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Abstract Organic matter origins are inferred from
carbon isotope ratios (6'3C) in recent continental shelf
sediments and major rivers from 465 locations from
the north Bering-Chukchi-East Siberian-Beaufort Sea,
Arctic Amerasia. Generally, there is a cross-shelf
increase in §'°C, which is due to progressive increased
contribution seaward of marine-derived organic car-
bon to surface sediments. This conclusion is supported
by the correlations between sediment §'3C, OC/N, and
OPN. The sources of total organic carbon (TOC) to
the Amerasian margin sediments are primarily from
marine water-column phytoplankton and terrigenous
C; plants constituted of tundra taiga and angiosperms.
In contrast to more temperate regions, the source of
TOC from terrigenous C, and CAM plants to the
study area is probably insignificant because these
plants do not exist in the northern high latitudes. The
input of carbon to the northern Alaskan shelf sed-
iments from nearshore kelp community (Laminaria
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solidungula) is generally insignificant as indicated by
the absence of high sediment §'3C values (-16.5 to
-13.6%0) which are typical of the macrophytes. Our
study suggests that the isotopic composition of sed-
iment TOC has potential application in reconstructing
temporal changes in delivery and accumulation of
organic matter resulting from glacial-interglacial
changes in sea level and environments. Furthermore,
recycling and advection of the extensive deposits of
terrestrially derived organic matter from land, or the
wide Amerasian margin, could be a mechanism for
elevating total CO, and pCO, in the Arctic Basin
halocline.

Keywords Arctic Amerasian shelf - Sediment carbon
and nitrogen isotopes

Introduction

Organic carbon (OC) is a common but generally
minor component (<50 mg g!) of marine sediments
(Premuzic et al. 1982; Romankevich 1984). The con-
centration and composition of marine sediment OC
and organic matter (OM) have a potential bearing on
understanding marine depositional processes, paleo-
ceanography, pollution, global carbon cycling, and
exploration of fossil fuel reserves (Stein 1991; Zahn et
al. 1994), and on the cycling of redox-sensitive ele-
ments (Finney et al. 1988; Gobeil et al. 1997). Due to
the complex nature and variety of OM in marine sed-
iment (Henrichs 1992; Goni and Hedges 1995), tools,
such as stable isotopes (6'*C and &'N) and
biomarkers, are commonly used to determine the
sources of OC (Hedges and Mann 1979; Prahl and
Muehlhausen 1989; Jasper and Gogosian 1989; Hayes
et al. 1989; Yunker et al. 1993; Naidu et al. 1993).

The continental margin of the Arctic Ocean is the
world’s widest and accounts for 30% of the global
ocean shelf area. It is an important sink for total



organic carbon (TOC) and a potential source of TOC
to the adjacent deep basins (Walsh et al. 1989). Large
lateral variations in §'3C in organic matter of contem-
porary marine sediments may be anticipated in this
area due to regional differences in proportions of
marine algal production and terrestrial inputs from
rivers, each of which has a different §'3C composition
(Naidu et al. 1993, and references therein). Variations
in marine sediment 6'*C may also result from vari-
ations in marine OC caused by factors such as phyto-
plankton growth rate (Descolas-Gros and Fontugne
1990; Nakatsuka et al. 1992; Laws et al. 1995), algal
cell size (Fry and Wainright 1991), sediment diagene-
sis, and CO,(aq) concentration (Rau et al. 1997).
Although considerable data have been gathered on
013C in sediment TOC for selected seas marginal of
the western Arctic Ocean (Gearing et al. 1977; Greb-
meier 1987; Naidu et al. 1993; Grantz et al. 1996; Rut-
tenburg and Goni 1997; Cooper et al. 1998; Rachold
and Hubberton 1999), large data gaps remain, and a
coherent regional overview has not been produced.
This has hampered clarification of the relative impor-
tance of factors which influence the §°C of sediment
TOC in this region, and evaluation of this marker’s
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potential as a proxy for Arctic paleoceanography espe-
cially in context of the §'3C data reported from the
Eurasian margin and basin (Knies and Stein 1998;
Fahl and Stein 1999).

