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Abstract

Ž .Although dissimilatory iron reducing bacteria DIRB are capable of reducing a number of metals in oxides and soluble
forms, the factors controlling the raterextent of magnetite reduction and the nature of the mineral products resulting from
magnetite reduction are not well understood. This study was carried out to investigate mechanisms and biogeochemical
processes occurring during magnetite reduction by the DIRB, Shewanella putrefaciens strains CN32 and MR-1. Reduction
experiments were performed with biogenic and synthetic magnetite in well-defined solutions. Biogenic magnetite was

Ž .generated via microbial reduction of hydrous ferric oxide HFO . Biogenic magnetite in solutions buffered with either
Ž y. Ž .bicarbonate HCO or 1,4-piperazinediethanesulfonic PIPES , with or without P, was inoculated with strain CN32 and3

Ž .provided with lactate as the electron donor. Synthetic magnetite in a bacteriological growth medium M1 was inoculated
Ž . Ž .with either aerobically or anaerobically grown cells of strain CN32 or MR-1 . Fe II production was determined by HCl

extraction of bioreduced samples in comparison to uninoculated controls, and the resulting solids were characterized by
Ž . Ž .X-ray diffraction XRD , Mossbauer spectroscopy, scanning and transmission electron microscopy SEM and TEM . The¨

extent and rate of biogenic magnetite reduction in the bicarbonate-buffered medium was higher than that in the
Ž . y Ž 3y.PIPES-buffered medium, via complexation of bioproduced Fe II with HCO or PO and formation of siderite3 4

Ž .vivianite . S. putrefaciens CN32 reduced more synthetic than biogenic magnetite with differences attributed mainly to
y Ž . Ž .medium composition. In the HCO -buffered solutions, Fe III in the biogenic magnetite was reduced to Fe II , and siderite3

Ž . Ž .precipitated. In the PIPES-buffered medium, Fe III in biogenic magnetite was also reduced to Fe II , but no secondary
mineral phases were observed. Vivianite formed in those solutions containing P and in all synthetic magnetite treatments
where there was sufficient supply of P from the M1 medium. Electron microscopy and Mossbauer spectroscopy results¨
suggest that the reduction process involves dissolution–precipitation mechanisms as opposed to solid state conversion of
magnetite to vivianite or siderite. The aqueous medium, pH, strain type, and bacterial growth conditions all affected the

Ž .extent of magnetite reduction. The ability of DIRB to utilize Fe III in crystalline magnetite as an electron acceptor could
Ž .have significant implications for biogeochemical processes in sediments where Fe III in magnetite represents the largest

pool of electron acceptor. q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the past decade, interest in the biogeochemical
transformations accompanying microbial iron reduc-

Ž .tion reactions has been increasing. Fe III may have
been the first external electron acceptor of global

Žsignificance in microbial respiration Walker, 1987;
.Cairns-Smith et al., 1992; de Durve, 1995 . Mag-

Ž .netite formation thought to be a result of Fe III
oxide reduction by Fe reducing microorganisms has
been used as a possible evidence for respiratory

Žprocesses in the early evolution of the Earth Walker,
. Ž1987; Vargas et al., 1998 , for life on Mars McKay

.et al., 1996 and for the presence of a deep biosphere
Ž .in the terrestrial subsurface Gold, 1992 . The reduc-

Ž . Ž .tion of Fe III and Mn IV by some bacteria has
been shown to be coupled to the oxidation of organic

Žcarbon or H Lovley et al., 1989; Lovley and2
.Lonergan, 1990; Kazumi et al., 1995 . Iron and

manganese often play a significant role in controlling
both redox balance and carbon cycling in sediments
Ž .Nealson and Saffarini, 1994 . Because of the wide

Ž .distribution of Fe III reducing bacteria, their activi-
ties have implications for not only natural biogeo-
chemical processes but also the fate and transport of

Žmultivalent metals and radionuclides Nealson and
.Little, 1997; Lovley, 1995 . Toxic metallic and ra-

dionuclide contaminants often strongly adhere to Fe
and Mn oxiderhydroxide surfaces in soils and sub-

Ž .surface materials. When Fe III reducing bacteria
Ž . Ž .convert Fe III and Mn IV mineral forms to soluble

species, associated inorganic contaminants may also
Ž .be released Francis and Dodge, 1990 .

Ž .Both amorphous hydrous ferric oxide HFO and
Ž .crystalline Fe oxides goethite, magnetite, hematite
Ž .are reducible by Fe III reducing microorganisms

ŽArnold et al., 1988; Lovley and Phillips, 1987;
Kostka and Nealson, 1995; Roden and Zachara, 1996;
Little et al., 1997; Zachara et al., 1998; Fredrickson

. Ž .et al., 1998 , but the mechanism s by which bacteria
reduce solid phase Fe oxides are not well under-

Ž .stood. Roden and Zachara 1996 reported that the
Ž .rate and extent of microbial Fe III reduction was

positively correlated with surface area of the oxides.
Direct contact between cell and oxide surfaces ap-
pears to be necessary for microbial respiration and

Žreduction Arnold et al., 1988; Lovley and Phillips,
.1988; Kostka and Nealson, 1995 , a requirement that

is implied for magnetite reduction and dissolution.
Most previous studies have been based on analyses
of batch culture experiments with few attempts to

Žprobe the microbe-oxide interface Granthan et al.,
. Ž .1997 . Recent studies have shown that certain Fe III

Žreducing bacteria Geobacter metallireducens and
.Shewanella alga can use humic substances and

quinones as electron acceptors to transfer electrons
Žfrom the electron donor to the acceptor Lovley et

.al., 1996, 1998 , relieving the requirement for direct
Ž .contact. Fredrickson et al. 1998 investigated the

Ž .effect of anthraquinone-2,6-disulfonate AQDS , a
Ž .humic acid analog, on the extent and rate of Fe III

reduction in HFO, and found that the presence of
AQDS significantly increased the rate and extent of
Ž .Fe III reduction. They also characterized the min-

Ž .eral products formed as a result of bacterial Fe III
reduction in various solutions, and determined that
the mineral products strongly depended on the com-
position of the solutions. In bicarbonate-buffered
solutions more extensive reduction was observed,
and siderite was a major end product. In 1,4-pipera-

Ž .zinediethanesulfonic acid PIPES -buffered solu-
tions, reduction was less extensive, and a fine-grained
crystalline magnetite was dominant. The presence of
P and AQDS also affected the biogenic mineral
phases formed and the extent of reduction. Thermo-
dynamic calculations predicted that magnetite should
be a precursor to siderite formation, but no direct
evidence for the phase conversion from magnetite to
siderite was observed.

