlled with two unshielded
type B thermocouples; one of them was in contact with the
sample. Samples were held at run temperature for 123 h before
air quenched ('100°C/s). Measured glass compositions of the
samples were independent from run time greater than 1 h
indicating that the liquids achieved compositions close to equi-
librium at 1600°C after 1 h. Compositions of coexisting liquids
were determined by microprobe analysis. Details of the exper-
iments and a critical assessment of published liquidus data are
reported elsewhere (Kirschen, 1998). Selected compositions of
coexisting CaO-TiO2-SiO2 liquids electron microprobe deter-
mined are summarised in Table 1. [f42]§ect

Solution parameters were derived from the liquidus data
using linear programming techniques. The advantages and
properties of this optimization technique have been widely
discussed (e.g., Berman and Brown, 1984; Engi, 1993; Berman
and Aranovich, 1996). We favor this technique over least
squares optimization, because most of the binary and ternary
data are quench experiments which represent half brackets on
the actual equilibrium state. For example, the melting point of
most compounds is defined within a finite temperature interval
bounded by at least two experiments: (1) solid stable and (2)
liquid stable, which define inequalities of the formDrG . , 0.
Thus, in order to evaluate a set of quench experiments, linear
programming is clearly indicated. For the crystalline phases
heat capacities and standard state properties from Berman and

Table 1. Compositions of coexisting liquids in the system CaO-SiO2-TiO2

Run id. t [h] T [C] Wt%CaO (1s) Wt%SiO2 (1s) Wt%TiO2 (1 s) Total n

STC 2-1a 0.5 15996 4 0.82 (0.25) 92.51 (1.56) 6.59 (1.15) 99.92 15
18.80 (2.61) 44.66 (6.73) 36.36 (4.06) 99.81 45

STC 3-3 1.0 15966 8 0.50 (0.04) 90.15 (0.57) 9.10 (0.25) 99.75 50
17.36 (2.07 38.01 (2.51) 45.40 (3.82) 100.77 32

STC 3-4 1.5 16036 5 0.49 (0.07) 90.99 (0.71) 8.67 (0.48) 100.16 39
16.67 (0.83) 36.89 (1.65) 46.91 (2.09) 100.47 35

STC 3-6 1.0 16076 3 0.45 (0.11) 91.42 (1.46) 8.28 (1.02) 100.14 53
16.69 (1.95) 38.11 (2.94) 45.22 (3.30) 100.02 49

STC 4-11 1.5 16106 6 0.48 (0.08) 90.09 (0.98) 9.09 (0.78) 99.65 47
14.69 (1.05) 34.55 (2.10) 51.24 (2.44) 100.48 50

STC 5-11b 2.0 16006 5 0.27 (0.05) 90.32 (1.18) 10.22 (0.76) 100.80 50
13.71 (0.66) 28.96 (1.46) 58.22 (1.42) 100.89 53

