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ABSTRACT:  The Scherrer equation links the measured width of an X-ray diffraction peak 
(Scherrer width, SW) to the number of stacked cells (N) in the direction normal to the diffracting 
planes. The formula is only valid for one d-value occurring in the coherently diffracting domain. This 
equation can be modified for weakly swelling mixed-layer minerals. This assumes that the peak 
broadening caused by the mixed-layering is proportional to the amount of swelling component (S) 
and that the effects of size and mixed-layering are additive. 

If two SW can be measured on XRD patterns from samples treated in two different ways (such as 
air dried or glycolated), N and S can be determined. This equation is applicable to illite-smectite 
mixed-layer minerals with high illitic content. The results are most accurate for N>30. The use of 
Scherrer's equation is discussed. 

Scherrer (1918) was the first to develop a method to 
determine the number of stacked cells by measuring 
the width of a diffraction peak, assumed to be 
Gaussian in shape. More precisely, the 'Scherrer 
width '  (SW) measures the sharpness of the 
interference function which depends on the 
number of stacked cells in the coherent diffracting 
domains (CSD) and the d-spacing in the direction 
perpendicular to the reflecting planes (Klug & 
Alexander, 1974). Usually the Scherrer equation 
cannot provide a complete description of a mixed- 
layer mineral containing expandable interlayers, 
such as an illite-smectite (I-S), because more than 
one d-spacing is present and the associated structure 
factors for the interlayers are different. 

Since the SW of mixed-layer minerals is not 
determined solely by the CSD size, the best way to 
verify estimates of the CSD size and of the amount 
of mixed layering is to perform XRD pattern 
simulation. To obtain a first estimate of the CSD 
size and the amount of mixed layering only a few 
simple methods are available. For example, 

methods such as the measurement of peak positions 
give only information on the amount of mixed 
layering. Furthermore, they are not applicable to 
mixed-layer minerals containing small numbers of 
swelling interlayers. More sophisticated methods, 
such as the Bertaut-Warren-Averbach method can 
be applied (Drits et al. 1998), but they give the 
CSD size only, and for more information other 
methods are needed (Eberl et al. 1998). 

In this paper, we consider the case of a mixed- 
layer mineral containing a small number of swelling 
interlayers, for which XRD patterns of two different 
treated specimens (e.g. air-dried (AD) and ethylene- 
glycol treated (EG)) are available. The peak 
positions of the two different XRD patterns are 
not significantly shifted, but their SW can change. 
Assuming that the peak broadening is linearly 
dependent on the amount of swelling layers, this 
amount can be determined, as well as the CSD size, 
by measurements of the width at half maximum of 
the corresponding peak on the XRD patterns of the 
two treatments. 
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The goal of this paper is to establish a relationship 
between the Scherrer width (SW) and the CSD size 
and to formulate an empirical version of the Scherrer 
equation, which can be applied to a two-component 
mixed-layer mineral. Thus, for example, one XRD 
peak's SW measured on the AD pattern (SWAD) 
and on the EG (SWEG) patterns, leads to 
estimations of both the CSD size (N) and the 
amount of swelling intertayers (%S), here usually 
assumed to be a smectitic interlayer. This procedure 
then enables a simulation of the diffraction pattern to 
be performed, using a programme such as 
Newmod �9 to check the validity of the assumptions. 
If the number of layers is too high for the simulation 
programme (it is limited to 100 in Newmod �9 the 
empirical equation presented here gives an estimate 
of N and %S. 

M E A S U R E M E N T  OF T H E  SW 

In order to analyse the diffraction peak rigorously, 
the intensities must first be divided by the Lorentz- 
polarization factor and the square of the modulus of 
the structure factor and then the background 
removed (Drits et al., 1998). The data used in this 
paper were not, however, treated in this manner 
because such procedures can give very different 
results if carried out in different ways. For example, 
the background as estimated by automatic proce- 
dures (e.g. Fourier transforms) often rises again 

5 6 7 8 9 10 11 12 

~ 

to measure the SW using a Newmod �9 FIG. 1. Method 
simulation (software: QUICKWIDTH). 

within the peak area, which is not physically 
sensible. 

There are many different ways to measure the 
SW (depending on the interpretation, SW does or 
does not include the instrumental broadening). 
Since the aim of the present work was to produce 
a simple method for estimating N and %S, we 
chose the simplest method (Fig. 1), consisting of 
tracing a linear background under the untreated raw 
data peak and measuring horizontally the width at 
half maximum above the background. This is 
equivalent to the traditional manual method of 
background measurement. It should be noted that 
few of the alternative methods give information on 
the SW in the sense originally adopted by Scherrer, 
because of the influence of the structure factor and 
the Lorentz-polarization factor on the diffraction 
pattern (e.g. Reynolds, 1968). 

The approach proposed here is relevant for most 
background types, but the results presented are only 
strictly valid for our method of background 
measurement. 