Magnetite, siderite and vivianite are common
Ž .mineral products observed during Fe III reduction

Žin the laboratory studies Sparks et al., 1990; Lovley,
1991; Mortimer et al., 1997; Fredrickson et al.,

.1998 , and are ubiquitous in natural environments
ŽEmerson, 1976; Emerson and Widmer, 1978;
Walker, 1984; Karlin et al., 1987; Maher and Taylor,
1988; Pye et al., 1990; Baedecker et al., 1992;

.Mortimer et al., 1997 . Although a direct link can
not be established between these laboratory-pro-
duced biogenic minerals and those observed in na-
ture, several lines of evidence suggest that at least
some proportion of these minerals present in natural

Ž .environments are biogenic Pye et al., 1990 .
In this study, we examine the factors controlling

the extent and rate of magnetite reduction. More
importantly, we specifically focused on the micro-
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scopic characterization of mineral phase transitions
during microbial reduction of these oxides. Effort
was made to examine bacteria–mineral interactions
to gain insight into possible reduction mechanisms.
We also examined the reduction of a synthetic mag-
netite by aerobically and anaerobically grown S.
putrefaciens strains CN32 and MR-1 in medium M1

Ž .to extend the results by Kostka and Nealson 1995 ,
and to investigate the nature of mineral products.
Biogenic magnetite from the reduction of HFO
Ž .Fredrickson et al., 1998 and synthetic magnetite
were used as oxide phases. We used HCl extraction

Ž .to monitor Fe II production, and X-ray diffraction
Ž .XRD , Mossbauer spectroscopy, scanning electron¨

Ž .microscopy SEM and transmission electron mi-
Ž .croscopy TEM to investigate the solid phase

changes associated with the bacterial reduction of the
Fe oxides.

2. Experimental procedure

2.1. Bacteria, Fe oxides and media

For the first experiment, i.e., reduction of bio-
genic magnetite, we followed the procedure of

Ž .Fredrickson et al. 1998 using biogenic magnetite
generated from the microbial reduction of HFO. For
the second experiment, i.e., reduction of synthetic
magnetite by aerobically and anaerobically grown
CN32 and MR-1 cells in M1 medium, we used a
procedure as that defined by Kostka and Nealson
Ž .1995 . The first experiment was conducted using a
defined medium identical to that used in previous
experiments with HFO where magnetite was ob-
served to be a stable end product of reduction in

Žsome PIPES-buffered treatments Fredrickson et al.,
.1998 . Results from the previous study showed that

cell growth was not significant in the defined medium
with HFO as the sole electron acceptor when inocu-

Ž 8 y1.lated with relatively high )10 cells ml cell
densities. The second experiment with synthetic
magnetite was conducted with a complex growth

Ž .medium M1 to allow for better comparability with
Ž .the findings of Kostka and Nealson 1995 .

2.1.1. Reduction of biogenic magnetite by CN32
ŽS. putrefaciens strain CN32 DOE’s Subsurface

.Microbial Culture Collection was provided courtesy

Ž .of Dr. David Boone Portland State University . This
strain was isolated from a subsurface core sample
Ž .250-m below the ground surface obtained from the
Morrison Formation in northwestern New Mexico.
Strain CN32 is a Gram-negative, metal-reducing bac-
terium that can grow either aerobically or anaerobi-
cally using a range of electron acceptors.

The components used in the biogenic magnetite
reduction experiments were similar to those used in

Žearlier experiments with HFO Fredrickson et al.,
.1998 . Briefly, they were the following: 3 ml of a

biogenic magnetite slurry, estimated final concentra-
tion of ;100 mM total Fe, 10 mM Na lactate
Ž .electron donor , 28 mM NH Cl, 1.3 mM KCl, 0.784

mM nitrilotriacetic acid, 1.2 mM MgSO P7H O, 1.74 2

mM NaCl, 0.29 mM MnSO PH O, 95 mM ZnCl ,4 2 2

36 mM FeSO P7H O, 68 mM CaCl P2H O, 424 2 2 2

mM CoCl P6H O, 10 mM Na MoO P2H O, 7.62 2 2 4 2

mM Na WO P2H O, 10 mM NiCl P6H O, 4 mM2 4 2 2 2
Ž .CuSO P5H O,2.1 mM AlK SO P12H O, 16 mM4 2 4 2 2

H BO . The medium was buffered with either 303 3

mM NaHCO or 30 mM PIPES with or without 4.33

mM NaH PO . Medium was dispensed into 10-ml2 4
Ž .pressure tubes, purged with O -free N :CO 80:202 2 2

for the bicarbonate-buffered medium or O -free N2 2

for the PIPES-buffered medium, stoppered with butyl
rubber closures, crimp sealed and autoclaved.

CN32 cells were grown aerobically and harvested
by centrifugation from aerobic tryptic soy broth
Ž .TSB cultures, washed with buffer to remove resid-
ual TSB, resuspended in bicarbonate or PIPES buffer,
and purged with O -free N or N :CO . Cells were2 2 2 2

added to the media to obtain a final concentration of
2–3=108 mly1. The biogenic magnetite from HFO
Ž .Fredrickson et al., 1998 was prepared using the
following procedure. The biogenic magnetite was
suspended in 1M Na acetate at pH 4.5–5, and ex-
tracted overnight at 308C with agitation of 100 rpm

Ž .to remove Fe II not associated with magnetite. Mag-
netite was then resuspended in 10% NaOH and
shaken overnight at 658C and 100 rpm to remove
residual cells and cell debris. Due to concerns of
magnetite oxidation, the biogenic magnetite was not
autoclaved. However, the pre-treatment with NaOH
would have effectively sterilized the magnetite by
lysing the cells. Magnetite was washed twice in 0.1
M Na perchlorate for 1 h at 308C and 100 rpm,
resuspended in anaerobic water and then added to
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the medium. The biogenic magnetite prepared in this
manner was confirmed by XRD. The treatment tubes
were incubated in the dark at 308C and agitated at
100 rpm. Controls consisted of solutions that re-
ceived 1 ml of anaerobic buffer in place of CN32
cell suspension. Chemical analyses of experiments
with biogenic magnetite were conducted on duplicate
samples while experiments with the synthetic mag-
netite were analyzed in triplicate. Separate sets of
tubes were sacrificed at each time point for analysis
Ž .7 and 14 days .

2.1.2. Reduction of synthetic magnetite by aerobi-
cally and anaerobically grown CN32 and MR-1 in
M1 medium

A synthetic magnetite was prepared using the
procedure described by Schwertmann and Cornell
Ž .1991 . The synthetic magnetite prepared in such a
manner had a BET-measured surface area of 15 m2

gy1. The identity of the phase was confirmed by
Ž .XRD and Mossbauer spectroscopy. The Fe III r¨

Ž .Fe II ratio in an HCl-dissolved sample of this mate-
rial was 2.6. Approximately 0.11 g of dried synthetic
magnetite was placed into 10-ml pressure tubes,
flushed with N , stoppered with butyl rubber clo-2

sures, crimp sealed and autoclaved.
The M1 medium contained 10 mM lactate as the

electron donor and various compounds to support
cell growth. These compounds included the follow-
ing: 0.02% yeast extract, 0.01% Bactopeptone, 9.0

Ž .mM NH SO , 5.7 mM K HPO , 3.3 mM4 2 4 2 4

KH PO , 2.0 mM NaHCO , 1.01 mM MgSO P2 4 3 4

7H O, 0.485 mM CaCl P 2H O, 67.2 mM2 2 2

Na EDTA, 56.6 mM H BO , 10.0 mM NaCl, 5.42 3 3

mM FeSO P 7H O,5.0 mM CoSO , 5.0 mM4 2 4
Ž . Ž .Ni NH SO , 3.87 mM Na MoO , 1.5 mM4 2 4 2 2 4

Na SeO , 1.26 mM MnSO , 1.04 mM ZnSO , 0.22 4 4 4

mM CuSO , 20 mg ly1 arginine, 20 mg ly1 gluta-4

mate, and 20 mg ly1 serine. The pH was buffered at
w Ž6.2 by the addition of 100 mM HEPES 4- 2-hy-

. xdroxyethyl -1-piperazineethane sulfonic acid . Sterile
anaerobic M1 medium of 9 ml in volume was dis-
pensed into the pressure tubes containing the mag-
netite in an anaerobic chamber.