STC 10-4 1.5 16046 9 0.44 (0.07) 90.87 (1.06) 8.60 (0.77) 99.91 52
17.24 (1.18) 38.21 (3.05) 45.3 (3.49) 100.75 70

STC 10-5 1.0 15836 7 0.46 (0.05) 90.54 (0.71) 8.63 (0.39) 99.63 48
16.94 (0.78) 38.44 (3.01) 44.72 (2.73) 100.09 72

STC 12-2 1.0 16006 7 0.43 (0.07) 88.71 (0.87) 9.25 (0.84) 98.39 21
15.88 (1.01) 34.26 (2.70) 50.06 (3.40) 100.19 36

STC 12-3 1.0 15966 5 0.38 (0.05) 90.86 (0.69) 9.68 (0.47) 100.92 43
15.67 (0.67) 34.19 (2.01) 51.51 (2.16) 101.37 22

STC 13-1 0.5 16046 10 0.57 (0.10) 92.99 (1.09) 7.17 (0.97) 100.73 34
17.93 (0.95) 43.63 (2.85) 38.66 (1.88) 100.22 47

STC 13-3 0.25 16046 4 0.55 (0.15) 91.83 (1.85) 7.08 (1.31) 99.46 46
18.99 (1.34) 41.41 (3.75) 40.36 (2.83) 100.75 45

STC 13-4 1.0 16026 7 0.61 (0.05) 91.12 (0.87) 7.96 (0.24) 99.69 51
18.06 (2.95) 43.28 (7.70) 38.74 (5.18) 100.07 51

STC 14-1 1.0 16026 4 0.33 (0.06) 88.95 (0.76) 9.87 (0.68) 99.14 44
14.19 (1.52) 29.75 (2.30 56.86 (3.29) 100.8 50

STC 14-2 1.0 16026 5 0.30 (0.05) 89.49 (1.35) 9.91 (0.63) 99.70 58
14.53 (1.35) 30.60 (3.28) 55.53 (3.57) 100.67 58

Remarks:a: 2 liquids 1 cristobalite.b: 2 liquids 1 rutile.
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Brown (1985), Berman (1988), Eriksson and Pelton (1993a)
and Berman and Aranovich (1996) have been applied. Standard
state enthalpies were slightly modified from reported values
only for wollastonite (21631500.0J/mol3 21638718.0J/
mol), ps-wollastonite (21627427.1J/mol3 21634636.6J/
mol), rankinite (23940436.0J/mol3 23949146.6J/mol),
Ca3SiO5 (22933326.3J/mol3 22947891.1J/mol) and titanite
(22596652.2J/mol322615072.3J/mol) in order to reproduce
the liquidus surface. Therefore, modified H0 values used in this
study are no longer internally consistent with the database they
were taken from. The need to correct the calculated free energy
of some solids at liquidus temperature with respect to our
solution model of the melt implies that extrapolation of Ber-
man’s data for some minerals to very high temperature is not
compatible with our fitted melt parameters to reported liquidus
data. However, we doubt that this discrepancy is solely due to
shortcomings of the fitted subregular solution model, because
(1) the excess parameters are consistent with high temperature
solvus data from Tewhey and Hess (1979), Hageman et al.
(1986), and this study and (2) the temperature range of liquidus
constraints used in this study considerably exceeds the calibra-
tion range of the Berman (1988) mineral database. We suggest
that precise high temperature calorimetric measurements for
the solids are needed to further constrain the free energy at
liquidus temperatures. For two CaO-TiO2 compounds:
Ca3Ti2O7 and Ca5Ti4O13 standard state enthalpy and entropy
values had to be estimated, because no data have been pub-
lished previously. Heat capacities for the liquid oxides were
taken from Chase et al. (1985; referenced by Barin, 1993) and
are assumed to be constant. Refined standard state thermo-
chemical values for the crystalline and liquid phases are given
in Table 2. Standard state enthalpy and entropy values used for
the liquid oxides are close to those given in Eriksson and Pelton
(1993a, b). They fitted solution parameters for the quasi-chem-
ical model by least squares methods to experimental liquidus

data. In the present study, the excess free energy of the melt in
all binary systems were modelled using Margules polynomials.
Cp coefficients used are given in Table 3, fitted Margules
parameters are listed in Table 4. The calculated phase diagrams
for the SiO2-TiO2, CaO-TiO2, and CaO-SiO2 systems are
shown in Figs. 3, 4, and 5, respectively. The calculated phase
diagram for the CaO-SiO2 system is almost identical to pub-
lished diagrams from Berman and Brown (1984) and Eriksson
and Pelton (1993a) in the range 0# x(CaO)# 0.75. However,
discrepancies remain for phase relations involving lime. We
used a subregular solution model that adequately describes the
miscibility gap and the invariant points at compositions from
pure SiO2 to the larnite-Ca3SiO5 eutectic. It is possible to
reproduce the reported CaO-SiO2 liquidus line at high CaO by
introducing a third parameter (Berman and Brown, 1984).
However, we chose not to do so for four reasons: (1) we
focused here on immiscible liquids and liquidus phase relations
at low CaO concentrations, (2) phase relations at very high CaO
concentrations and Cp(T) of lime at very high temperatures are
so uncertain as not to justify a third parameter for the liquid, (3)
measured SiO2 activities in this binary (Rein and Chipman,
1965) are well reproduced by the subregular solution we used,
and (4) by analogy to the subsequent extrapolation for MgO-
bearing liquids: the MgO-SiO2 binary liquidus line is success-
fully modelled by a subregular solution over the whole com-
position range (Kirschen, 1998).