In this paper we synthesize published and new data
on the sediment 6'°C of the Amerasian shelf of the
western Arctic Ocean to gain a better understanding
of the sources and distribution of TOC.

Study area

The study area consists of almost one-half of the con-
tinental margin of the Amerasian Arctic Ocean
encompassing the contiguous north Bering-Chukchi-
East Siberian seas, Beaufort Sea, and major river del-
tas (Figs. 1, 2). Comprehensive descriptions of these
regions are provided elsewhere (Sharma 1979; Hood
and Calder 1981; Herman 1989; Walsh et al. 1989;

Fig. 1 Locations of sediment samples from the north Bering-
Chukchi-East Siberian seas and the distribution pattern of §'°C
in the sediments
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Fig. 2 Locations of sea-floor and sea-ice sediment samples from
the Beaufort Sea. See Table 1 for further details on the sample
locations

Grebmeier et al. 1995; Macdonald et al. 1998). With
the exception of the north Bering Sea, which is a mar-
ginal sea of the North Pacific Ocean, the arctic seas
are “Mediterranean” water bodies freely exchanging
with the interior Arctic Ocean. As a result, the waters
tend to be strongly salt stratified, due partly to river
runoff and partly to inflowing Pacific water, which is
fresher than the Atlantic water found at depth. Sea
ice covers the region for 6-9 months of the year. The
hydrochemistries of the major river systems affecting
the study area are described by Telang et al. (1991),
and the sources and fluxes of terrigenous dissolved
organic matter in parts of the area and adjacent basin
are addressed by Kattner et al. 1999; Opsahl et al.
1999.

Shelf sediments are typically a mosaic of poorly
sorted coarse to fine sediment types with mud domi-
nating off the major rivers (Naidu 1988). The trans-
port, deposition, and reworking of sediments is
strongly tied to ice, which both rafts the sediment and
gouges the bottom. The deltaic processes in the arctic
are unique: peak inflow precedes the breakup of
coastal ice with the result that sediment-laden river
water overflows the sea ice during spring (Dean et al.

1994). Furthermore, there is an absence of the delta-
front platform (Naidu and Mowatt 1975). The pres-
ence of permafrost and peat have led to some of the
world’s highest coastal erosion rates, 1-20 m per year
(Reimnitz and Barnes 1987), which provides an addi-
tional, widely distributed source of terrestrial POC to
the nearshore sediments (Naidu et al. 1993; Macdon-
ald et al. 1998).

With the exception of the northwestern Bering Sea
and the contiguous southwestern Chukchi Sea, the
shelves of the study area have generally low (<50 g C
m~ per year) primary production (Subba Rao and
Platt 1984; Schell et al. 1984; Macdonald et al. 1998).
The hydrography of the Bering Sea is dominated by
the Pacific Ocean inflow, and a sharp vertical hydro-
graphic front, extending north-south from the north
Bering Sea to south Chukchi Sea. This front separates
the nutrient-rich, colder, and more saline Anadyr
water in the west from the nutrient-poor, warmer, and
less saline Alaska Coastal water in the east (Coach-
man et al. 1975). Primary productivity in the Bering-
Chukchi Sea is ~250-480 g C m™ per year west of the
front and 80 g C m™ per year east of the front (cf.
Grebmeier et al. 1995). In the study area and most of
the Arctic, benthic production is closely coupled to
pelagic production. Most of the phytodetritus is
ungrazed in the water column and is deposited at the
bottom where it supports a rich benthic system (Feder
et al. 1994; Grebmeier et al. 1995). Ice-edge produc-



tion can be substantial (Niebauer and Alexander
1985), but its quantitative importance to the total pro-
duction has not been established.

Database, materials, and methods

The database for the §'°C of sediment TOC is drawn
from published values (Grebmeier et al. 1988; Feder
and Naidu 1991; Feder et al. 1994; Naidu et al. 1993;
Baskaran and Naidu 1995; Reed 1997; Cooper et al.
1998) supplemented by new data (Table 1). The data
for the Colville, Lena, Mackenzie, and Anadyr rivers/
deltas and most of the Beaufort Sea are new, with the
exception of 16 sediment samples which were added
from Gearing et al. (1977). Additionally, published
(Naidu 1985) and new data on 6"°N and OC/N for
selected Beaufort Sea sediments are reported here.

