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The mechanism of the origin of gyrotropy in rocks has been simulated for media with
granular and with thin-layer dissymetrical microstructures. Calculation of displacement and
stress associated with shear-wave propagation is reduced to a static problem for each element
of the medium structure (a grain or a thin layer), as they are negligibly small relative to
the wavelength. The models are “rotating” gyrotropic, i.e., the displacement vector of a shear
wave in such a medium “turns” at an angle which is the sum of rotations at each element;
these elementary rotation angles are equal to the dissymmetry parameter of the medium. A
numerical experiment revealed the main features of shear wave propagation in gyrotropic
media. As shown by calculations, cross-line (additional) components of displacement may
occur in gyrotropic media as well as in media with azimuthal anisotropy, for instance, in
transversely isotropic media with vertical symmetry.

Spatial dispersion, gyrotropy, Hooke’s law, rotation of polarization plane, dissymmetry, micro-
structure

INTRODUCTION

This work is in the field of gyrotropy, a new line in seismic studies [1-4], and aims to confirm that
geological media can be gyrotropic, i.e., rotating shear-wave polarization planes. The suggested models simulate
a micro-inhomogeneous gyrotropic medium with a dissymmetric structure (positioning of micro-objects in
space) that permits gyrotropy and, moreover, makes the medium left- or right-enantiomorphic, or rotating
clockwise or counterclockwise.

As gyrotropy was experimentally discovered in the uppermost sand-clay section [5-8], the gyrotropic
models below simulate granular (sands) and thinly layered rocks. A model of a granular gyrotropic medium
was earlier developed in [4, 9-12] and investigated the effect of radial forces applied to a grain. This paper
presents another gyrotropic model, for media with layered microstructure. In both models, the forces applied
to an elementary unit of the medium are tangential and produced by stress associated with propagation of
shear waves.

GYROTROPIC MODELS OF DSSYMETRICAL MICRO-INHOMOGENEOUS MEDIA
Principles of gyrotropic modeling

The concept of seismic gyrotropy was introduced by analogy with optical [13-15] and acoustic [16-23]
gyrotropy. Unlike the atom- and molecule-ordered materials with relatively stable physical properties
investigated by electromagnetic or acoustic waves of GHz frequencies, rocks appear rather chaotic structures,
with ordering of a quite different scale and the physics defined by their “geological” nature. Nevertheless,
there is more similarity than there might seem, as (i) rocks generally have an ordered structure and can be
considered homogencous as a first approximation within large volumes, and (ii) their elements may have the
same size-wavelength ratio, which is the main gyrotropic parameter. As in optical and acoustic gyrotropy, the
scale of microstructure should be within one hundredth of a wavelength. Seismic frequencies are much lower
than those used in the optics and acoustics of crystals (hundreds of meters or a few kilometers in seismology
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Fig. 1. Hexagelicene molecule: chain of benzene rings
arranged on a spiral coil. The coil surface is shown as a
plane with separated edges, Ah is coil spacing.

and DSS against fractions of a centimeter in geoacoustic soundings [4]). Then, the elementary units of a
gyrotropic microstructure are grains, thin layers, inclusions, or microcracks instead of atoms and molecules.

The effect when the microstructural ordering of oriented layers, cracks and grains of rock is reflected in
its properties on a macroscale is known as anisotropy. In this sense gyrotropy and anisotropy are phenomena
of the same type. Anisotropy arises in media having axes or planes of symmetry, whereas gyrotropy of crystals,
solutions or rocks is associated with the absence of a symmetry center and the presence of enantiomorphism.
The absence of a symmetry center is a necessary condition for gyrotropy, and enantiomorphism provides the
principal gyrotropic effect, which is rotation of the polarization plane. Rocks may possess both these properties
of symmetry, and thus may in principle be gyrotropic.

As in the previous studies [4, 10, 11], construction of gyrotropic models will be based on the Curie
principle [24] according to which a dissymmetry relevant to a phenomenon is associated with the same
dissymmetry in its causes. In other words, rotation of the polarization plane of a shear wave (rotation of the
displacement vector) must be caused, anyway, by a “rotational” structure of the medium.