In order to reproduce the measured extension of the ternary
miscibility gap (see Fig. 6), we first determined parameters of
the pure liquids and of the binary excess functions using unary
and binary constraints and then successively refined binary
Margules parameters with additional ternary data and using
varying k values. It turned out that ternary constraints which are
close to a binary system determine to a high degree the extrap-
olation of the corresponding binary excess function and, there-
fore, the k value. In this range of compositions, other binary

Table 2. Standard state thermodynamic properties of solid and liquid oxides

Mineral Abbrev. Formula HO [J/mol] SO [J/Kmol] Reference

a-Cristobalite a-Crist SiO2 2907753.35 43.3943 Berman (1988)
b-Cristobalite b-Crist SiO2 2906377.23 46.0288 Berman (1988)
Ca3Ti2O7 C3T2 Ca3Ti2O7 24025841.41 219.2922 This study
Ca5Ti4O13 C5T4 Ca5Ti4O13 27366211.80 418.0200 This study
a-Larnite a-Larn Ca2SiO4 22289259.00 143.2960 Eriksson and Pelton (1993a)
a9-Larnite a9-Larn Ca2SiO4 22309060.00 127.6220 Eriksson and Pelton (1993a)
b-Larnite b-Larn Ca2SiO4 22310140.00 125.9500 Eriksson and Pelton (1993a)
Lime Lime CaO 2635090.00 37.7500 Berman (1988)
Perovskite Ct-Per CaTiO3 21675265.01 93.7220 This study
a-Quartz a-Qz SiO2 2910699.95 41.4600 Berman (1988)
b-Quartz b-Qz SiO2 2908626.77 44.2068 Berman (1988)
Rankinite Rank Si2Ca3O7 23949146.63 210.8736 This study2

Rutile Rut TiO2 2944750.00 50.8800 Berman and Aranovich (1996)
Sphene Tit CaTiSiO5 22615072.35 129.2900 This study1

Tricalciumsilicate C3S1 Ca3SiO5 22947891.11 167.7963 This study2

Low-Tridymite l-Trid SiO2 2907749.56 43.7702 Berman (1988)
High-Tridymite h-Trid SiO2 2907045.12 45.5237 Berman (1988)
Wollastonite Woll CaSiO3 21638718.00 81.8100 This study1

ps-Wollastonite ps-Woll CaSiO3 21634636.63 85.2788 This study1

SiO2 liq SiO2 2923136.00 11.6534 This study
TiO2 liq TiO2 2938809.39 18.9283 This study
CaO liq CaO 2542440.56 50.3207 This study

1S0 from Berman (1988),2S0 from Eriksson and Pelton (1993a)
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excess parameters are of minor importance at high dilution.
Details are given in Kirschen et al. (1998) and Kirschen (1998).
A listing of all half-brackets used in this study is available from
the authors.