MEASUREMENT OF I-S 10 A PEAK SW 

This idea of SW measurement was extended to the 
illite or I-S mixed-layer minerals, i.e. materials 
giving a -10 A peak with high illite content 
(Ktibler, 1964, 1967, 1984; Frey 1987), because 
the SW of illite usually decreases as the 
temperature of the setting in which the mineral is 
found increases. Considering only a two component 
mixed-layer, the IC ('illite crystallinity' index) 
method was chosen empirically because of its 
sensitivity to swelling interlayers in order to 
describe the lower step of the metamorphism. The 
method was first called 'illite crystallinity index' 
(IC), but the term illite Scherrer Width (ISW) is 
more appropriate, and the ISW is widely used 
because of its ease of measurement. The ISW 
includes the instrumental broadening effect. This 
measurement was found to be more reproducible 
than the previous index proposed by Weaver (1960) 
and Ktibler (1967, 1968, 1990). It became 
successful also because peak position methods 
(Reynolds, 1980; Watanabe, t988) cannot be 
applied to minerals with small amounts of mixed- 
layering since the peak's position does not migrate. 
According to Eberl & Velde (1989), the ISW can 
be related to CSD size and amount of mixed- 
layering, especially on the first basal 10 A. 
reflection, for which effects of interstratification 
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and CSD size are emphasized. As a result, in 
progressive low-grade metamorphism the decrease 
in IC values is essentially produced by the CSD 
increase and the decrease in number of swelling 
layers. Unfortunately the Eberl & Velde (1989) 
method uses ISW plus the IR ratio of Srodofl & 
Eberl (1984), in which the 003 peak is taken into 
account. This can be a problem because the 003 
peak is sometimes overlapped by a quartz peak 
(Moore & Reynolds, 1997). 

The modern approaches involve decomposition 
of the 10 ,~ diffraction peak in different ways 
(Lanson & Velde, 1992; Lanson & Champion, 
1991; Pevear & Schuette, 1993; Stern et al., 1991; 
Wang et  al . ,  1995), but the ISW of  the 
decomposition peaks must be coherent between 
AD and EG preparations, i.e. the number of XRD 
peaks must be in agreement with the number of 
'phases' in both decompositions. Furthermore, the 
CSD size and their %S attached to each 'phase' 
must be equal for each preparation decomposition. 
Software such as NEWMOD �9 (Reynolds, 1985; 
Reynolds & Reynolds, 1996) and DECOMPXR 
(Lanson, 1990; Lanson & Velde, 1992) are very 
useful, but interpretation of diffraction patterns by 
simulation is often time-consuming. 

Many authors proposed use of the 5 A. XRD peak 
of AD preparation to avoid the problems of the 
swelling interlayer (Eberl & Blum, 1993; Nieto & 
Sanchez-Navas, 1994; Wart, 1996). In this parti- 
cular case, the estimated CSD size is correct using 
Scherrer's equation (Nieto & Sanchez-Navas, 1994; 
Arkai et al., 1996). However for a sophisticated 
study, e.g. one using the Bertaut-Warren-Averbach 
method, the peak shape of the I-S interstratification 
is not perfectly identical to that produced by N 
equivalent layers of identical d-spacing. The correct 
way to apply such a method was described by Drits 
et al. (1998) and Eberl et  al. (1998). Application of 
this method gives good results but expandable 
interlayers are missed; this is of some importance as 
the %S is one of the most sensitive parameters used 
to characterize diagenesis (see Moore & Reynolds, 
1997, for general review). 

Although measurement of the ISW is a rather old 
method, it is a very useful quick method to obtain 
information on regional low-grade metamorphism 
(Roberts & Merriman, 1985; Frey, 1988; Goy- 
Eggenberger & Kfibler, 1990; Merriman et  al., 
1990; Krumm, 1992; Wang et al., 1995; Sassi et al. 

1995; Jaboyedoff & Th61in, 1996; Arkai et al., 
1996; Arkai et al. 1997). 

S C H E R R E R  E Q U A T I O N  

According to M6ring (1949), Kodama et al. (1971), 
Reynolds (1980, 1989) and Eberl & Velde (1989), 
the SW depends mainly on: (1) the distribution of 
the CSD sizes (the 'size' is equal to the number of 
layers in each domain); (2) the presence of 
expandable or other kinds of interlayer (this can 
be a function of the particle size); (3) asymmetry 
due to the structure factor and the Lorentz 
polarization factor; (4) disorder (small variations 
of the d-spacing); and (5) instrumental effects, 
excluding the Lorentz-polarization factor. For 
example, in Newmod �9 simulation, neither the 
effect of the flat specimen, nor axial divergence 
broadening, nor receiving slit and instrumental 
background effects are taken into account. 

The fifth effect may be removed either by an 
unfolding method (Stokes, 1948; Ergun, 1968) or 
by simpler methods. We define b as the maximum 
breadth or SW of the instrumental effect, B the SW 
measured on the unrefined profile and [~A20 the 
estimated SW of the pure profile. In the case of a 
Lorentzian shape for all peaks, [~A20 is then given 
by B-b,  whereas for Gaussian peaks the result is 
[~A20 = ~/(B220- b2) �9 A n  in termedia te  so lu t ion  is the 
geometric mean of the two previous solutions 
(Balasingh et al. 1991), i.e. 