All sea-floor sediment samples are from the upper
3-cm oxidized/mixed sediment layer collected by
either Van veen grabs, HAPS or gravity cores
obtained at 465 locations (Figs. 1, 2; Table 1). Details
on sample preparation and methods of analyses of
03C and organic carbon (OC) and nitrogen (N) are
given by Naidu et al. (1993), Reed (1997), and Cooper
et al. (1998). Briefly, after collection, the samples
were placed in polyethylene bags and transferred
frozen to the laboratory where each sample was
thawed and a subsample was treated with 10% HCI to
remove carbonate. The COs-free sample was washed
to free excess acid and salts, oven dried and then
finely pulverized. Individual splits of different batches
of the powders were analyzed for 6'°C using three
functionally similar mass spectrometers (VG Micro-
mass Model 602E, Europa 20/20, and VG SIRA II).
The 6'3C values are referenced to the V-PDB stand-
ard with a standard error of the §'3C analysis of
+0.2%0. The OC/N ratios of sediment samples were
based on the weight-to-weight percents of OC and N
analyzed on splits of the COs-free powders, using
either a P.E. Model 240B CHN analyzer or a Europa
20/20 isotope ratio mass spectrometer. The precision
of the OC and N analyses was better than 10%. A
selected number of the powdered samples was also
analyzed for stable isotopes of nitrogen (6'°N) using
the Europa 20/20 mass spectrometer. Correlations
between §'°C, 61N, and OC were evaluated by regres-
sion analyses.

Results

The OC/N, 6'3C, and 6'°N values of sediment TOC of
the Beaufort Sea floor, bed loads of the Colville, Mac-
kenzie, Lena, and Anady rivers/deltas and sea-ice
samples are presented in Table 1. In this table the
OC/N values for selected locations (for those stations
with no corresponding 6'°N data) are from Naidu
(1985), the 6'3C for stations with map codes 50-65 are

525

from Gearing et al. (1977) and the rest of the data are
new. The distributional patterns of all available sed-
iment 6'°C data for the study area (Figs. 1, 3) show
notable trends. Within the north Bering Sea there is
generally an east to west cross-shelf progressive
increase in §3C from <-24.0 to —20%. (Fig. 1). This
trend continues in the Chukchi Sea with the exception
that within the central-west Chukchi Sea region there
is a reversal in the trend and relatively lower (—22%o)
013C values along the Russian nearshore. Another pat-
tern is the decrease northwestward in §'3C from —22
to —24.5%0 from the northwest Chukchi Sea to the
East Siberian Sea (Fig. 1). In Beaufort Sea (Fig. 3) a
broad successive seaward increase is observed in §'3C
from <-26.5 to >-23.0%. from the Colville-Kuparak
Delta complex to the continental margin edge. Gener-
ally, this trend extends in the contiguous Alaskan shelf
in the east; however, in the latter inshore, the lightest
013C values (<-26.5%o, which are associated with the
Colville-Kuparak prodelta) are absent. In the Cana-
dian Beaufort Sea, there is also a broad progressive
seaward increase in 6'3C from <-26.5%. in the Mac-
kenzie Delta to —24.5%. at the Mackenzie Shelf edge
(Fig. 3). The §13C of the sea-ice sediments of Beaufort
Sea (map codes 46-49) vary from -25.3 to -19.3%0
(Table 1), whereas the sediments of the Colville, Mac-
kenzie, Anadyr, and Lena rivers/deltas have typically
lower §13C (<-26.5%0). For the Beaufort Sea, §°C
values covary strongly with 6"°N and exhibit a neg-
ative correlation with OC/N (Fig. 4).