6. RESULTS AND DISCUSSION

In fitting the data of this complex system, some difficulties
were encountered which illustrate the need for very flexible
model such as we have presented here. Extrapolation of the
SiO2-TiO2 binary excess function into the CaO-SiO2-TiO2

ternary with positive k-parameter could not initially reproduce
the measured phase relations: even with k5 0, the interference
of CaO-TiO2 excess parameters lead to a stable assemblage of
three liquids caused by a positive ternary excess energy at high
titanium contents. This is seriously inconsistent with the mea-
sured extension of the two liquids and two liquids1 rutile
fields. On the other hand, diminishing the CaO-TiO2 excess

parameters in the ternary results in calculated immiscibility at
compositions low in Si, again seriously discrepant with deter-
mined compositions. Interestingly, modelling the experimen-
tally determined miscibility gap in the ternary SiO2-TiO2-
Al2O3 system also requires a negative k-parameter for the
SiO2-TiO2 binary, regardless of the extrapolation of the other
two binary alumina systems (Kirschen et al., 1998). A consis-
tent model of all of our experiments on the ternary miscibility
gap could be achieved with k5 24 for SiO2-TiO2 binary, k5
1 for the CaO-TiO2 (which corresponds to the Kohler extrap-
olation), and k5 0 for the CaO-SiO2 binary. The final k-values
are listed in Table 4 together with refined binary Margules
parameters. The calculated phase diagram is shown in Fig. 6.

Applications of the Wohl (1946) and Berman and Brown
(1984) models were not consistent with our experiments.
k 5 24 for the SiO2-TiO2 binary states that the extrapolation
behaviour of the subregular solution is identical to that of an
excess polynomial with degree 7. However, using Eqn. 3 the
assessment of binary liquidus data is possible with a subregular
solution model for the melt, i.e., only two temperature depen-
dent parameters determine the binary excess function. Addi-
tional binary parameters are not required. The modelled excess
free energy of the ternary melt displays a rather complex shape.
It is successfully approximated using a minimum number of
excess parameters by the weighted superposition of binary
SiO2-TiO2 excess terms with CaO-SiO2 and CaO-TiO2 inter-
action terms. No ternary parameter was needed. The exclusion
of an additional ternary Margules term leads to a highly stable
extrapolation to compositions outside the experimentally con-
strained range. To illustrate this extrapolation capacity, we
calculated additional isotherms of the ternary liquidus surface.
The results agree fairly well with the experimental phase dia-
gram from DeVries et al. (1955). The reported compositions
and temperatures of the eutectics from DeVries et al. (1955)

Table 3. Cp function used in this study: Cp5 k1 1 k3/T2 1 k4/=T 1 k8/T3 in J/molK

Mineral k1 k4 k3 k8 Reference

a-Cristobalite 83.5136 2374.693 22455360 280072192 Berman and Brown (1985)
b-Cristobalite 83.5136 2374.693 22455360 280072192 Berman and Brown (1985)
C3T2 332.0488 2401.712 210177120 1114817696 Estimated as 3CaO1 2Rut
C5T4 605.3064 2669.520 219207094 2126656608 Estimated as 5CaO1 4Rut
a-Larnite 209.6800 2701.900 7989400 1297480000 Berman and Brown (1985)
a9-Larnite 209.6800 2701.900 7989400 1297480000 Berman and Brown (1985)1

b-Larnite 209.6800 2701.900 7989400 1297480000 Berman and Brown (1985)
Lime 58.7912 2133.904 21147146 102978784 Berman and Brown (1985)
Perovskite 150.4900 2621.300 0 430100000 Berman and Brown (1985)
a-Quartz 80.01199 2240.276 23546684 491568384 Berman and Brown (1985)2

b-Quartz 80.01199 2240.276 23546684 491568384 Berman and Brown (1985)
Rankinite 339.9100 2985.100 210661000 1373590000 Berman and Brown (1985)
Rutile 77.8376 0 23367841 402940672 Berman and Brown (1985)
Sphene 234.6203 21040.294 25118324 591460608 Berman and Brown (1985)
Tricalciumsilicate 321.1900 22450.200 2994800 97530000 Berman and Brown (1985)
Low-Tridymite 75.3727 0 25958095 958246144 Berman (1988)
High-Tridymite 75.3737 0 25958095 958246144 Berman (1988)
Wollastonite 149.0727 2690.295 23659348 484349440 Berman and Brown (1985)
ps-Wollastonite 141.1561 2417.232 25857595 940734976 Berman (1988)
SiO2 liq 85.7720 0 0 0 Chase et al. (1985)
TiO2 liq 100.4160 0 0 0 Chase et al. (1985)
CaO liq 62.7600 0 0 0 Chase et al. (1985)

1: l transition modelled with additional Cp5 (20.228151 0.00023196T)2 between [970K, 1710K], Berman and Brown (1986).
2: l transition modelled with additional Cp5 (20.091869591 0.00024607T)2 between [373K, 848K], Berman and Brown (1986).