[ ~ a 2 0 = i ( B - b )  x ~ b 2 (1) 

This method seems valid as it gives intermediate 
values between Lorentzian and Gaussian assump- 
tions. Another solution, a little bit more time- 
consuming, is to construct a conversion table 
between the observed SW (B) and 13a20, the SW 
of the pure profile. This table may be obtained by 
the convolution of the peak of a well crystallized 
mica powder, taken to be the instrumental profile, 
with a calculated pure profile assumed to be 
represented by a symmetrical Pearson-VII peak, 
with a power of 2 (Jaboyedoff, 1999). We used this 
solution in one of the following examples. 

The Scherrer equation 

K x ) ~  
~AZO(rad) ~- Lhkl X COS O0 (2) 

can be then applied if it is assumed that only the 
first of the effects (1) to (3) listed above is 
significant, that the fourth one is not disturbing 
the profile, and that the fifth one is removed (Klug 
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& Alexander, 1974). [~A2O is the full width at half 
maximum in radian units, k the wave length, 0o the 
diffraction angle and K the Scherrer constant 
(Langford & Wilson, 1978) discussed in Drits et 
al. (1997). The value of K depends on the shape 
and on the distribution of the CSD. The mean 
thickness, Lhkl, of the CSD, given by Lhkl = Nd,  N 
being the number of units of thickness d in the 
direction perpendicular to the plane hkl. For a 
population of CSD it is better to regard Lhk l a s  a 
measure of the square root of the mean-square 
values (i.e. an rms value) for small CSD, because 
the maximum of the interference function is 
proportional to N 2 (Figs. 2 and 3, curves 4 and 5). 
Note, however, that when N>20, the rms becomes 
close to standard arithmetic mean. 

In this paper we use only the 00l lines for plate- 
like domains with a distribution for N possessing 
equal probabilities in a given range and zero 
outside. For small CSD, the rrns can be used if 
necessary. The demonstration of the Scherrer 
equation given by Klug & Alexander (1974) is 
based only on the evaluation of the breadth of the 
interference function, which leads to a value of K = 
0.89. The true width of the interference function 
and that derived from the Scherrer equation (Fig. 3, 

curves 1 and 2) are very similar. For a given 0o and 
9~ equation (2) can be simplified to: 

D 
~A20(deg) = ~ (3) 

in which N is the number of cells or sub-cells 
perpendicular to the diffraction planes, D is a 
constant deduced from the equation and ~A20 is 
given in degrees; For example, for the 10 A peak 
and k = 1.5418 A (Cu-K~), D = 7.9. 

The Scherrer equation cannot be applied directly 
to mixed-layer clay minerals when the expandable 
layers are swollen (Drits et al., 1997), because it is 
only applicable when there is a single d-spacing. In 
the case of a population of a single d-spacing with 
lattice distortions, the size effect and lattice 
distortions can be separated by various methods, 
such as Fourier analysis or integral breadth method, 
etc. (see Warren & Averbach, 1950; Wilson, 1962; 
Kodama et al., 1971; Klug & Alexander, 1974; 
Langford & Wilson, 1978; Drits & Tchoubar, 1990; 
Arkai et  aL, 1996; Eberl et al., 1997; Drits et al. 
1998; Eberl et al., 1998 and for a general review 
Delhez et al., 1982). 

The Scherrer equation (2 or 3) indicates a linear 
relationship between the SW of the interference 

.=" 
0.5 

. . . . . .  N=30 

- -  - -  - -  N = 1 2  

~ r m s  mean 

/ 

N=12+ / 
N=30 / 

Arithmetic 
meao / I J  

i J J i i i 

7 7.5 8 8.5 9 9.5 10 10.5 

~ 

F~6. 2. Different interference functions from different methods (rms) of calculating the mean number of layers in 
coherent domains. Note that the square root of the mean-squares gives a better representation than the arithmetic 

mean for small values of N. 
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F~G. 3. Relationship between SWAD and the inverse of the mean of the number of layers N. The Scherrer 
equation is equivalent to the true SW of the interference function for a unique N (1 and 2). The single N illite SW 
(3) is slightly sharper than the Scherrer equation. Newmod �9 simulations have been performed on range of N +  10 
with equal weights (4). These simulations display behaviour very similar to that obtained from the Scherrer 
equation with the rms mean (5). The SW of the M6ring interference function (6) is consistent with a linear 
behaviour for k - 1 used to define %S, as a normal interference function. It is very similar to results obtained by 
Newmod �9 simulations with k = 1, equal probability N over a range of 21 centred on the mean value (N_ 10) and 
Reichweite R0 (7), R1 (8) (two water layers). See the Results section for the Newmod �9 parameters (Dimica = 

dioctahedral mica). 

function and the inverse of  the number of layers N. 
When considering the third and the fifth contribu- 
tions to the SW, it should be noted that removal of 
the instrumental broadening effect and application of 
a background correction are not sufficient to suppress 
the structure factor effect (the structure factor of 
mixed-layer minerals is complex) or the Lorentz 
polarization factor (Moore & Reynolds, 1997 
chap. 3). These factors are very important when the 
number of  layers is small (Reynolds, 1968). 
However, when the peak is narrow, the contribution 
from the structure factor and Lorentz-polarization 
factor does not vary too much and can be ignored. A 
linear relationship exists partially also, e.g. in the 
classical measurement of  the SW of the 001 of  pure 

dioctahedral mica and the inverse of  N for high N 
Newmod �9 simulations without removal of  the third 
contribution, ignoring the fourth and eliminating the 
fifth (Fig. 3, curves 3 and 4). 