Discussion

For sediments, the factors controlling 6'3C values are
the mean 6'°C value of the TOC assemblage initially
accumulating at the sea floor and subsequent mod-
ification of this value during diagenesis. We discount
diagenesis as a major factor for our study area,
because there appears to be little difference between
the 6°C of settling POC (based on analyses of sed-
iment trap samples) and sea-floor surficial sediment
TOC of the Chukchi Sea and Beaufort Sea shelves
(Minagawa et al. 1991; Naidu et al. 1993; Baskaran
and Naidu 1995).

The overall cross-shelf seaward increases in 6°C
(Figs. 1, 3) are most simply explained as predomi-
nantly the product of mixing of TOC derived from
two end-member sources — marine phytodetritus and
terrestrial C; plants which consist chiefly of tundra
angiosperms and taiga. Presumably terrestrial C, and
CAM plants do not contribute carbon to the sed-
iments investigated because these plants do not thrive
in the northern high latitudes impacting our study
area (Ehleringer 1979). In the northern Alaskan arctic
shelf there is an additional potential source of carbon
to the sediment TOC. Here, Dunton and Schell (1987)
have reported presence in the nearshore of isolated
boulder deposits that support a kelp community
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Table 1 Locations of sed-
iment samples from sea-floor
and sea-ice of the Beaufort
Sea, Colville, Mackenzie, Ana-
dyr, and Lena rivers, and
OC/N, 6'3C and 6N of the
samples

Map Original sample Longitude Latitude Water depth OC/N  61°C PN

code no. W °N (m) (%o) (%o)

Continental margin
1 7E 152°04' 70°44' 33 154 -25.7 2.7
2 6D 150°29' 70°45' 18.4 11.3 -25.7 3.0
3 6C 150°32' 70°40' 16.1 10.5 -25.6 6.3
4 6B 150°25' 70°33' 55 9.5 -26.3 1.8
5 6A 140°58' 70°32' 3.6 12.6 -26.4 24
6 6G 149°54' 70°31" 2.1 12.9 -26.3 3.7
7 SL 149°39 70°33' 2.4 12.9 -26.1 2.0
8 SF 148°50' 70°27' 1.5 17.7 -26.9 8.4
9 S5A 148°46' 70°30' 11.4 10.9 -26.3 33