Table 4. Margules parameters used in this study

WH [J/mol] WS [J/molK] k

CaO-SiO2
112 2719241.09800 2162.78172 0
122 119289.99150 99.23210 0
CaO-TiO2
112 2404108.02430 245.61255 1
122 2170426.41960 24.81453 1
SiO2-TiO2
112 18844.22318 29.08197 24
122 67403.69615 8.44998 24
CaO-SiO2-TiO2
123 0 0

Note: Gxs 5 (x1x2[W112x1 1 W122x2] (x1 1 x2)
2k where W5 WH

2 TWs, T in K, W in J/mol
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(their Table 3) are shown in Fig. 6. Appreciable differences
occur for eutectic J near the CaO-SiO2 binary, which is related
to the small size of the calculated wollastonite1 liquid stability
field in the ternary. In this case, neglecting the possible wol-
lastonite solid solution in the calculation of the wollastonite
1 liquid stability field may have induced the differences in
extent of the calculated and experimental field. Berman and
Brown (1984) encountered similar problems regarding wollas-
tonite as pure CaSiO3. Despite these minor shortcomings, the
present model represents the miscibility gap closely and ex-
trapolates well to all but the most Ca-rich compositions. In

contrast to the Wohl and other models the excess function used
in this study is flexible enough and thus does not require
additional correction terms that may arise from inappropriate
extrapolation of binary excess terms. The redundance of a
ternary parameter indicates that the free energy of the melt in
the system CaO-SiO2-TiO2 can be approximated to a high
degree solely from binary systems. This implies that additional
ternary interactions are of minor importance in the CaO-SiO2-
TiO2 melt. Calculations in the systems CaO-MgO-SiO2-TiO2

and CaO-SiO2-TiO2-Al2O3 (Kirschen, 1998) indicate that this
approach is an appropriate tool (1) to model highly non-ideal

Fig. 3. Calculated phase diagram for the SiO2-TiO2 system. Symbols refer to critical quench experiments from DeVries
et al. (1954b) and Massazza and Sirchia (1958) that were used to constrain non-ideal solution parameters with liquidus and
solvus data: filled symbols indicate quenched crystalline1 liquid phases, open symbols denote one liquid, slashed symbols
denotes bulk composition where two liquids coexist. (Additional solvus data are from Kirschen et al., 1998).

Fig. 4. Calculated phase diagram for the CaO-TiO2 system. Critical quench experiments are considered from DeVries et
al. (1954a) and hot stage microscope liquidus determinations from Jongejan and Wilkins (1970). Open symbols indicate one
liquid and filled symbols liquid1 crystalline phases stable. Tulgar (1976) identified an additional Ca4Ti5O13 phase.
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multicomponent silicate melts and (2) to discriminate purely
multicomponent contributions to the excess free energy of the
melt from binary terms. We believe that the proposed excess
function may delineate a step towards a comprehensive ther-
modynamic solution model of multicomponent silicate melts
where the excess function used to fit the free energy of mixing
is not purely empirical but related to the melt structure.