CN32 and MR-1 cells were cultured either aerobi-
Ž .cally on TSB without dextrose for 16 h at 308C

with shaking at 100 rpm, or anaerobically on TSB
with 40 mM fumarate for 40 h at 308C without

shaking. Cells were washed twice and centrifuged at
6000 rpm for 10 min in sterile PIPES buffer at pH 7,
followed by one wash and re-suspension to ;109

cells mly1 in M1 medium. Aerobically cultured cells
of CN32 and MR-1 were added to the pressure tubes
containing the synthetic magnetite and M1 medium
to obtain a final concentration of 3=108 cells mly1.
Anaerobically grown cells of CN32 and MR-1 were
added to the tubes containing the magnetite and M1
medium to obtain a final concentration of 2.3=108

cells mly1. The total volume of medium in each
tube, including magnetite and cells, was 10 ml. The
magnetite in the medium had a final concentration of
48 mM. All treatment tubes were incubated in the
dark at 308C and agitated at 100 rpm until the end of
the experiment. Controls consisted of tubes with
magnetite and M1 medium without cells. All treat-
ments with aerobically cultured cells were incubated
for 14 days, and those with anaerobically cultured
cells were incubated for 12 days.

( )2.2. Analyses of Fe II production

ŽAt select time points 14 days for the biogenic
magnetite experiment, and 12–14 days for the syn-

.thetic magnetite experiment , replicate tubes were
removed from the incubator, and transferred to an

Ž .anaerobic Ar:H , 95:5 glovebag. One tube was2

reserved for characterization of mineral products by
ŽXRD, SEM, TEM, and Mossbauer synthetic mag-¨

.netite only . Butyl rubber stoppers were removed
Ž . Žfrom the two biogenic magnetite or three synthetic

.magnetite remaining tubes, and the solution pH was
measured using a Ross combination electrode, and a
mean value was obtained. One milliliter of suspen-
sion was removed from each tube, filtered through a
0.2-mm polycarbonate filter, and extracted by 1 ml
of 0.5 N Ultrex HCl. This fraction was considered as

Ž .the soluble fraction and analyzed for Fe II and
phosphate. Due to concerns about artificially ele-

Ž .vated soluble Fe II concentrations in the filtrate
caused by the passage of nanometer-sized magnetite

Ž .particles and cell-bound Fe II through the 0.2 mm
Ž .filter, Fredrickson et al. 1998 used two different

filter sizes, 0.2 mm and 0.002 mm, and found no
Ž .difference in measured soluble Fe II concentration,

demonstrating that a 0.2-mm filter was sufficient to
Ž .filter Fe II solids for these experiments. HCl ex-

Ž .tractable Fe II was obtained by mixing 9 ml of 1 N
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HCl with the 9 ml remaining suspension in each tube
and equilibrating for ;48 h. After this period, the
supernatant was removed from each tube, subsam-

Ž .pled and diluted for Fe II and total Fe analyses. This
extraction method was similar to that previously

Ž .used to measure Fe II in microbially reduced mag-
Ž .netite suspensions Kostka and Nealson, 1995 but

differed from that method, which equilibrated 0.1 g
or 0.1 ml of sample with 5.0 ml of 0.5 N HCl for 15

Žmin before analyzing by ferrozine Lovley and
.Phillips, 1986 . Stronger acid, 6 N HCl, was used to

dissolve the synthetic magnetite to obtain the initial
Ž . Ž . Ž .Fe III rFe II ratio of 2.6. Fe II in acidified filtrates

Ž .0.2 mm or extracts was determined using the fer-
Ž .rozine assay Lovley and Phillips, 1986 . Phosphate

concentrations were determined using an ammonium
Ž .paramolybdate assay Olsen and Sommers, 1982 .

2.3. X-ray diffraction

Solid precipitate in the tube that was set aside at
the end of the experiment was split for XRD,
Mossbauer, and electron microscopic analysis. The¨
solid material for XRD analysis was dried on a
watch glass in an anaerobic chamber for 48 h. The
dried solid was scraped off the watch glass onto a
wax sheet, and then placed in a scintillation vial
stored in an anaerobic atmosphere until the time of
analysis. Immediately before analysis, a scintillation
vial was opened and mineral product was transferred
to a quartz XRD slide with a 9-mm I.D. zero back-
ground cavity. The XRD apparatus consisted of two
Philips Wide-Range Vertical Goniometers with inci-
dent-beam 2-theta compensating slits, soller slits,
fixed 2 mm receiving slits, diffracted beam graphite
monochromators, and scintillation counter detectors.
The X-ray source was a Philips XRG3100 X-ray
Generator operating a fixed-anode, long-fine-focus

Ž .Cu tube at 40 kv, 50 mA 1800 W . Instrument
control was by means of Databox NIMBIM modules
Ž .Materials Data, Livermore, CA .

2.4. Scanning electron microscopy

The split for the electron microscopy was pre-
served in 5% glutaraldehyde and stoppered with
rubber closures. All solid materials were prepared in

Ž .an anaerobic glovebag to prevent oxidation of Fe II
containing minerals. Individual grains of solids were

dispersed onto holy-carbon Cu grids and allowed to
dry in the glovebag. The Cu grids were carefully
placed into serum vials with crimp seals for transport
to the microscopes. The only exposure to air oc-
curred during transfer from the serum vials to sample
holder and chamber. Samples were examined by
SEM to identify minerals and to obtain crystal mor-
phology information using a Philips XL30 field

Ž .emission gun FEG SEM fitted with backscatter and
secondary electron detectors and IMIX energy dis-
persive X-ray analytical system. Qualitative energy

Ž .dispersive spectrum EDS chemical analyses were
obtained by focusing the beam to a spot over the
target area.

2.5. Embedding, sectioning procedure and TEM

Cell-mineral suspensions were washed three times
with 0.1 M Na cacodyalate buffer at pH 7.2 followed
by three washes with cold deionized water. Cell-
mineral suspensions were fixed with 1% potassium
ferricyanide reduced osmium tetroxide for 1 h on ice.
The suspensions were then rinsed four times with
deionized water, then stained overnight at room tem-
perature with 1% aqueous uranyl acetate. The sus-
pensions were rinsed again for three times with
deionized water, dehydrated through graded series of
ethanol and embedded in medium grade Spurr resin.

Ž .Ultra-thin sections were cut 60–95 nm in thickness
with a Diatome diamond knife using a Reichert
Ultracut E ultramicrotome. Sections were counter-
stained with Reynold’s lead citrate and examined at
80 KV with a JEOL 100C TEM.