E M P I R I C A L  S C H E R R E R  E Q U A T I O N  
F O R  W E A K L Y  S W E L L I N G  

M I X E D - L A Y E R  M I N E R A L S  

When the material is a mixed-layer mineral 
containing swollen interlayers, it is difficult to 
consider the effects of  disorder (i.e. small variations 
in the d-spacing, point 4 in the list of  parameters) 
with a simple approach. Therefore, in the following 
sections, we deal only with the first and second 
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effects assuming a two component mixed-layer 
mineral. 

As a first approximation, the broadening due to 
the expandable interlayers is supposed to be 
proportional to their percentage, %S, for a 
Re ichwe i t e  R0 (for de f in i t i on  of  R, see 
Jadgozinski, 1949; Drits & Tchoubar, 1990; Moore 
& Reynolds, 1997). In this case a broadening term 
must be added to the Scherrer equation (which is the 
CSD contribution). To simplify the problem of those 
two terms, a relation between the number of layers 
and the number of expandable interlayers must be 
chosen. The SW is inversely proportional to the 
number of layers of the CSD, according to the 
Seherrer equation. Therefore, the simplest choice is 
to consider the amount of expandable interlayers as 
being inversely proportional to the number of layers 
by a factor k leading to: 

%S = 100 • N k- (4) 

and thus k = Nx(%S/100) .  Adding the two 
broadening terms we obtain: 

~A20  ' ~  
ND__ _[_ %S . .  A D ~_ ~ Cik ~ ~ = ~ + ~ • A ~  = = (5) N - - N  W- 

where %S is the percentage of expandable interlayers 
and D, k and 13~x0 have already been defined. The 
product 6ik = k x Aik is a broadening coefficient, for 

an ' i '  swelling layer type and a given coefficient of 
proportionality k, which can be evaluated empiri- 
cally. Then for a given k and a known Aik or for 
known values of ~A20 and N or J3~20 and %S, the C,k 
are determined. The index k denotes that Aik, when 
deduced empirically, needs to be evaluated for each k 
value and swelling layer state 'i ' .  

Some justification for our use of eqn. (4) may be 
found by considering the M~ring equation (M~ring, 
1949), which consists of two terms: (1) the 
Hendricks & Teller (1942) equation; and (2) the 
correction for finite crystallite size. 

These two terms have a similar intensity ratio if 
an inverse relation is chosen between the number of 
layers and the number of expandable layers. In 
Fig. 4 we chose k = 1, but it can have a non-integer 
value. Surprisingly, for a given k (%S proportional 
to l/N) the SW of the M~ring interference function 
is also consistent with a linear shape in an X-Y 
chart of SW vs. the inverse of N (Fig. 3 curve 6). It 
must be kept in mind that the proposed eqn. (5) is 
valid for large values of N (e.g. 30). For the IC 
method this limit indicates that eqn. (5) is valid 
from mid-anchizone (Jaboyedoff et al., in prep.) to 
higher metamorphic conditions. By adding the 
variable k, two values are necessary to determine 
N, k and %S. This can be achieved by measuring 
two different SW. 

15 

o= 10- - - 
= 

I 
~ -5- - - -  

-10 [ 

-75 

i ~ . . . .  Hendncks & Tel,er I : i i 
so " L i 

:30 

20 

10 

0 

-10 

-20 

-30 

Phase displacement of 10 A peak r '] 

-50 -25 25 75 -20 -15 -10 -5 0 5 10 15 20 
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FIG. 4. The Mbring interference function for different N, but calculated with the same k =1, displays the same 
behaviour. The Hendricks & Teller (1941) interference function, and the correction factor of the M~ring equation 

are also shown. 
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Cik A N D  Aik D E T E R M I N A T I O N  

Method 1 and the meaning of Aik 

For eqn. (5) an empirical meaning of the term Aik 
can be given, leading to Method 1. For our 
purpose, it is sufficient to work in 20 space. The 
principle of Mrring (1949) (Moore & Reynolds, 
1989) states that some peaks of a mixed-layer 
mineral  lie between the peaks of the pure 
components. These positions are functions of the 
amount of mixed-layering. The peak position can 
be linearly dependent on the amount of the 
expandable component, but for small numbers of 
swelling layers and large CSD size, the peak 
maximum is not shifted because of the predomi- 
nance of the major component. Considering a 
Markovian CSD distribution of the mixed-layer 
stacking, only the richest sequences (i.e. those 
CSDs with a relatively large number of swelling 
interlayers) possess shifted diffraction peaks, but 
their intensities are weaker than those with no 
expandable layers. As a result, in the case of weak 
mixed-layering, the mixed-layer diffraction peaks 
are only broadened and not shifted. Consequently, 
the broadening can be assumed to be equal or 
proportional to the mean displacement of the peak 
position of the mixed-layer mineral, equal to the 
expected peak position of the mixed-layer. Then, 
Aik in eqn. (5) can be chosen as the absolute value 
of the difference in angle 20 between the 
successive XRD peaks interfering from the two 
components, the swelling interlayer being of type 
' i ' .  For example, in the case of an air-dried sample 
of a mica-smectite interstratification, Aik for the 
10 ,~ peak may be taken as the difference in ~ 
values of the 10,~ and 15 ~, reflections (see 

Table 1). The k index can be cancelled, because 
Ai is identical for all k. For instance, if N is high, 
then the maximum intensity of the I-S mixed-layer 
minerals' diffraction peak will be that of the pure 
illite (mica-like layer), the expandable component 
producing only a broadening. 