Of all gyrotropic bodies, crystals most truly correspond to geological media. The gyrotropic properties
of crystals are caused either by a dissymmetrical structure of molecules or by dissymetrical distribution of
molecules (or atoms) in the lattice [14, 15, 17, 20]. The hexagelicene molecule (Fig. 1) consisting of a spiral
chain of benzene rings is a classical example of an optically active molecule. Figures 2 and 3 show structural
elements of the gyrotropic crystals of a-quartz and tellurium. The siliceous tetrahedrons of quartz and tellurium
atoms make spiral-shaped chains. The idea of a spiral is used in radiophysics and physical optics to create
electromagnetic materials which are artificial gyrotropic (chiral) media [25, 26]. In these materials, wire
clements screwed as shown in Fig. 4 act as dissymmetrical molecules. An artificial chiral medium is either an
ordered structure or a chaotic mixture of chiral elements embedded in an ordinary dielectric.

A gyrotropic model of a granular medium

This model was described in detail in [9-11], and the consideration below is restricted to its features
relevant to tangential stress. The model of a granular medium (Fig. 5) simulates gyrotropic effects caused by
dissymmetrical distribution of grains (spheres) in each column of a cubic packing: The centers of the spheres
are aligned along a spiral, and their projections onto a horizontal plane lic on a circumference (Fig. 5, B).
The model simulates the structure of hexagelicene, quartz, and tellurium (Figs. 1-3), as grains in columns
make chains similar to the chains of benzene rings in hexagelicene, siliceous (SiOy) tetrahedrons of quartz;
and atoms in the tellurium lattice. The model of sandy rocks implies an infinite by large number of grains in
a period; so, a gyrotropic packing of grains shows an azimuthal departure from a regular one (in which all
the sphere centers lic on the same straight line) only for part of a spiral coil.

A gyrotropic model of a thin-layered medium

Unlike the previous model in which grains are microelements of sandy rocks, this model includes elongate
elements, planar thin layers (b <<4, 1 is wavelength) whose thicknesses are as a rule greater than a grain
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+
Fig. 2. a-quartz in two enantiomorphic modifications. A is right- and left-oriented
chains of SiO, tetrahedrons of quartz, B is right- and left-oriented quartz crystals.
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Fig. 3. Position of atoms in tellurium cell. Te atoms (filled circles) make a spiral about
an axis parallel to the optical axis Z. Atoms 1, 2,3 make a coil. On the right is the same
chain of atoms projected onto a vertical (above) and a horizontal (below) plane.
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Fig. 4. Wire simulations of rightward (+) and leftward (=) chiral bodies.
A — rings with orthogonal rectilinear ends; B — cylindrical spirals.

12

size. Therefore, gyrotropy in such media is caused by thin layering. (Cf. anisotropy in sediments associated

with lamination, or quasi-anisotropy).

Like the model of a granular medium, a gyrotropic model of a thin-layer medium can apparently be
based on “azimuthal rotation plus translation”. In the latter, this principle is realized (Fig. 6) in similar slope
but different dip directions of layers. Elastic moduli are different in different layers, and densities may also

be dissimilar. For simplicity assume that a thin-layer medium is alternately two-component.

The position of a layer in space will be determined by the angle from the normal ny to its top (polar
angle 6 of layer’s slope) and the azimuthal angle ¢ of the layer’s dip. The polar angles (slopes) are the same
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Top of layer I

Bottom of layer I

and top of layer II

Fig. 6. Model of thin-layer medium.

for all layers but the azimuthal angles (dips) increase monotonously (see the projections of the normals relative
to the previous layer) always in a certain direction, for example, clockwise. In other words, the slopes (6) are
invariable and the dips increase for an angle d¢ from layer to layer. Since the bottom of a k-th layer is at the
same time the top of the underlying k +1-th layer, the normal n; of the k-th layer defining the position of its
top does not coincide with the normal n; , ; to the bottom of this layer, as the dip azimuths differ by Sep.
The dissymmetry in the position of tangency points on a structural element (layer or grain) in these
models causes their disequilibrium within this element. The equilibrium problem in a model of a granular
medium was solved as follows [10]. Two possibilities were suggested to balance the dissymmetrical forces
applied to grains. (1) The dissymmetrical granular medium was represented as a selected volume of an “infinite”
geological medium. Then, the disequilibrium forces on each grain of the selected volume are equilibrated by
response forces from the enclosing medium. (2) Equilibrium was assumed to arise within an individual grain
with regard to compensating inelastic forces from the presence of ¢lay particles near the grains of the medium.
The problem of force balance can be solved in the same way in the model of a dissymmetrical layered
medium. If the geological medium is assumed infinite, the top and bottom surfaces will intersect in infinity as
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Fig. 7. Distribution of tangent forces applied to a structural element
associated with shear-wave propagation in gyrotropic models. 4 —
layer and forces O, and Q, applied to its top and bottom; B — grain
and forces O, and Q, applied to tangency points 7 and B.