10 5(10) 148°30' 70°27' 8.2 8.8 -25.7 3.7

11 WPB 148°23' 70°21" 2.5 8.4 254 3.0

122 5(5) 148°18' 70°26' 6.7

13 5G 148°05' 70°29' 9.3 9.6 -25.9 5.6

14 5(1) 148°04' 70°25' 5.8 7.7 -24.5 5.7

152 5(2) 148°07' 70°25' 5.8

16 4A 147°40' 70°19' 4.5 8.4 -25.9 4.0

17 3B 147°02' 70°18' 4.2 7.3 253 23

18 3A 147°06' 70°17' 6.2 11.8 -26.0 2.9

192 2E 146°12' 70°13' 7.4 =253

20 2F 146°03' 70°10' 1.9 112 -26.1 35

21 1D 144°06' 70°05' 6.0 254

22 BSS 97 152°41" 70°53' 1500 8.0 243

23 BBS 95 152°00' 71°35' 545 9.0 243

24 BSS 84 153°00' 71°24' 75 -24.7

25 GLA71 85 150°34' 71°22! 1053 12.0 -24.9

26 GLA71 74 151°13' 71°20' 93 -24.0

27 BSS 85 152°21" 71°19' 50 8.0 242

28 BSS 93 150°30' 71°20' 580 -24.7

29 GLAT71 72 151°14' 71°11" 47 9.0 -23.9

302 GLA71 71 151°22 71°04' 21

31 73ABP-9 150°56' 70°57' 17 8.0 =252

32 AJT71-35 150°30' 70°52' 20 10.0 252

33 AJT71-36 150°08' 70°45' 17 -25.9

34 AJT71-33 150°30' 70°41" 16 10.0 -26.0

35 AJT72-43 151°00' 70°40' 14 -25.5

36 AJT72-44 151°30' 70°45' 12 6.0 -25.9

37 AJT72-45 152°00' 70°48' 7 5.0 -26.1

38 HB71-5 151°12 70°32! 3 16.0 -26.3

39 HB71-3 150°37' 70°35' 3 17.0 -26.2

40 HB71-6 149°58' 70°30' 3 16.0 -26.7

41 SL877-25 149°52' 70°31" 3 21.0 -26.7

42 GLA71-78 149°59' 70°58' 29 9.0 -24.8

43 BSS-88 150°00' 71°05' 30 9.0 -24.9

44 GLA71-58 149°03' 71°15' 1011 7.0 233

45 GLA71-21 147°55' 71°23' 2200 6.0 -22.1

46 72ABP-34IR 146°31" 71°14' 995 -24.5

47 GLA71-19IR 149°04' 71°00' 365 -21.5

48 GLA71-7IR 145°35' 71°00' 509 -194

49 72ABP-411R 148°42 70°35' 19 253

50 GR1 146°36' 71°11" -22.6

51 GR2 144°40' 70°52! -22.6

52 GR3 143°42' 70°52' 233

53 GR4 145°35' 70°46' -23.6

54 GRS 144°38' 70°42' 235

55 GR6 143°30' 70°45' 234

56 GR7 144°44' 70°38' -23.9

57 GRS 144°45' 70°33' -23.8

58 GR9 144°32! 70°28' 243

59 GR10 143°06' 70°30' 234

60 GR11 145°50' 70°23' -25.0

61 GR12 144°51" 70°17' 243

62 GR13 145°40' 70°13' -25.5

63 GR14 144°23' 70°08' -25.0

64 GRI15 145°40' 70°06' -24.8

65 GR16 143°05' 70°11" -21.9

66 GLA71-25 147°31" 70°21' 26 9.1 =255 4.2

67 GLA71-63 149°00' 70°43' 26 8.9 -25.1 4.0
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Map Original sample Longitude Latitude Water depth OC/N  6°C PN
code no. W °N (m) (%o) (%o)
68 GLA71-30 147°58' 70°05' 93 9.6 -25.3
69 GLA77-31 146°26' 70°23' 28 9.9 -25.7 2.0
70 GLA77-32 146°31" 70°41' 42 12.4 -29.4 4.6
71 GLA77-33 146°35' 70°55' 66 8.0 -24.1 6.1
72 GLA77-9 141°39' 70°42! 640 7.8 -24.5 4.7
73 GLA77-12 141°29' 69°50' 22 9.7 -26.0 2.6
74 GLA77-8 141°30' 70°51" 2048 7.4 242 5.0
75 GLA77-15 141°33' 70°11 54 8.7 =257 33
76 GLA77-16 141°37' 70°28' 118 9.7 -25.8 25
77 GLA77-17 142°33' 70°14' 51 9.7 -26.1 22
78 GLA77-18 142°30' 70°37' 80 7.6 -24.9 42
79 BL-10 142°13' 69°52' 3 10.6 -26.0 23
80 71AJT-26 149°23' 70°43' 17 -26.8
81 71AJT-40 149°23' 70°34' 10 14.1 -26.6 1.8
82 G4ST3 133°21" 69°47' 10 11.8 -27.6 23
83 G5ST4 13325 69°53' 16 10.7 -26.5 22
84 G8ST5 133°26' 70°01" 28 8.5 -26.0 4.6
85 G14ST7 133°39 69°16' 50 7.7 -25.4 4.6
86 G11ST9 134°10' 70°47' 61 72 -24.8 5.5
87 G10ST10 134°36' 70°42' 205 8.7 -25.8 3.0
88 G35ST13 135°50' 70°57' 15 9.6 -26.1 1.8
89 G36ST16 136°15' 69°49' 48 8.1 -25.8 2.8
90 G37ST17 136°28' 70°11" 59 8.0 =257 4.0
91 G33ST19 137°46' 69°05' 16 9.9 -26.4 25
92 G31ST23 138°08' 69°23' 69 8.5 -25.7 6.8
93 G19ST29 130°57' 70°18' 17 9.2 -25.9 3.6
942 G15ST22 131°42' 70°54' 50
95 G15ST35 132°20' 71°25' 460 7.6 -24.9 53
96 G23ST39 128°55" 70°42' 22 11.3 -26.4 25
97 G26ST41 129°16' 70°57' 32 9.4 -25.1 39
98 G22SS1(47) 127°14' 70°43' 238 8.0 -24.6 5.1
99 G28SS2 128°34' 71°28' 167 8.1 -24.9 4.8
100 G30SS4 138°34' 69°56' 255 8.0 -25.3 4.4
101 ST44 141°24' 71°22! 2790 7.4 -25.5 6.3
102 9070L014 126°29 73°12 112 72 -23.1 8.1
T3-1 141°51" 74°19' 3637 6 242
T3-2 142°35' 74°35' 3650 7 -24.4
River/delta
Colville: -26.9
Mackenzie:
103 M28 134°22 70°01" 83 -26.4 2.8
104 M22 134°04' 67°35' 13.1 -26.5 1.4
105 M26 134°08' 68°22' 9.5 -26.8 2.13
106 M14 133°18" 69°52' 8.4 -26.5 2.7
107 M46 135°37 69°19' 9.2 272 1.9
108 M39 137°12' 68°52' 7.9 -27.7 1.9
Lena Longitude
°E
4 129°06' 72°01" 18.5 57.6 -26.9 3.0
5 129°30' 71°49' 53 142 -27.2 22
11 132°11" 71°26' 1.7 25.7 -26.0 5.6
15 130°28' 71°37" 15 527 -26.0 4.9
16 130°05' 71°37' 16 78.4 -25.5 6.3
Anadyr:
WD95WP2 177°50' 64°44' 10 -26.7
WD95WP4 176°49' 64°48' 3 -26.6
WD95WPS8 176°58' 64°40' 7 -26.7
WD95WP11 176°28' 64°45' 9 272
WDI95WP15 177°42 64°38' 8 -27.0
WD95WP17 178°15' 64°38' 3 =271
WDI95WP21 177°48' 64°25' 3 -24.9
WD95WP25 177°53' 64°37' 9 -26.8