2.6. Mossbauer spectroscopy¨

Random orientation absorbers were prepared by
mixing 17–28 mg of dried sample with petroleum
jelly in a 0.5-in. or 3r8-in. thick and 0.5-in. I.D. Cu
holder sealed at one end with clear scotch tape. The
sample space was filled with petroleum jelly and the
ends sealed with the tape. The bioreduced samples
Žsynthetic magnetite sample reduced with aerobically

.grown bacteria were handled under an anaerobic
atmosphere. Spectra were collected at room tempera-

Ž . Ž . 57ture RT using ;50 mCi 1.85 MBq CorRh
Žsingle-line thin sources. The Mossbauer bench MB-¨

.500; WissEL, Germany was equipped with a dual
Mossbauer drive system to gather data simultane-¨
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ously for two experiments. The velocity transducer
Ž .MVT-1000; WissEL was operated in the constant-

Ž .acceleration mode 23 Hz, "10 mmrs . Data were
acquired on 1024 channels and then folded to 512
channels to give a flat background and a zero-veloc-

Žity position corresponding to the center shift CS or
.d of a metallic-Fe foil at room temperature. Calibra-

tion spectra were obtained with a 20-mm thick a-Fe
Ž .foil Amersham, England placed in exactly the same

position as the samples to minimize any error due to
changes in geometry. The transmitted radiations were
recorded with Ar–Kr proportional counters. The un-
folded spectra obtained were folded and evaluated

Ž .with Recoil University of Ottawa, Canada program
using Voigt-based hyperfine parameter distribution

Ž .method Rancourt and Ping, 1991 .

3. Results

3.1. Effect of buffer type and phosphate on reduction
of biogenic magnetite

The 0.5 N HCl dissolved the biogenic and syn-
thetic magnetites in the unincoculated controls to

Ž .varying degrees Table 1 , probably due to differ-

ences in the degree of crystallinity, particle size and
Ž .surface area. The amount of Fe II that was extracted

by 0.5 N HCl in these samples, therefore, included
Ž . Ž .biologically reduced Fe II in addition to Fe II asso-

ciated with the original magnetite sample. As the
reduction of magnetite increased, the proportion of

Ž .magnetite Fe II released would have increased ac-
cordingly. Therefore, it is not possible to precisely

Ž .determine the actual mass of magnetite Fe III that
was reduced by the microorganisms. Regardless, the

Ž .amount of 0.5 N HCl-extractable Fe II in the biore-
duced magnetite samples was 1.5- to 1.7-fold greater

Ž . Žthan the Fe II in the unreduced uninoculated con-
. Ž .trol magnetite Table 1 indicating extensive reduc-

tion. The extent of reduction depended on the
medium, with the bicarbonate-buffered media pro-

Ž .moting greater Fe III reduction than the PIPES-
Ž .buffered media. The concentration of Fe II wasaq

highest in the PIPES buffer, lower in the PIPESqP
and lowest in the bicarbonate buffered medium and

Ž .uninoculated controls Table 1 . These differences
correspond to the presence of inorganic ligands,
phosphate and bicarbonate, that can complex and

Ž .precipitate Fe II . The presence of phosphate did not
significantly enhance the reduction and, in fact, mi-
crobial reduction of magnetite in the bicarbonate-

Table 1
The extent of magnetite reduction, mineral products and solution composition in various treatments

aŽ . Ž . Ž . Ž . Ž .Treatment 0.5 N HCl Fe II mM Post-reduction minerals Aqueous Fe II mM Aqueous P mM Final pH
bBiogenic magnetite

cŽ . Ž .HCO 54.1 1.3 Siderite 0.04 0.01 – 7.43
dŽ . Ž .HCO qP 51.3 2.7 Siderite, vivianite 0.04 0.01 bd 7.43

Ž . Ž .PIPES 45.2 2.0 None 0.84 0.05 – 7.0
Ž . Ž .PIPESqP 49.4 1.3 None 0.41 0.02 Bd 7.1

Uninoculated HCO qP 31.3 – 0.04 0.79 7.03

Uninoculated PIPESqP 29.7 – 0.07 0.49 7.0

eSynthetic magnetite
Ž . Ž . Ž .Aerobically grown CN32 22.3 1.9 Vivianite 0.32 -0.01 1.25 0.03 6.4
Ž . Ž . Ž .Aerobically grown MR-1 15.8 4.3 Vivianite 0.24 0.04 2.74 0.45 6.4
Ž . Ž . Ž .Anaerobically grown CN32 18.6 3.9 Minor vivianite 0.47 0.02 1.83 0.22 6.4
Ž . Ž . Ž .Anaerobically grown MR-1 6.4 1.8 Minor vivianite 0.40 0.04 7.22 1.24 6.3

Uninoculated control 2.8 – 0.01 8.50 6.2

a Ž .Mineral other than magnetite identification was based on XRD, SEM and Mossbauer spectroscopy.¨
b Ž .Each treatment was incubated for two time points 7 and 14 day, respectively .
c Values in parentheses are standard deviations of the means of three replicates.
d bdsbelow detection.
e All treatments with aerobically cultured cells were incubated for 14 days, and those with anaerobically cultured cells were incubated

for 12 days.
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buffered medium with phosphate was less than its
equivalent treatment without phosphate.

3.2. Bioreduction of synthetic magnetite

Ž .The initial Fe III concentration in the synthetic
magnetite was measured by sequential extraction of
0.5 N HCl followed by 6 N HCl. As expected, 0.5 N
HCl only partially dissolved the synthetic magnetite
whereas the 6 N HCl promoted complete dissolution.

Ž . Ž .The Fe III rFe II ratio was 2.6 as determined by
the 6 N HCl dissolution analysis. Mossbauer spec-¨

Ž . Ž . Ž .troscopy see Section 3.5.1. confirmed Fe III r II
ratio of 2.6 and the identity of the synthetic Fe oxide
as magnetite but indicated that it was slightly oxi-
dized in comparison to stoichiometric magnetite with

Ž . Ž .an Fe III r II ratio of 2.0.
Ž .Aqueous Fe II was insignificant compared with

Ž .0.5 N HCl extractable Fe II in this experiment
Ž .Table 1 . There was no appreciable difference in

Ž .aqueous Fe II concentrations among the various
bioreduced treatments as they ranged from 0.24 to
0.47 mM but all were much higher than in uninocu-

Ž .lated control, which was 0.01 mM Fe II . Theaq

overall extent of reduction, as measured by 0.5 N
Ž .HCl extractable Fe II in the microbially reduced

treatments relative to an uninoculated control, was
greater in the treatments with aerobically grown
CN32 and MR-1 cells than that in the treatments

Žwith cells grown anaerobically with fumarate Table
.1 . Under the same condition, CN32 cells reduced

Ž .more magnetite than MR-1 cells Table 1 . The
effect of strain type on the extent of reduction was
particularly pronounced in the treatments with anaer-
obically grown cells, where CN32 reduction resulted
in approximately three times more HCl-extractable
Ž . Ž .Fe II than MR-1 Table 1 .
The concentration of PO 3y in the treatments4 Žaq.

with anaerobically cultured cells was higher than that

Ž . Ž .Fig. 1. a, b SEM image of CN32 cells on biogenic magnetite. c EDS spectrum from these cells revealing that they were coated by
Ž .magnetite. d High resolution TEM micrograph showing direct contact between cell and magnetite. EDS spectrum was obtained from one

Ž .of the cells on the low right corner of a .
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Žin the treatments with aerobically cultured cells Ta-
.ble 1 . In the treatments with anaerobically cultured

cells, the concentration of soluble PO3y was four4

times higher in the MR-1 than in the CN32 treat-
ment. Low PO 3y corresponded to high 0.5 N HCl4 Žaq.