It must be pointed out that the linearity of the 
movement of the peak position is correct only if the 
d-spacings of the components are similar (Mrring, 
1949). In our case, this condition is not fully 
satisfied, but it is not very important, because we 
are dealing only with the broadening of the peak. 

When using A i (method 1) only one peak of each 
component of the mixed-layer mineral must interact. 
However, it is possible to use this method even if this 
condition is not verified. For example, in the case of 
I-S disordered interstratification (R0) of 10 ,~ and 
15 ~, thick layers, the Mrring interference function is 
broadened by two smectite diffraction peaks. Actually 
the 001 peak of the pure illite (or dioctahedral mica) 
lies between the 001 and 002 peaks of an AD 
smectite (two water layers). Then broadening appears 
on both sides of the peak (Fig. 4), but the effects of 
the structure factor and the Lorentz-polarization factor 
tend to cancel the high-angle part of the broadening 
and enlarge the low-angle component (Fig. 5). 
Because of these two opposite effects, the SW of 
the Mrring interference function is very similar 
whether or not the struc~are factor and the Lorentz- 
polarization factor multiply it (Fig. 3, curves 6, 7 and 
8). This is also why the results obtained for the 
weighted Scherrer equation and Newmod �9 simulation 
are so similar. In addition it must pointed out that for 
a Reichweite R0, the SW of the Mrring interference 
function is similar to the SW of the R0 Newmod �9 
simulation of I-S with low %S (Fig. 3). 

TABLE 1. Cik estimations. To give an approximate value of Cik, Ak can be taken to be the 
difference in ~ Cu-K~ between the peak positions for the pure components; the 
numbers in parentheses give the percentage deviation of such values of Cik from those 

obtained by Newmod �9 estimation. 

Two water Two glycol 10-15 A 10-8.5 (17) 
%S = 100 x ~- (Newmod) (Newmod) Estimation Estimation 

Pure illite 7.68 7.68 7.89 (3%) 7.89 
k -  0.5 9.20 8.64 9.36 (2%) 8.67 (<1%) 
k = 1 11.04 9.68 10.84 (2%) 9.45 (3%) 
k - 2 15.92 12.32 13.79 (14%) 11.02 (11%) 
k -  3 22.00 15.52 16.74 (24%) 12.59 (19%) 
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~N=14 S d-spacing=15A I d-spacing=10A %S=7 

--- Lorentz-polarization factor * Structure factor 
M&ing Interference 
function 
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6 7 8 9 10 11 
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F~. 5. Schematic view of the asymmetric effect caused by the structure factor (here dimica) and Lorentz- 
polarization factor on the M6ring interference function giving the simulated spectrum (M6ring Total). Note the 
steeper high-angle part and gentle low-angle part of the total simulation compared to the interference function. 
Modified after Moore & Reynolds (1997) for the M6ring model. This remark is also valid for comparison 

between pure mica Newmod �9 simulation and weighted Scherrer equation (see Fig. 3). 

Taking into account all those remarks, it is clear 
that the better solution is to deduce Cik empirically 
by simulation. Nevertheless the order of magnitude 
is correctly deduced by the previous simple 
arguments (Table 1), when the goal is to perform 
simulations to compare it with the raw data. 

To obtain values for N and %S the SW of the 
equivalent XRD peak on patterns from two 
differently treated specimens need to be measured. 
Putting i = A and B and using eqn. (5), A A and A~ 
being defined, k is given by: 

(SWA - -  SWB) 
k = D x  

(AA x SW~ - A~ x SWA) 
(6) 

where SWA and SWB are the SW measured on the 
different XRD patterns, corrected for instrumental 
broadening effect, and D is defined in eqn. (3). The 
CSD size N is then given by: 

Method  2: empir ical  determinat ion o f  Cik 

In a SW (l/N) graph, the relationships obtained 
using the different procedures, such as Newmod �9 
simulations and interference functions are nearly 
linear (Figs. 3 and 6) for small SW corresponding 
to N > ~30 (1/N - 0.033). As already mentioned, it 
is better to evaluate Cik by SW measurement on 
simulated XRD patterns of high CDS size, instead 
of using method 1, by: 

osirnulated Cik = Nsimulated • PA20,ik (8)  

osimulated where PA20,ik is the SW of the chosen peak for a 
given treatment ' i '  and a given k. In the following 
example we chose a mean value of N -  80 (range 
70-90)  to calculate the C/k. Then the ratio mA-B,k of 
the corresponding SW measurements for a given k 
on two different treatments is a constant given by: 

SWA~ ~ 
D + Ai • k SWBk CBk 

N -- SWi (7) 

where i is equal either to A or B. 