8. CONCLUSION

In order to include numerous formulations of the excess free
energy in multicomponent systems in one generalized formula,
an excess function is proposed (Eqn. 3) for extrapolation based
on Kohler (1960) equation. This expression leads to a flexible
extrapolation method of excess functions from binary to mul-
ticomponent systems, that permits the reduction or omission of
additional ternary excess parameters. This is highly recom-
mended because (1) the use of a ternary parameter may result
in unwanted miscibility gaps, and (2) extrapolation can be done
into systems where experimental data are too sparse to con-
strain additional parameters. The application of a Gibbs free
energy minimization algorithm requires the computation of RT
ln(gi) for all endmembers of the multicomponent solution. In
order to facilitate this calculation, the Gibbs-Duhem equation
has been expressed with partial derivatives. This formulation
(Eqn. 8) overcomes possible confusion arising from derivations
with additional constraints (e.g., derivation along a certain
direction) such as constant (xm 1 xn) or (xa/xb).

In a test application of the generalized excess function to a
model silicate system, we focused on immiscible liquids in the
ternary CaO-SiO2-TiO2 system, because the extension of the
miscibility gap is highly sensible to the model of the excess free
energy surface and solid phases are not involved. Compositions
of coexisting liquids quenched from 1600°C were analyzed in
the CaO-SiO2-TiO2 system. Our experimental data on coexist-
ing liquids can be modelled in detail using a weighted extrap-
olation of binary excess parameters (Eqn. 3). In addition, the
extrapolation to higher CaO-contents reproduces phase rela-
tions in reasonable agreement with experimental data from the
literature. Some discrepancies at the wollastonite liquidus may
reflect the shortcoming of the stoichiometric approach. The
proposed method offers an excellent first approximation of the
excess Gibbs free energy of silicate melts in multicomponent

Fig. 5. Calculated phase diagram for the CaO-SiO2 system. Liquid-liquid compositions are from Hageman et al. (1986)
and Tewhey and Hess (1979), additional quench experiments are from Greig (1927). Open symbols indicate one liquid,
filled symbols two phase equilibria. Discrepancies between calculated phase diagrams from Berman and Brown (1984) and
Eriksson and Pelton (1993a) remain for the lime liquidus line at temperatures above 2000°C resulting in an additional
eutectic point instead of incongruent melting of Ca3SiO5.

Fig. 6. Calculated phase diagram for the two liquid region in the
CaO-SiO2-TiO2 system. Isotherms are shown from T5 1300°C, to
2650°C, with 50°C steps. Experimentally determined compositions of
coexisting liquids at 1600°C are indicated with filled circles, triangles
determine the two liquid1 rutile and two liquid1 crist stability fields,
respectively (see Kirschen (1998) for experimental details). Squares
point reported ternary eutectics from DeVries et al. (1955) (their Table
3: L: 1365°C, K: 1365°C, J: 1318°C, H: 1348°C, F: 1398°C, B:
1650°C). At temperatures above 1800°C the ternary solvus is domi-
nated by binary SiO2-TiO2 unmixing (shaded areas).

3761A generalized multicomponent excess function



systems. To further test the applicability of the proposed gen-
eralized excess function on higher order systems, expansions of
the calculation and the experimental determination of coexist-
ing liquids to the MgO-CaO-SiO2-TiO2-Al2O3 model system
are on the way.
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APPENDIX A

Bale et al. (1977) presented a general polynomial for the excess
Gibbs free energy to model emf thermochemical data in the Zn-Cd-
Bi-Sn system. The index of the coefficient ø denotes the exponents of
the mole fractions in the polynomial term i:

G# XS5 O
i

f~i1i2 . . . inc!x1
i 1x2

i 2 . . . xnc
inc (A1)

In this case, the degree of polynomial pi is implicitly defined by the
indices:

O
j51

nc

i j 5 pi.