Ž .extractable Fe II , implying the formation of vivian-
w Ž . xite Fe PO P8H O . It was expected therefore,3 4 2 2

that more vivianite formed in the CN32 treatment
than in the MR-1 treatment. However, XRD,
Mossbauer, and SEM data did not support this ex-¨

Ž .pectation see below .
The 0.5 N HCl extractability of the starting and

residual synthetic magnetite was assumed to be the
same for all treatments and is supported by the
Mossbauer spectroscopy results that indicate little or¨
no structural change in the magnetite remaining after
bioreduction.

3.3. Biogenic magnetite–cell interactions

Initial reduction proceeded via intimate associa-
Ž .tion between bacterial cells and magnetite Fig. 1a,b

as expected for enzymatic mediation of electron
transfer to Fe oxides. Individual bacteria in the mi-

Ž .crograph are rod-shaped 2.4 mm=0.6 mm , but the
EDS analyses of the cells gave rise to a magnetite

Žcomposition, rather than an organic composition Fig.
. Ž .1c . TEM microscopy Fig. 1d confirmed the SEM

observation that individual bacteria were in direct
contact with magnetite crystallites. The nanocrys-
talline biogenic magnetite formed a spherical aggre-
gate around the outside of individual cells. Cell
membrane and internal structures were not clear in
the image, possibly due to a shadowing effect from
the magnetite crystals, blockage of stain penetration

Ž . Ž . Ž .Fig. 2. a XRD pattern of the control in the bicarbonate buffer. b, c SEM images of the same control for 7 and 14 days, respectively. d
Ž .EDS spectrum for the 7-day treatment with EDS target area from b .
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Ž . Ž .Fig. 3. a XRD pattern of the mineral solids from the bicarbonate-buffered medium showing that it consisted of siderite and magnetite. b SEM image of the same sample
Ž . Ž .showing siderite precipitation on the base of magnetite. c, d, e Three EDS spectra from the three points in b showing different compositions.
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by the magnetite coating or possibly lysis of cells
before or during fixation. The latter is less likely
because of the retention of the rod shape; lysis of the
cell wall and membrane would be expected to result
in spheroidal, as opposed to rod, morphologies. The
magnetite coating was not of equal thickness, with

Žbacterial ‘‘polar regions’’ being thinner 0.1–0.2
. Ž .mm than near the midsection 0.5–0.7 mm . Pore

spaces were evident in the bio-induced magnetite
aggregate, suggesting that the magnetite was proba-
bly held in place by a bacterial polymer. Although a
quantitative analysis was not made, it appeared that
porosity was the greatest in the regions adjacent to
the cell surface, possibly suggesting these as more
active regions of magnetite dissolution.

3.4. Mineral products of biogenic magnetite reduc-
tion by CN32

3.4.1. Bicarbonate-buffered solutions
In the control, magnetite was the only solid phase

Ž .observed Fig. 2 . There was a change in morphol-
ogy of the magnetite, however, between the 7- and
14-day incubation period. In the 7-day sample, the

Žmagnetite appeared as thin sheets of aggregates Fig.
.2b . In the 14-day sample, the magnetite appeared as

globules, consisting of aggregates of individual
Ž .nanometer-sized crystals Fig. 2c . In all treatments,

but in varying amounts, magnetite remained at the
end of the incubation period. In some treatments
Ž .mainly in the PIPES-buffered solution , magnetite
was the only solid phase observed, in spite of signifi-

Ž .cant microbial reduction of Fe III . Mineral products
formed as a result of magnetite reduction in the
bicarbonate-buffered solutions were morphologically
diverse.

In the bicarbonate-buffered solution without P,
Ž . Ž .siderite FeCO and magnetite Fe O were the3 3 4

predominant solid phases present after incubation
Ž .Fig. 3a . Siderite was more commonly observed in
the 14 day-samples than in the 7 day-samples.
Siderite was typically present as imperfect, small

Ž .rhombohedral pseudo-cubic crystals of slightly dif-
Ž .ferent sizes Fig. 3b . These crystals had precipitated

Žon a fine-grained magnetite base large crystal on the
.right in Fig. 3b . In some cases, the siderite had

Žcovered one-half of the magnetite base low left in
.Fig. 3b . When these siderite crystals merged, they

produced a larger, but still imperfect rhombohedral
Žsiderite crystal. Hollow internal structures small

.crystal on the left in Fig. 3b were often observed in
the siderite. The three crystals in Fig. 3b represent
three different stages of magnetite–siderite transfor-
mation that were commonly observed. Prior to
siderite precipitation, the base magnetite appeared to
have adjusted its morphology to accommodate for

Ž .siderite deposition Fig. 4a . As precipitation pro-
ceeded, an imperfect and large crystal of siderite

Ž .resulted Fig. 4b .
The EDS analyses revealed that the individual

siderite crystals possessed a siderite composition
Ž .point A, Fig. 3c . The composition of siderite was
characterized by the OrFe peak ratio of approxi-
mately 3.5 and presence of a minor amount of Ca,
presumably in solid solution with Fe in the structure.
The composition of the fine-grained base magnetite

Ž .varied from that of magnetite point C, Fig. 3e to
Žintermediate between siderite and magnetite point

.B, Fig. 3d . The magnetite composition was charac-

Ž .Fig. 4. a SEM image showing early stage of siderite precipita-
Ž .tion to the magnetite base. b SEM image showing that siderite

almost covered the magnetite base.
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Ž . Ž .Fig. 5. a XRD pattern of the solid in the PIPES-buffered medium showing that the magnetite was the dominant phase. b, c SEM images of magnetite showing a change in
Ž . Ž . Ž . Ž .morphology from thin sheets 7 days to globules 14 days . d EDS spectrum obtained from one of the globules in c .
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terized by the OrFe peak ratio of 2.3 and complete
Ž .absence of Ca Fig. 3e . The intermediate composi-

tion was characterized by the OrFe peak ratio of
approximately 2.8 and intermediate amount of Ca. In
general, the base magnetite adjacent to siderite crys-
tals possessed a composition closer to that of siderite.

In the bicarbonate-buffered medium with P, XRD
detected the presence of siderite, vivianite and unre-

Ž .duced magnetite data not shown . Siderite occurred
as rhombohedral crystals ;2 mm in size. Vivianite
occurred as tabular crystals 10–15 mm in size. The
EDS analyses of vivianite revealed that Fe, P, and O
were the dominant elements.