Layer

\Qz

Fig. 8. Structural elements of symmetrical (nongyrotropic)
models of thin-layer (4) and granular (B) media.

two nonparallel planes, and compensating response forces and their moments will arise on this line. In reality,
the compensation will occur earlier than in infinity because of outpinching or horizontal replacement of the
layers.

The angle d¢ is a parameter of dissymmetry, as in the model for a granular medium [10].

MODELING OF SHEAR WAVE PROPAGATION
Problem formulation

Consider propagation of a shear wave in a granular and a thin-layer media along the Z axis, which in
the global coordinates is directed along the symmetry axis of the medium. We assume that at Z = 0 the
displacement vector in a plane shear wave is directed along X. The vertical plane XOZ will be the observation
plane. It is to be shown that propagation of a plane shear wave along Z in a dissymetrical model is associated
with the appearance of cross-line Y components additional to the X displacement, and the rotation angle of
the displacement vector increases with wavelength.

The problem of elastic wave propagation can be reduced to a static problem with respect to an element
of the model (grain or layer), as their size is much smaller than the wavelength (/ << 1), where / is the radius
of a grain or the thickness of a layer. Displacements inside an element of the model from known stress on its
surface corresponding to the stress associated with propagation of a shear wave are sought.

Consider the distribution of forces applied to a single structural element during propagation of a shear
wave. In the model of a layered medium, two tangential forces of equal magnitudes, Q; and Q, (|Q;| =
|9, = Q) applied to each point of the top and bottom of a layer cause its stress (Fig. 7, 4). The tangential
forces Q; and Q, applied to a grain are shown in Fig. 7, B.

Consider also symmetrical models of layered and granular media corresponding to the dissymmetrical
ones. The distribution of forces in these models is shown in Fig. 8. In a symmetrical model of a layered medium,

1759



Russian Geology
and Geophysics Vol. 41, No. 12

all layers slope and dip at the same angles, and the vectors of the upper (@; on the layer top) and lower (Q,
on the bottom) forces are in the same plane and are collinear. In a symmetrical model of a granular medium,
the vectors Q, and @, are also collinear as they are in the same plane that coincides with the plane of the
figure (Fig. 8, B) and are perpendicular to the diameter that links the tangency points 7" and B.

Note that any element of symmetrical models has a symmetry center (Fig. 8), and such a model thus
cannot be gyrotropic. However, the dissymmetrical models (Fig. 7) have no center of symmetry: Layers in the
layered medium model are twisted in a fan (Fig. 6) and the grain columns in a granular medium are twisted
on a spiral (Fig. 5), all in the same direction, which produces an enantiomorphic (left or right) structure.

It is seen in Figs. 7 and 8 that the azimuth difference of the forces Q; and Q, is & — Jp in dissymmetrical
models and 7 in symmetrical models. .

Algorithm for calculation of displacement inside a model element (grain or layer)

Displacement can be estimated by Cerrutti’s formula [27]:

0 [i+m A1 0 - S
ux(x:y,z)—4m‘ [;‘4,” +'2] r 2;;(1+,4y+4n(}.+;4) [1 r(r+z)] r+2’

-0 N [ S SE— .
uy(x,y,l) M'[;uz (AH‘)(,“)z]’ (1)

053 FOE S
ul(x,y)z)) “4nr [W2+(}.+,4)(r+z)]’

where r = (2 + y* + 222 r = (x,y,2) is a point in local Cartesian coordinates xyz of a structural element
with the origin O at the tangency point. The x axis is directed parallel to the direction of the force and z is
normal to the boundary surface.