- mA-B,k (9) 

Then if some mA-B.k are defined for various k, it 
is possible by a simple calculation to obtain k for 



Scherrer equation for mixed-layer minerals 609 
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I~-o ". ~ ~ .  ~ '. 

�9 Newmodtestva, . . . .  ~ / / 0.8" . . . . .  ; . - - ~ - - - A t @ .  . . . . . .  NewmodsimulationSW (k=1.3)_ 
0.6 * �9 SW2 sample value - , ~ /  / k=-I i \ k=-3 " �9 Newmod test values 
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: o,. T 
0.0" 0.0" 

0.0 0.1"  0 .2* 0.3* 0.4* 0.5* 0.5"  0.7* 0.5* 20 40 60 80 100 

8W AD *20CU-K~t Coherent se~edng domain size (N) 

FIG. 6. (A) Example of a SWAD-SWEG chart presenting results from Newmod �9 simulation for R0 (dashed 
lines) and linear results obtained with an estimation of Ck based on a couple of simulations with N = 70-90 for k 
= 0.5, 1, 2, 3. The approximation is valid up to SW (AD) of 0.40~ Cu-K~. (B) N-SWAD for two water layers 
used to determine N compared with two curves obtained by simulation. The points are from Tables 3 and 4 and 
Fig. 7. The interpolation for the k curve can be observed for sample SW2. The instrumental broadening (fifth 

effect) must be removed to use these charts. 

the SW measured on XRD pattems of  the same 
sample treated by two different methods. On the 
basis that mA-B,x is the ratio of  two SW, the index 
'x '  indicates that k is unknown for the sample. 
From the defined mA-B,k (eqn. 9), the two nearest 
mA_B.kl and mA_B, k2 of known k, which are smaller 
and greater than mA-B,x respectively, can be found. 
It is clear from eqn. (5) that kl<k2. Then k can be 
evaluated by using: 

m A - B  k - -  m A - B , k ]  
k = k~ + (k2 - k~) . . . . .  (10)  

m A _ B , k 2  - -  m A _ B , k l  

In order to understand the previous approach 
better, it is possible to create SWAD-SWEG charts 
by plotting the curves for given constant k (Fig. 6). 
Plotting data points on such a diagram allows us to 
determine k, by comparison with the k-isolines 
obtained by calculations. Values for N can be 
determined on other charts linking SW to CSD size 
for the known k, like N-SWAD or N-SWEG charts 
(Fig. 6B). The trajectory of  the estimated k is then 
evaluated, N determined, and %S is calculated by 
relation (3). 

Those charts can also be established for different 
Reichweite  (Fig. 3). For Reichweite  R1, this 
approximation is valid up to SW ~ 0.40~ 

Cu-Ku and for slightly smaller SW for R3. The 
validity of  this new equation decreases with 
increasing k (Fig. 3; Jaboyedoff et al., in prep.). 

R E S U L T S  

In order to check the validity of  the methods, we 
tested them on simulations and compared the results 
obtained from a natural sample by Newmod �9 
simulation. The following parameters were used in 
the Newmod �9 simulations: d-spacing of  dioctahedral 
mica = 9.98 A, dioctahedral smectite-2 glycol layers = 
16.9 A; dioctahedral smectite-2 water layers = 15 A; 
Ca exchange cation; 0.9 K and 0.1 Fe per (Si,A1)4Olo 
for dioctahedral mica and 0.1 Fe per (SLA1)4Olo for 
dioctahedral smectite; 0.5 ~ divergent slit; Cu-Ku 
radiation; 18.5 cm goniometer radius, sample length 
2.8 cm and two Soller slits of  5 ~ 

For I-S with low expandable layer content, it is 
possible to obtain two or more SW values (from 
XRD patterns of  AD, EG, and heated at 300~ for 
12 h, preparations) to determine k. The swelling 
interlayers of  the AD pattern are supposed to 
contain two water layers (2W), the EG pattern, two 
ethylene glycol (2G) layers and the heated sample, 
no interlayer. In order to have information on peaks 
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TABLE 2. Comparison between the results of method 1 and the Scherrer equation obtained for the M6ring 
interference function. Abbreviations are used as in the text. Dev means deviation from the true values. 2W are the 
results for the Scherrer equation on AD preparation and 2G for EG preparation (for Newmod �9 simulations no 

instrumental broadening effect is present, except the Lorentz factor). 

Data Estimations 
M~ring interference function Method 1 Scherrer 

Peak Mean N %S k SW AD SW EG N Dev %S Dev k 2W 2G %S 

10 A 20 3.0% 0.60 0.49 ~ 0.45 ~ 20 0 3.0% 0.0% 0.59 16 18 0% 
5 A 20 3.0% 0.60 0.39 ~ 0.48 ~ 20 0 4.4% 1.4% 0.89 20 17 0% 
10 A 45 2.0% 0.90 0.24 ~ 0.22 ~ 43 - 2  1.9% -0 .1% 0.81 33 37 0% 
5 A 45 2.0% 0.90 0.17 ~ 0.23 ~ 46 1 2.8% 0.8% 1.30 46 34 0% 
10 A 70 1.5% 1.05 0.16 ~ 0.14 ~ 66 - 4  1.4% -0 .1% 0.95 49 55 0% 
5 A 70 1.5% 1.05 0.11 ~ 0.16 ~ 71 1 2.1% 0.6% 1.52 71 51 0% 
10 A 20 6.0% 1.20 0.63 ~ 0.52 ~ 20 0 8.0% 2.0% 1.61 12 15 0% 
5 A 20 6.0% 1.20 0.39 ~ 0.59 ~ 21 1 10.0% 4.0% 0.84 21 14 0% 