3.4.2. PIPES-buffered solution
A trace amount of vivianite was observed under

SEM in the PIPES-buffered control with P, suggest-

ing that abiotic formation of vivianite was possible
but insignificant within time frame of the experi-

Ž .ments 14 days . In the PIPES-buffered solution
without P, XRD indicated that the majority of solid
was unreduced magnetite, possibly with a small

Ž .amount of siderite -5%, Fig. 5a . In this case,
phosphorus may have come from cells. Cell lysing
could have released some amount of P. Siderite,

Ž .however, was not detected by SEM Fig. 5b,c . The
Ž .lack of Fe II precipitate in this buffer suggested that

Ž .the bioproduced Fe II sorbed to the unreduced mag-
netite, cells, or cell polymers because the aqueous

Ž .concentration of Fe II was much less than that
extracted by 0.5 N HCl. Alternatively, an amorphous
phase of indistinct morphology may have formed,

Ž .particularly at the cell–magnetite interface Fig. 1d .
During the course of the incubation in PIPES buffer

Ž .Fig. 6. a, b XRD patterns of the mineral solids from the treatments with aerobically grown CN32 and MR-1 on synthetic magnetite
Ž .showing that the solids consisted of magnetite and vivianite. c SEM image of vivianite and unreduced magnetite from the CN32 treatment

Ž .showing bladed and fibrous morphology of vivianite. d SEM image of vivianite and unreduced magnetite from the MR-1 treatment
showing bladed morphology of vivianite.



( )H. Dong et al.rChemical Geology 169 2000 299–318 311

Ž .14 days , the morphology of magnetite changed
dramatically from thin aggregate sheets at 7 days
Ž . ŽFig. 5b to individual 2-mm spheres at 14 days Fig.
.5c . When P was present in the PIPES-buffered

medium, a minor amount of vivianite formed but
magnetite remained a major constituent in the solid
material. Vivianite abundance could not account for

Ž . Ž .all biogenic Fe II ;14% , suggesting that biogenic
Ž .Fe II that was not present in the aqueous phase was

associated with cell or oxide surfaces.

3.5. Mineral products of synthetic magnetite reduc-
tion by CN32 and MR-1

3.5.1. Electron microscopy
The synthetic magnetite was more crystalline than

the biogenic magnetite as revealed by the higher

signal to noise ratio of the former phase in XRD
Ž .patterns not shown . The mineral products were less

diverse than those in the biogenic magnetite experi-
ment, primarily because of uniformity of the medium
composition. Following reduction, magnetite re-
mained the dominant mineral in the solid phase, with
various amounts of vivianite in different treatments.
Overall, more vivianite was produced in the treat-
ments with aerobically cultured cells than in the

Žtreatments with anaerobically grown cells Figs. 6
.and 7 . This observation was consistent with the

Ž .higher 0.5 N HCl extractable Fe II in the treatments
with aerobically cultured cells. In the treatments with
aerobically cultured cells, vivianite was more abun-
dant in the treatment with the CN32 than in the
treatment with the MR-1. Both incrusting bladed and
fibrous vivianite crystals ;20 mm in the longest

Ž .Fig. 7. a, b XRD patterns of the mineral solids from the treatments with anaerobically grown CN32 and MR-1 on magnetite showing little
Ž . Ž .evidence for biomineralization in the bulk sample. c SEM image of the solid from the CN32 treatment showing fibrous vivianite. d SEM

image of the solid from MR-1 the treatment showing predominantly magnetite.
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dimension were observed in the CN32 treatment, and
only bladed vivianite crystals ;20–30 mm in the
longest dimension were present in the MR-1 treat-

Ž .ment Fig. 6c,d . With the anaerobically cultured
cells, CN32 produced a small amount of vivianite
Ž .Fig. 7c,d . Although vivianite was not observed by
SEM in the treatment with anaerobically grown MR-1
cells, the XRD pattern indicates that a small amount
of vivianite was present. While P consumption by
cells can not be ruled out, 6.0 to 7.4 mM P was

Ž .recovered in the 0.5 N HCl extracts data not shown .
Only soluble and vivianite-associated P would be

Žremoved by this extraction, cell bound P associated
.with lipids, nucleic acids etc. would not. Thus, there

was a maximum P consumption by cells of ;3 mM
Ž .with the remaining P not in the aqueous phase

potentially consumed by vivianite precipitation.

3.5.2. Mossbauer spectroscopy¨
57 Fe transmission Mossbauer spectroscopy was¨

employed to characterize nature of the synthetic

magnetite before and after bioreduction and to iden-
tify nature of any biogenic Fe2q minerals formed.
Mossbauer is a very sensitive and Fe specific tech-¨
nique with greater sensitivity than XRD; small
amounts of Fe, as little as 1 wt.%, are identifiable by
Mossbauer. In contrast to XRD, it provides informa-¨
tion on compounds that do not exhibit long-range

Ž .structural order poorly crystalline materials
Ž .Bancroft, 1973 . Common Fe minerals such as
siderite and vivianite are readily distinguished from
each other and from magnetite, goethite, etc.
Ž .Greenwood and Gibb, 1971 .

Experimental and simulated RT Mossbauer spec-¨
tra of the unreduced and bioreduced synthetic mag-
netite samples are shown in Fig. 8. The spectra

w Ž .exhibited two sextets and a doublet s in the biore-
x 3qduced samples that can be attributed to Fe and

2.5q w 3q 2qFe average of Fe and Fe sensed by the
Fe . nuclei due to rapid electron exchange be-OCT

xtween these Fe sites sites. The Mossbauer parame-¨
Ž . w 3qters of the unreduced sample Fig. 8a Fe -hyper-

Ž . Ž .Fig. 8. a Experimental and simulated Mossbauer spectrum of the unreduced synthetic magnetite. b, c Experimental Mossbauer spectra of¨ ¨
Ž .the synthetic magnetite sample treated with aerobically grown MR1 and CN32 bacteria, respectively. d Overlaid plots showing

3q Ž . 2.5q Ž .experimental Fe line 1 and Fe line 1 lines of the unreduced and the bioreduced samples.
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Ž . 2.5q xfine field HF of 49.2 T and Fe -HF of 45.9 T
are similar to those previously described for pure

Ž .magnetite Greenwood and Gibb, 1971 . The ratio of
the relative area of the Fe2.5q sextet to the Fe3q

Ž 2.5q 3q .sextet r or Fe rFe ratio , however, deviated
significantly from pure magnetite, exhibiting a ratio
of 1.10 in comparison to 1.80 expected for pure

Ž .magnetite Vandenberghe et. al., 1998 . These results
indicate limited oxidation of the synthetic magnetite
since oxidation of Fe2q lowers r. The newly gen-OCT.

erated Fe3q has Mossbauer parameters similar to¨OCT.

Fe3q hence, lower r. Although the synthetic mate-TET

rial is clearly pure magnetite with no other phases
such as maghemite or hematite, it should be consid-
ered a partially oxidized or non-stoichiometric mag-
netite. The Fe3qrFe2q mole ratio of 2.64 obtained
by rough estimation from the Mossbauer data is in¨
good agreement with the Fe3qrFe2q ration of 2.6
obtained by HCl dissolution.

The r of the bioreduced samples are similar to
w Ž .the unreduced sample r MR1 s 1.07, and

Ž . xr CN32 s1.18 as indicated by the coincidence of
the outermost peaks of the unreduced and the biore-

Ž .duced samples Fig. 8d . In addition, the other
Mossbauer parameters of the bioreduced samples are¨

Ž .similar to the unreduced sample Fig 8b,c . These
results indicate that the remaining magnetite in the
bioreduced samples was identical in composition to
that in the starting material.