2Concentrations of OC and N are very low; thus, no credible OBC and 0N values could be

obtained
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Fig. 3 Distribution pattern of §'*C of sediments in Beaufort Sea

(Laminaria solidungula). The kelp carbon has §3C
values of —13.6 to —16.5%o0. That this source for carbon
is not important is indicated by the lack of heavy §'*C
values in all the sediments investigated. In the north-
ern Bering-Chukchi Sea the §'°C of the terrestrial end
member is —27%. and the marine end member is —21%o
(see Table 1 for Anadyr River data; Naidu et al.
1993). The increase westward in 6!3C in the northern
Bering-Chukchi Sea reflects an overall westward
increase in marine POC that is commensurate with
the progressively higher phytoplankton production
and deposition of phytodetritus in nutrient-rich waters
in the west (Naidu et al. 1993). Considering the light
013C values of the Anadyr River sediments (Table 1)
and the relatively heavy §'3C values in Gulf of Anadyr
(Fig. 1), we infer that relatively little TOC from the
river is admixed in the Gulf sediments. The contigu-
ous band of §'3C enriched sediments extending from
the west Bering Strait to the northwest coast of
Alaska is consistent with the northward transport of
predominantly marine-derived POM from the north-
western Bering to northern Chukchi Sea margin
(Walsh et al. 1989; Feder et al. 1994). As is discussed
later, this northward transport of POM does not con-
tinue beyond the margin into the deeper Amerasian

Basin. Westward from Bering Strait and the central
Chukchi Sea the influence of terrestrial carbon to sed-
iment TOC appears to increase in importance as sug-
gested by the relatively lighter 6'*C values adjacent to
the Chukotka coast of the Russian far east (Fig. 1).
Likewise, the East Siberian Sea shelf sediments are
strongly impacted throughout by inputs of terrestrial
TOC as indicated by the relatively low §C values
there; however, the progressive decrease westward in
shelf sediment §'3C (Fig. 1) connotes increased fluvial
inputs and transport of terrestrial TOC from the west.