For a single grain, as well as for a layer, the static problem can be reduced to a Cerrutti’s problem,
though the grain surface is convex and not flat as in a layer. Note that the same approach was used in [10],
where normal compressive and not tangential forces were applied to the grain surface and Boussinesq formulas
were employed.

In [10] it was shown that the problem with a source on a spherical surface can be replaced by a similar
problem for a flat surface, as the main contribution to the stress inside a grain is from the stress in the
near-contact area. Therefore, radial displacement in the immediate vicinity of the applied force can be
estimated using Cerrutti’s problem.

Consider displacements u, and u, in the plane xoz. It is obvious that neither the lower force along x nor
the upper force along —x yield y displacement. Indeed, from Cerrutti’s formulas (1) the y displacement
component becomes zero aty = 0: u, = 0. Therefore, in a symmetric model, the rotation angle defined as
arctg u/u, is zero.

Displacement from a dissymmetrical force can be obtained as follows. The vector of the force Q directed
at an angle ¢ from x can be decomposed into two components: o!l along x and Q* along y:

g=0ll+0*

where Ql| = Q cos pe; and Q* = Q sin pe,. The solution for Q“ directed along x already exists, we are only
to take into account that the magnitude of force is Q cos ¢ in Cerrutti’s formula (1) for u,, ie.,

ull = u cosp;
) = uycosy: ®
ull = u, cosp.

The solution for @* directed along y is obtained by substitution of y for x in Cerrutti’s formula (1). Taking
into account that the magnitude of the force is Q sin ¢, obtain:

1 _QOsing |A+3u Lz 1__Qsing
u)'(x’y’z)— 4mu [l.+,u+,2 r 2+ u)r
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+
Fig. 9. Local coordinates in models of layered (4) and granular (B) media. In both models force
Q is applied to the origin of coordinates and directed at an angle to x.

Qsing _ yz s
+4:t(/1 + p) [1 r(r+z)] r+2’

Tt Gtu) @ +z)

uzl(x,y,z)=-—-£Q:i: X[—z-+*l J

utey,z) = 280e D [i—+], 3)

Tt Gtu)@+z)
The solution 4 is a superposition of solutions represented by (2) and (3):

w’ =ull +ut, 4)
Local coordinates of a structural element (grain or layer)

Cross-line (additional) displacement components , in the model of a layered gyrotropic medium are
produced by the dissymmetry of the layer bottom (8¢ departure from its “regular” position in the symmetrical
model). Let in the first layer (k = 1) X coincide with x, which is parallel to the dip direction of the first layer
top*. Assume that on the surface (Z = 0) the force Q, on the top of the first layer (and, hence, the polarization
vector u) is at an angle z from X = x, ie., Q; = —Q,ey, where e, is a unit vector of X. The problem is to find
cross-line displacement components produced by the dissymetrical force @, on the layer bottom, where the
origin of local coordinates is placed. Then x is at an angle dp from the direction of force on the bottom
(Fig. 9, A).

In the dissymmetrical model of a granular medium, the departures dp from the «regular» position in the
symmetrical model are assumed similar for the upper (7) and the lower (B) tangency points (compare the
symmetrical and dissymmetrical models in Figs. 8, B and 7, B).

Thus, the cross-line displacement components produced by the two forces @, and Q, inside a grain are
equal, and the problem is reduced to a static problem for one force, in which the found rotation angle of the
displacement vector is to be duplicated. (Below it is shown that the rotation of the polarization vector occurs
in the same sense from both forces, so these rotations can be added.)

Figure 9, B shows local coordinates of a grain with the origin at the upper tangency point. Like in the
local coordinates for a layer**, x is parallel (or, collinear) to the force vector in the symmetrical model

0f™, ic., e; = —Q5™/Q, where e is a unit vector of x.

Calculations for rotation of displacement vector for a structural element

The rotation angle of the displacement vector for the dissymmetrical model can be found from the ratio
of cross-line (uy) and in-line (4,) components on z (beneath the force point). Consider a model of a layered
medium in which a force @, on the layer bottom is directed at an angle dp from x.