Simulation of the bioreduced samples indicated
that approximately 6.5–8.2 spectral area is due to

w Ž . xbiogenic vivianite Fe PO P8H O . Paramagnetic3 4 2 2
Ž .doublet s in Fig. 8b,c are attributable to vivianite.

Ž .Mossbauer parameters of the doublet s are similar¨
Žto vivianites reported in the literature Greenwood

.and Gibb, 1971 .

4. Discussion

4.1. Cell–magnetite interactions

The transformations in these experiments pro-
ceeded via a direct reduction of biogenic or synthetic

Ž .magnetite Fe III by the S. putrefaciens as an elec-
Ž .tron acceptor during respiration Fig. 1 . Although it

has been previously shown that S. putrefaciens can
extensively reduce magnetite and that direct contact

between bacteria and oxides is required for reduction
Ž . Ž .Kostka and Nealson, 1995 , the fate of Fe II gener-
ated during magnetite reduction and the interactions
between bacterial cells and mineral surfaces are
unknown. TEM observations revealed aggregationr
attachment of magnetite crystals around the cell pe-
riphery, suggesting binding via an extracellular poly-

Ž .mer, possibly exopolysaccharide EPS . Nealson and
Ž .Little 1997 reported that S. putrefaciens formed a

layer of EPS, obscuring individual cell morphology
when viewed by an environmental SEM. Other stud-
ies have suggested or observed that Shewanella cells

Žattach to solids via EPS Obuekwe et al., 1981;
.Arnold et al., 1988 . Based on SEM imaging and

staining with ferritin, S. alga BrY produced EPS in
Žresponse to Fe oxides Urrutia and Fredrickson, un-

.published data . Extracellular polymers produced by
bacteria can extend out to 10 mm from the cell
surface and can bind quantities of metal cations as

Ž .high as 25% by weight Geesey and Jang, 1989 . We
speculate that exopolymers may contribute signifi-

Ž .cantly to the Fe II sorption capacity in these experi-
ments, particularly in the PIPES-buffered sus-
pensions where millimolar levels of 0.5 N HCl

Ž .extractable Fe II were generated as a result of
Ž .reduction yet only a fraction of the Fe II was in the

aqueous phase. Whether extracellular polymers such
as EPS have any role in attachment or reduction of
magnetite or other Fe oxides by S. putrefaciens is
unknown at this time. Further research is required to
fully assess the role of cell surfaces and extracellular
polymers in the attachment to Fe oxides and their
role in reduction processes.

4.2. Microbial respiration and magnetite reduction

Ž .The extent of biogenic magnetite Fe III reduction
in the bicarbonate-buffered solution was only slightly

Žgreater than that in the PIPES-buffered medium Ta-
.ble 1 . This result was somewhat intermediate be-

tween the previous findings by Roden and Zachara
Ž .1996 in experiments examining goethite reduction
by S. alga BrY and those by Fredrickson et al.
Ž .1998 in their HFO reduction by S. putrefaciens

Ž .CN32. Fredrickson et al. 1998 demonstrated that
the bicarbonate-buffered medium promoted the mi-
crobial reduction of HFO relative to the PIPES-
buffered medium most likely because bicarbonate
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Ž .was able to complex with bioproduced Fe II , and
precipitate as siderite, effectively acting as a sink for
Ž .Fe II removal. In the PIPES-buffered medium, mag-

netite was the primary precipitate, rendering two-
Ž .thirds of Fe III potentially unavailable for further

reduction.
In the current magnetite reduction experiment,

siderite was observed as a primary solid phase in the
bicarbonate-buffered medium. In contrast no crys-

Ž .talline Fe II precipitates were detected in the
Ž .PIPES-buffered medium, suggesting Fe II associa-

tion with the residual magnetite surface or possibly
Ž .cellular material. Sorption of Fe II onto magnetite

Ž .or other amorphous precipitates and cell surfaces
may impede further reduction, resulting in an overall

Ž .lower extent of reduction. Fe II binding to oxide or
cell surfaces has previously been shown to retard the
rate and extent of microbial reduction of Fe oxides
Ž .Roden and Zachara, 1996; Urrutia et al., 1998 . The

Ž .lower extent of Fe III reduction in the PIPES-
buffered medium compared to the bicarbonate buffer
Ž .Table 1 suggests that, within the experiment dura-

Ž .tion, bioproduced Fe II may have had an inhibitory
effect. Additional research is needed to precisely

Ž .determine the fate of Fe II generated during micro-
bial magnetite reduction in these experiments.

Previous experiments investigating the bioreduc-
tion of HFO by CN32 demonstrated that magnetite
was a stable end product in PIPES-buffered medium
Ž .Fredrickson et al., 1998 . The reasons for the reduc-
tion of biogenic magnetite in pH 7 PIPES lacking
bicarbonate or P are unclear but may be due to the
capacity of bacterial surfaces to bind Fe, as men-
tioned above. The surfaces of gram-negative bacteria
are particularly effective at binding metal cations
Ž .Ferris, 1989 and fresh cultures of S. alga BrY have

Ž . y1a Fe II sorption capacity of 0.1 mmol g dry cells
Ž .Urrutia et al., 1998 ; S. putrefaciens CN32 would

Ž .be expected to have a similar affinity for Fe II . The
Žaffinity of cell surfaces, including EPS, for Fe both

.II and III would likely promote the bioreduction of
magnetite by making the reaction more thermody-
namically favorable, analogous to the effect of pH
and complexing ligands. Unfortunately, quantifica-
tion of the effect of cell surfaces on magnetite
reduction is not possible at this time. Removal of

Ž .possibly adsorbed Fe II from biogenic magnetite
Žproduced from our previous HFO reduction see

.method section would also expose fresh magnetite
surfaces for further reduction.

The extent of the reduction of the synthetic mag-
netite was also influenced by S. putrefaciens strain.
CN32, in general, reduced more magnetite than MR-
1. This effect was more pronounced in the anaerobi-
cally grown cell treatments, where CN32 reduced
fourfold more magnetite than MR-1. Different strains
of S. putrefaciens apparently exhibit variable capaci-
ties for reducing magnetite. The reasons for differ-
ences between these two cultures are unclear. The
differences in the extent of reduction between the
biogenic and the synthetic magnetite can be at-

Ž .tributed mainly to differences in Fe III content of
the starting oxides and medium pH, 7.0 and 6.2,
respectively, for the biogenic and synthetic magnetite
reduction experiments.

There was evidence of vivianite precipitation in
all magnetite reduction experiments with M1 medium
that initially contained 9 mM PO3y. The presence of4

vivianite combined with the low concentrations of
3y Žsoluble PO with the exception of anaerobically4

.grown MR-1 cells at the end of the experiment
Ž .Table 1 , suggests that most of the P was consumed
by precipitation as vivianite. As determined by

Ž .Mossbauer spectroscopy Fig. 8 , the MR-1 biore-¨
duced magnetite contained a higher proportion of

Ž .vivianite 8.2% than did the CN32 bioreduced sam-
Ž .ple 6.5% , a result that is consistent with the relative

intensity of the peaks corresponding to vivianite in
the X-ray diffractograms in Fig. 6a and b. However,
these results are in contrast with the greater amount

Ž .of HCl-extractable Fe II in the CN32-reduced treat-
Ž .ment 22.3 mM compared to the MR-1 reduced

Ž .magnetite 15.8 mM . The reasons for this discrep-
ancy are unclear.