unaffected by instrumental effects or by those of  the 
structure factor, we tested method 1 on M6ring 
9.98 A. and 4.99 A peaks. It can be seen in Table 2 
that results are in good agreement with the data, 
especially for the -10  A peak, in spite of the double 
interference of  the two smectite peaks for the AD 
pattern. The results become less accurate for N = 20 
due to the limitations of the method, especially 
when %S>5%, but for such values of N and %S the 
peak position method begins to be applicable. From 
eqn. 7 it can be seen that the results for the -5  
peak give N equal to the Scherrer equation when 
used for AD preparation, since Ai = 0 for this peak. 
Compared to the N mean value, used for the 
simulation, the 5 A peak results are almost exact. 

Method 1 was used to determine N and %S 
directly on Newmod �9 simulations (Tables 3 and 4), 
and the results are in good agreement with the 
simulated data. The -10  A peak results for %S are 
better than those of the -5  A. The explanation for 
the slightly higher N value of  the 5 A. peak, cannot 
be ascribed to the rms problem, because the 
difference between the standard mean and the rms 
is no more than 0.2 layer. It can be seen again that 
the method becomes inaccurate when N is <25 and 
%S >5%, where the peak position method becomes 
efficient. The 10 A peak gives no reasonable 
solution for %S = 9.2. 

Method 2 applied to the - 10  A peak yields more 
consistent results than the other method. The N 
estimations are equivalent to the method 1, but %S 
is more accurate (Tables 3 and 4). Only the 9.2 %S 
is significantly different. 

In order to demonstrate the efficiency of  such 
methods, XRD patterns of a natural sample were 
compared to XRD patterns generated by Newmod �9 
simulations according to method 2. The sample 
SW2 comes from the CIS standards, used for the 
ISW method (10 A peak), described in Warr & 
Rice (1994). Its metamorphic grade corresponds to 
the diagenesis-anchizone limit. The measured ISW 
on our diffractometer are 0.32 ~ and 0.29~ 
Cu-K~ for the AD and EG specimens, respectively. 
Corrected for instrumental  broadening by the 
method outlined above, those values are 0.24 ~ and 
0.21~ Cu-Kc~ leading to N 48, %S - 2.2% and 
k = 1.04 (method 1 gives very similar results N = 47, 
%S - 2.3% and k = 1.06). We performed simulations 
for AD (two water layers) EG (two glycol layers) 
and hea ted  for 12 h at 300~ (pure mica)  
preparations with N = 38 -58 ,  %S - 2.2% and a 
d-spacing of  the illite of  10.06 A (other parameters 
are the same as listed above). In order to compare 
the raw data with the Newmod �9 simulations of  the 
~10 A peak, the simulations have been convoluted 
with the instrumental profile (a mica powder peak) 
and multiplied by a coefficient and a constant was 
added to simulate the observed background (Fig. 7). 
It is clear that the order of  magnitude of  the mean 
CSD size and the mean %S are correct; the small 
difference can be at tr ibuted to two different  
sources: (1) the CSD size distribution of  the 
sample is certainly spread out over a broader 
range with an asymmetric log-normal distribution 
rather than that used in the simulations; and (2) the 
sample contains a mixture of  a detrital mica with 
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FxG. 7. Comparison between raw data and simulations. The Newmod simulations are based on N = 38-58,  %S = 
2.2% determined from method 2. The purely numerical method gives N = 47 and %S = 2.3, the mica d-spacing 
has been changed to 10.06 ~, because of the sample. The heated pattern was moved by 0.06~ Cu-K~ because 
some defocalization occurs. For the EG the Newmod simulation was multiplied by 0.61 and a linear background 
of 420 cps added. For the AD pattern those numbers are 0.63 and 420 respectively, and for the heated example 
0.30 and 350, respectively. The XRD patterns are shifted slightly with respect to the quartz peak position, also 
caused by the convolution. (Data were collected on a Rigaku Geigerflex diffractometer on oriented sedimented 
slide: sample length = 28 ram, Goniometer radius = 185 mm, radiation Cu-K~ filter Ni-K[3, current 40 kV/ 
30 mA, Proportional counter, receiving slit = 0.047 ~ divergent slit = 0.5 ~ soller slits = 5o-5  ~ step scan, step 

0.01 ~ 2 s/step). 

large N and a mixed-layer I-S with smaller N than 
that deduced by the present method. 

Those two solutions will keep the mean CSD size 
constant but vary the CSD size variance; the 
explanation of  the error on %S is more compli- 
cated. Starting from these results, it will be easier to 
adjust the model to give a more realistic solution 
than starting with no information for N and %S. 