In the Beaufort Sea the cross-shelf seaward
increases in §'*C (Figs. 1, 3) are, once again, most
simply explained in context by the mixing of two end
members (terrestrial and marine). The §°C value of
the terrestrial end member for the Beaufort Sea TOC
is approximately —27%o0 based on the data for the Col-
ville and Mackenzie River/Delta sediments and coastal
peat samples (Table 1; Schell 1983; Minigawa et al.
1991; Ruttenberg and Goni 1997). This value is the
same or close to that of the terrestrial end member of
the northern Bering—south Chukchi seas (Naidu et al.
1993) and the Lena River/Delta (Table 1; Rachold
and Hubberton 1999). Although an exact measure-
ment of the 6'3C composition for the marine end
member for the Beaufort Sea is not available, we esti-
mate it to be approximately —24%.. This value is
deduced from a per-trophic-level interpolation by 1%o
of the mean §'*C value of the dominant zooplankton
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Fig. 4 a Correlations between 6°C and OC/N based on all sed-
iment samples analyzed from the study area, and b correlations
between ¢°C and 6N of sediments based on data from the
Beaufort Sea. Bering-Chukchi Sea data depicted by open circles
are after Reed (1997) and data depicted by crosses are after
Naidu et al. (1993). The filled box plots are from this study

primary consumers of the above region (Schell et al.
1998; see also Rau et al. 1983) and from §'3C of sed-
iment trap POC (Minigawa et al. 1991). The §C
values listed in Table 1 suggest that the Beaufort shelf
sediments contain a predominance of terrestrial TOC,
especially off the Colville and the Mackenzie rivers
(Fig. 3). In contrast, the outer margin of the shelf has
a significant portion of marine TOC. An estimate of
the relative proportions of terrestrial and marine-de-
rived TOC at any location can be made based on an
isotopic mixing equation (Shultz and Calder 1976).
Our interpretation that the Beaufort Sea surface sed-
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iments are strongly impacted by terrestrial POM, is
consistent with biomarker data, elemental ratios, and
013C and OC budgets for the region (Yunker et al.
1993; Ruttenberg and Goni 1997; Macdonald et al.
1998). The relation between §'°C and OC/N and the
strong covariance between §2C and 6N (Fig. 4)
strongly support the foregoing interpretation of the
o13C data (cf. Naidu et al. 1993). Furthermore, the
high OC/N (>15) and low 6°N values (1-3%o) associ-
ated with our fluvial/delta sediment samples, and the
most negative 5'3C (Table 1), are typical of terrestrial
TOC (Bordowsky 1965). Likewise, the relatively low
OC/N (<6) and high 6N (8%o), which generally cor-
respond to our less negative 6'°C values, are typical of
marine POC.

As discussed previously, terrestrial C4 plants do not
contribute carbon to the TOC of margin sediments of
the Amerasian arctic. This is in contrast to the recent
findings for some tropical and subtropical margins
(e.g., northwestern Gulf of Mexico) where terrestrial
TOC in sediments has a significant fraction (=50%)
of carbon derived from C, plants (Goni et al. 1998).