4.3. Biomineralization sequence during magnetite
reduction

Thermodynamic calculations conducted by
Ž .Fredrickson et al. 1998 for HFO reduction by

CN32 in the bicarbonate-buffered medium indicated
that the magnetite stability field would be encoun-
tered before that of siderite. A small amount of
magnetite in the bicarbonate-buffered medium was
indeed observed under TEM. However, the genetic
relationship between magnetite and siderite, if it



( )H. Dong et al.rChemical Geology 169 2000 299–318 315

existed, was not determined. In this study, biogenic
magnetite from HFO reduction was used, and treated
to remove unreduced HFO, as the starting material to
maximize the probability of capturing the transfor-
mation dynamics. This study complements the work

Ž .by Fredrickson et al. 1998 in that magnetite was
biotically converted to siderite under similar experi-
mental conditions. Furthermore, our microscopic evi-

Ž .dence i.e.,Figs. 3 and 4 definitively delineated that
magnetite-to-siderite transition in bicarbonate buffer
involved dissolution of magnetite and precipitation
of siderite. The Mossbauer spectroscopy results also¨
indicate that the biogenic vivianite resulted from the
complete reduction of magnetite grains, a finding
that is consistent with the dissolution–precipitation
mechanism suggested by the TEM analyses of the

Ž .biogenic magnetite Fig. 3 . A solid-state conversion
would result in a different r and Mossbauer parame-¨
ters. Although it has been suggested that magnetite

Žreduction involves dissolution–precipitation Kostka
.and Nealson, 1995 , no direct evidence has been

presented. This dissolution–precipitation mechanism
is also consistent with crystallographic constraint.
That is, structures of magnetite and siderite are so
drastically different that it is not possible for the
solid state conversion from one phase to the other.

The dissolution–precipitation mechanism has im-
portant implications for bacterial accessibility to

Ž .structural Fe III in crystalline phases. Bacteria may
Ž .have more ready access to structural Fe III in poorly

crystalline oxides, where structural defects may be
abundant. The presence of humic acid, or its analog
AQDS, apparently can relieve the requirement for
the direct contact between cell and oxide, and pro-

Ž . Žmote the Fe III reduction Zachara et al., 1998;
.Fredrickson et al., 1998 . Dissolution of magnetite

Ž .and liberation of Fe III , possibly as an amorphous
Ž .Fe III oxide precipitate, may be involved in the

magnetite reduction process, but additional work is
Ž .required to establish whether an Fe III dissolution

mechanism is operative.
Combining the current results with previous re-

Ž .search Fredrickson et al., 1998 , the biomineraliza-
tion sequence in the bicarbonate-buffered medium
appears to be as follows: HFO™magnetite™

Ž .siderite or vivianite in the presence of P . In this
study, we have provided direct evidence for biotrans-
formation of magnetite to siderite andror vivianite.

Magnetite reduction has been shown to be pH sensi-
Ž .tive. At low pH 5–6.5 , magnetite reduction is

Žthermodynamically favored Kostka and Nealson,
.1995 . While the thermodynamics is less favorable at

pH)6.5, the overall free energy change is strongly
Ž .influenced by the presence of Fe II complexing

ligands such as bicarbonate and phosphate and by
the precipitation of ferrous containing mineral phases
Ž .Fredrickson et al., 1998 that were not considered in
the thermodynamic analysis.

As shown in this study, bacterial reduction of
magnetite is dependent upon many factors including
medium composition and organism type. It is possi-
ble that there are significant differences among the
abilities of metal-reducing bacteria for reducing crys-
talline Fe oxides such as magnetite but a systematic
analysis of these variations, to our knowledge, has
not been done. The combination of pH, organism
differences, and the thermochemical effects of sec-
ondary reactions may account for some of previous
reports regarding the inability of some metal reduc-

Žing bacteria to reduce magnetite Lovley and Phillips,
1986; Lovley et al., 1993a,b; Roden and Lovley,

.1993 .

4.4. Implication for biogeochemical transformations

Magnetite is a major mineralogic component of
Ž .banded iron formations Walker, 1984 , and ubiqui-
Žtous in recent freshwater Hilton et al., 1986; Maher

.and Taylor, 1988; Thouveny et al., 1994 and marine
Ženvironments Karlin and Levi, 1983; Kirschvink

and Chang, 1984; Karlin et al., 1987; Shau et al.,
.1993 . Microbial magnetite dissolution could have a

significant impact on sediment and groundwater geo-
chemistry, and rock magnetic properties. We have
demonstrated that microbial reduction of magnetite
is strongly influenced by pH, Eh, local microenvi-

Ž .ronment aqueous solution composition and strain
of bacterium.

The ability of bacteria to utilize crystalline mag-
netite has far-reaching implications for microbial
processes in sediments, especially in the subsurface

Ž .where Fe III associated with Fe oxides may repre-
sent the largest mass of electron acceptor. Although
the rates of in situ iron-reducing activity are not
easily determined, laboratory-based evidence indi-
cates that it is feasible in deep subsurface environ-
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ments where both organic C and magnetite may be
present. Magnetite dissolution and siderite formation
is also of environmental importance. Metal oxides
have been proposed as a means for disposal of
radionuclide waste because these oxides have a high
affinity for radionuclides. Dissolution of Fe oxides
by bacteria would mobilize these constituents and

Žrelease them to aquifer systems Francis and Dodge,
.1990 . Alternatively, crystallization of siderite may

incorporate some inorganic contaminants, such as
Ž . Ž .Co II and Ni II , into its structure, thus resulting in

immobilization.

5. Conclusion

Biogenic and synthetic magnetite were reduced by
S. putrefaciens. The extent of reduction and the
nature of mineral products formed strongly depended
on pH and aqueous phase composition. The extent of
biogenic magnetite reduction in the bicarbonate-
buffered medium was greater than that in the
PIPES-buffered medium, probably via continuous

Ž .removal of bioproduced Fe II by formation of
siderite and vivianite. The biomineralization process
in the presence of bicarbonate could be summarized

Ž .as follows: HFO™magnetite™siderite vivianite .
Transformation from magnetite to siderite was ac-
complished through dissolution of magnetite and
precipitation of siderite. Strain CN32 reduced more
synthetic magnetite than biogenic magnetite, likely
due to the difference in the reduction medium but

Ž .also to the higher Fe III content of the synthetic
magnetite. The extent of magnetite reduction was
also impacted by growth conditions of the inoculum
and strain type. Aerobically cultured cells reduced
more magnetite than did anaerobically cultured cells
although the reason for this is unknown. Under the
same conditions, CN32 cells reduced more magnetite
than MR-1. Vivianite formed in those media contain-
ing P. Bacteria were observed to become enshrouded
in magnetite with time, possibly due to accumulation
in a microbially produced exopolymer. The role of
the polymer in attachment, reduction, and as a possi-

Ž .ble sink for Fe II is unknown but warrants further
investigation.
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