Our results are not in accordance with those from 
the CIS scale (N = 18.5 and %S = 0). This may 
indicate a problem with the manner in which we 
have performed the CIS calibration and we are 

currently trying to find the source of  this problem. 
Nevertheless, using our calibration with the CIS 
scale the IC (SWAD value) leads to N = 17, 
compatible with the standard value. Because our 
purpose is to demonstrate the efficiency of  both 
methods,  the calculations were performed for 
Rechweite R0, but the Reichweite of  the sample 
is probably higher and in this case, method 2 has to 
be applied, which will probably lead to lower 

values. 
Method 1 is also applicable to other mixed-layer 

minerals. Here we checked the result obtained for 



Scherrer equation for mixed-layer minerals 613 

tri-trioctahedral chlorite weakly interstratified with 
trioctahedral smectite (C-S). This case is interesting 
because the results are more consistent if values of 
Ai are 'calibrated' by using preliminary simulation. 
A good example is the use of the 7. l .A diffraction 
peak of C-S (see Table 5). The Scherrer equation 
used for the peak of the AD (two water layers) 
simulation is consistent with the exact values for 
the CSD size; this is also valid in the case of the 
Mrring interference function alone. Then the A i 

used in method 1 for AD (A2w) calculation can be 
set to zero in order to obtain the correct N and the 
A i used for the EG parameter can be set to the peak 
position difference 002 chlorite - 002 smectite-2EG 
layers. We have checked that the results are better 
than if we use the peak difference for Azw. The 
results are relevant, but as already mentioned, with 
N <20 and/or %S>5%, the method begins to fail. 
The same applies to the 14.2 A (Table 6) and the 
7.1 .~. peaks, when method 1 is applied with the 
standard definitions of Ai. However, in this case the 
structure factor and the Lorentz polarization factor 
are more influential, and therefore the determina- 
tion of N is less accurate than the Scherrer equation 
but the %S is more reliable. 

D I S C U S S I O N  A N D  C O N C L U S I O N S  

When the relation between %S is chosen as 
inversely proportional to N, i.e. fixed by a %S = 
k/N relation, it seems clear that the SW of the 
M6ring interference function and Newmod �9 simu- 
lations present linear relations between SW and the 
inverse of N for small SW (Fig. 3). Because an 
additional variable k is added, two SW values are 
needed to determine k and N or k and %S, instead 
of one for the Scherrer equation. The parameters, 
Cik and Aik, needed to perform the proposed 
methods can either be computed with the help of 
Newmod �9 simulations or estimated by simple 
computation of judiciously chosen XRD peak 
position differences between the two mixed-layer 
components. The use of simulations to obtain some 
Cik values directly gives more accurate results. For 
example, the charts created with a few Newmod �9 
simulations are consistent with charts constructed 
with several XRD pattern simulations, but only for 
small SW (Fig. 6). This is also true for a 
Reichweite R1 as demonstrated in Fig. 3, but in 
this case only method 2 is applicable. 

Because of the difficulties in obtaining information 
on mixed-layer  minerals  with N>100 when 

SWAD>SWEG, the formula presented here is a 
unique tool to determine an order of magnitude 
estimate of the percentage of expandable interlayers 
and the mean value of N. For N>100 the result will 
be very sensitive to the procedure used to remove 
instrumental effects, but when SW are different for 
different treatments, it is interesting to have an 
estimate of the number of swelling layers. We used 
this method in a computer program based on several 
Newmod �9 I-S simulations, which will soon be 
available on the web (Jaboyedoff et aL, in prep). 
Furthermore, the approximations assumed in this 
study are better when N is high. However, the results 
obtained even for N<30 are correct to an acceptable 
order of magnitude, provided %S is not greater than 
5%; above this value the peak maximum begins to 
shift and then the expandable layer effect is not 
ascribable simply to peak broadening. However, in 
such cases the peak position method begins to be 
accurate. When the d-spacing of the two reflections 
from the end-members of the interstratiftcation are 
identical, the Scherrer equation can be used directly 
to estimate the CSD size. This has already been 
discussed by Nieto & Navas-Sanchez (1994), Arkai 
et al. (1996) and WaIT (1996) for the 5 A diffraction 
peak for I-S. 

The empirical calculation of Cik, by estimation of 
Ai from peak positions leads to reasonable values 
(Tables 1-6).  This method is then useful to rapidly 
estimate N and the content of swelling layers for 
other mixed-layer minerals. The method is therefore 
a good tool to obtain preliminary information to 
simulate an XRD pattern in order to quantify the 
parameters. In the case of I-S interstratification, 
heated or other saturated sample preparations can 
be an aid in the determination of either N and %S 
or to reveal the nature of other effects, such as the 
presence of more than two components in the 
mixed-layering. A common cause of such an effect 
is the problem of the hydration of the expandable 
interlayers. Sometimes only one water layer 
remains in some interlayers, thus leading to a 
three-component mixed-layering (Jaboyedoff & 
Th61in, 1996). In this case, SWAD < SWEG may 
be observed, being the result of expandable layers 
containing less than two water layers, (Jaboyedoff 
et al., in prep.). 

Few methods exist for quick estimates of mixed- 
layer minerals containing small amounts of swelling 
interlayer. This indicates that such a method can 
certainly be applied to types of mixed-layer 
minerals other than I-S and C-S. 
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