The role of sea ice as a source (land vs marine)
and agent of transport of TOC to the Amerasian con-
tinental margin and basin has not been quantitatively
assessed, except for the Canadian Beaufort shelf
(Macdonald et al. 1998). A mean §C value of
-23.6%0 (n=13, SD+0.18) has been measured for TOC
entrained in sea ice along a north Chukchi Sea—-North
Pole Arctic Ocean Section (Cooper et al. 1998). This
value is significantly lower than the Pacific-derived
TOC deposited on the margin of the north Chukchi
Sea (i.e., ca. —21%o; Fig. 1). The relatively lower §'°C
value (-25%o) of the Amerasian Basin abyssal sea-
floor sediments located beneath the sea-ice samples
along the section (Grantz et al. 1996) and the §'3C of
approximately —24.3%o of sediment samples collected
from the adjacent central basin bottom (T3-1 and
T3-2; Table 1) suggest no major transport of Pacific-
derived, marine-enriched TOC to the western Amera-
sian Basin. Stein et al. (1994) also concluded that in
general the sediments of the ice covered Arctic Eur-
asian Basin contiguous to our study area are domi-
nated by terrigenous material. In the Alaskan Beau-
fort Sea shelf off the Colville River where the 6!°C of
ice-entrained TOC is less than —24.5%. (map code nos.
46 and 49), transport of terrigenous TOC by sea ice
appears relatively important. In the outer margin,
however, the transport by ice of marine TOC is domi-
nant, as reflected by the —19.4 to —21.5%0 6'3C values
there (map code nos. 47 and 48). We note that the
TOC in ice-rafted sediments of the outer margin of
our study area and a few samples in the Arctic Ocean
Section (Cooper et al. 1998) have §!3C values that are
significantly higher than the value estimated for the
marine end member (-24%.). We attribute this differ-
ence to be a result of mixing of ice-entrained TOC
derived from ice algae, which have been reported in
the high arctic to have §'3C values of approximately
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-18%o (Hobson and Welch 1992; Hobson et al. 1995).
The increasing trend in the §'3C of ice-rafted TOC
from the shelf to the outer margin generally matches
the seaward changes in bottom sediment §'*C (Fig. 3).

The 6'3C value of POC estimated for the Beaufort
Sea marine end-member (—24%o) is significantly less
than that reported by Naidu et al. (1993) for the
northern Bering-Chukchi Sea (i.e., —21%o0). These
regional differences are also manifested in the §'°C of
taxa zooplanktons of the Beaufort and Bering-Chuk-
chi seas (Schell et al. 1998). The cause for this
regional difference, which could be any of the factors
indicated previously, has not been determined.

Recently, considerable interest has been focused on
the sources and processes leading to the elevated
2CO,, pCO,, DOC, and DOM in the upper halocline
of the Arctic Basin (Walsh 1995; Sambrotto 1996;
Opsahl et al. 1999). The elevated values have been
explained by several possible factors, such as high res-
piration rates, high solubility of CO, in cold waters, in
situ biological production of DOC, and horizontal
advection of terrigenous DOM from the extensive arc-
tic shelves to the basin (Walsh 1995; Opsahl et al.
1999; Kattner et al. 1999; Wheeler 1998). A major
implication of our and several other recent studies
(Macdonald et al. 1998; Rachold and Hubberten 1999;
Stein et al. 1999) is that the sediment deposits of the
Arctic Ocean margin contain high concentrations of
land-derived TOC. It would thus seem that there is a
sufficient pool of terrigenous organic matter in this
margin that could be recycled and potentially enrich
2CO, in the Arctic Basin halocline. This suggestion is
consistent with recent preliminary studies (Macdonald
et al. 1998; Kattner et al. 1999; Opsahl et al. 1999)
and the concept that the ocean margins are a signifi-
cant source of OM to the deep basin (Bauer and
Druffel 1998). Further investigations are needed to
clarify the role of biogeochemical cycling in sediments,
sea ice, the water column, and terrestrial systems on
the budget of organic matter in the Arctic Ocean.

Conclusion

In the Arctic Amerasian continental shelf and adja-
cent margins, the §3C, 6N, and OC/N composition
of the organic matter of surficial sediments provides
an estimate of the relative proportion of terrigenous
and marine-derived organic matter. There is generally
an across-the-shelf gradient in sediment '3C through-
out the study area which reflects progressive seaward
dilution of terrigenous organic matter by marine
organic matter, a conclusion consistent with results of
previous investigations. The study indicates that the
03C composition of TOC in sediments has potential
paleoceanographic applications. Stratigraphic changes
in 6!°C in conjunction with other parameters of sed-
iment organic matter, such as hydrogen index, OC/N,
and biomarkers (Stein et al. 1994; Fahl and Stein

1999), can provide useful information on temporal
changes in the sources of organic matter (marine vs
land derived) resulting from glacial-interglacial
changes in sea levels, circulation, and river inflow.
The high concentrations of terrigenous TOC on the
Amerasian margin are a potential source of the
elevated 2CO, in the Arctic Basin halocline.
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