Applying the Kohler extrapolation to this polynomial yields the fol-
lowing expression:

G# XS5 O
i

f~i1i2 . . . inc!

x1
i 1x2

i 2 . . . xnc
inc

~Si!
ki

(A2)

where S is the sum of mole fractions xj involved in the extrapolated
polynomial (ijÞ0, j 5 1, . . .,nc) and k 5 p 2 2 for the Kohler
extrapolation. As for Eqn. 3 in this paper it is assumed that k is not
restricted to k5 p 2 2 but can be any real number. With Eqn. 8 we
obtain for the activity coefficient:

RT ln ~g j! 5 O
i

f~i1i2 . . . inc!

x1
i 1x2

i 2 . . . xnc
inc

~Si!
ki

FS1 2 pi 1 ki 1
i j

xj
2

ki

Si
S Si

 xj
D

xk,kÞj

G (A3)

note, that

O
j51

nc

i j 5 pi andO
j51

nc

xjS Si

 xj
D

xk,kÞj

5 Si.

It is interesting to note, that Bale et al. (1977) used integers for the
indices (i1 i2 . . . inc). If this restriction is omitted, Eqn. A1 includes the
binary Gxs equation from Oonk et al. (1976):

Gxs 5 A~n 1 1!n11 n2nx~1 2 x!n (A4)

where x denotes the mole fraction of the metal oxide normalised to one
oxygen atom, A and n are constants. This equation was applied to fit the
miscibility gap in the MeO-SiO2 systems (Me5 Ca, Mg, Sr, La2/3, and
Y2/3, (Hageman et al., 1986 and Hageman and Oonk, 1986). For

example, for the CaO-SiO2 system n 5 5.7 and A/(Jmol21) 5
1094024.0 T/K were used.

APPENDIX B

In a slightly different way, we derive Eqn. 7 as a correct generali-
zation of the tangent intercept method in binary systems. As usually
shown for the binary case (e.g., Darken and Gurry, 1953, p. 241,
Chatterjee, 1991, p. 14, or Anderson and Crerar, 1993), the activity of
component 1 is obtained with RT ln(a1) 5 G# mix 1 (12x1) G# mix/x1,
whereG# mix/x1 is the directional derivative of G# mix along x1 1 x2 5
1. (1 2 x1)G# mix/x1 gives the deviation of G# mix at pure composition
x1. For a multicomponent solution we substitute G# mix(x1,x2) by
G# mix(x1,x2, . . . ,xnc) considering G# mix as a function of nc linearly
independent mole fractions. The binary distance (12 x1) is replaced by
the distance between x5 (x1,x2, . . . ,xnc) and pure component j uj 5
(0, . . .,0,uj 5 1,0, . . . ,0)which is the length of the difference vector
(uj 2 x): ?uj2x ?. The deviation from G# mix along (uj 2 x) is computed
with the directional derivativeG# mix/(uj 2 x) along (uj 2 x) times that
distance?uj 2 x ?. The directional derivative along any normalized
vector n (i.e.,?n? 5 1) is related to the gradient vector¹ as G# mix/
n 5 n¹G# mix. Applying elementary vector analysis, we obtain the
activity of component j:

RT ln~aj! 5 G# mix 1 % u j 2 x % z
~u j 2 x!

uu j 2 x z ¹G# mix

5 G# mix 1 ~u j 2 x! z ¹G# mix

5 G# mix 1 1
0 2 x1

. . .
1 2 xj

. . .
0 2 xnc

2
T

z 1
/ x1

. . .
/ xj

. . .
/ xnc

2G# mix (B1)

5 G# mix 1 G# mix/ xj 2 O
i51

nc

xiG# mix/ xi

which is again Eqn. 7. Using explicitly the gradient vector on G# mix it is
emphasized that x1,x2, . . . ,xnc are considered as independent variables
in G# mix and all other variables xkÞi are kept constant in the differential
quotientG# mix/xi. This derivation applies to every other molar prop-
erty F(x1,x2, . . . ,xnc) as no special restriction to G# mix has been made in
this case. Equation 8 is also given by Redlich and Kister (1948, their
Eqn. 14) as a solution of the Gibbs-Duhem equation G# xs 5 RT Sxi

ln(gi) without detailed derivation. However, they state that the differ-
entiation is to be performed at constant pressure and temperature. Also,
all mole fractions are to be kept constant except the one indicated in the
differential quotient.
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