4

da For simplicity, slope is neglected, more so that 8 is as small as 1°.

The grain surface being nonflat, the applicability of this approach is restricted to small 6, as it is assumed that the tangential forces
2" and 0,% make an angle d¢/2 equal to the angle between two longitudinal sections, one through the tangency point in the
symmetrical model and the other through the tangency point in the dissymmetrical model.
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Expressions for the displacements uy and u, produced by this force are written using (4), in which
uf = uy and uf = u,. Assuming that x = 0, Y = 0,and p =Jp in (1), (2), and (3), we obtain

uy(0,0,2)=9_5"‘_5£.i+_.3‘_
b 4

8x(A + u)’
— Qcosdp 22+
ux(0,0,z)—g—z—ﬁ m‘%
Then,
"=§‘8’3(:+;4) Q uyuy=1tgdp. 4

Hence, arctg(uu,) = g, i.e., the rotation angle equals the dissymmetry parameter dyp.

In a granular medium, the rotation angle at the lower tangency point on a grain is dg/2, as the force is
directed at dp/2 from x. At the upper tangency point, the force is directed at 7 — d¢/2. From Cerrutti’s formula
(1) it follows that in the plane xoz (v = 0) the u, displacement is zero and the displacement u, produced by
a force directed along positive x coincides with the x displacement produced by a force that acts in the opposite
sense. Therefore, the force directed at 7 — # from x produces the same u x and u,, displacements at y = 0 as
the force directed at . Hence, the rotation angle at the upper tangency point also equals dp/2, and the rotation
angle for a grain is 8y, as well as for a layer.

Thus, the Curie principle fulfills exactly: the dissymmetry of a medium to an angle d¢ provides the same
rotation of the displacement vector associated with propagation of a shear wave in this medium.

Total rotation of a displacement vector in the dissymmetrical model

The rotation of the polarization vector is determined by the uy/u x ratio in the global coordinates X0Z.
Local coordinates for a k-th element can be transformed into the global coordinates (to the slope 6 of the
plane xy) by (k — 1)d¢ counter-clockwise rotation of the plane xy about Z (Fig. 10). Note that the ratio uyu,
is independent of 6, because it is cancelled in the uy/uy ratio as both displacements u x and u,, are multiplied
by cos 8 on transition to the global coordinates.

The local coordinates of the first layer coincide with the global system, and the rotation of the
displacement vector relative to X equals dp, the dissymmetry parameter of a structural element of the model
(see above). At the second layer, the displacement vector also rotates at O from the first layer, etc. The total

a =ndp.

According to the available experimental data [3, 5, 7], the total rotation over 1 m is about 0.1-1°. Then,
the dissymmetry parameter d¢ coinciding with the rotation angle for an element of the size / = 1 cm will
range as 0.001-0.01°,

An effective model of the medium

Micromodels have been constructed by repeating two procedures: d¢p azimuthal rotation of a structural
clement and its translation along Z, therefore, Z will be a spiral vertical symmetry axis in the corresponding
effective macro-models. The Z-axis is of the order n = 27/3p. The angle d¢ in dissymmetrical models can be
of the order of a thousandth to tenth fractions of a degree (e.g.,, dp = 0.06° in [10]).

Crystals with hexagonal symmetry and media with infinite Symmetry are transversely isotropic with respect
to their elastic moduli. Therefore, the effective model of microheterogeneous media (granular and layered)
with an axis of n-fold symmetry, n - o is assumed to simulate a transversely isotropic medium (e symmetry)
described by five elastic modulus tensor components (c;;;) and four gyration tensor components (b;;,,) (about
gyration constants see [2, 3, 23, 28)).

Elastic moduli and density for a transversely isotropic medium can be found from the parameters of the
corresponding microheterogeneous (granular or layered) medium [29]. (Note that a granular medium of the
type of a cubic packing of spheres is approximated within the limits of a cubic symmetry. In describing it by
the constants of a transversely isotropic medium, the transition to the cubic symmetry is achieved assuming
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Fig. 10. Local xyz k and global XYZ coordinates. z and Z* are orthogonal to the plane of the
figure.

that ¢y = ¢33, €44 = g4, €13 = €12 €13 # Cqq — 2c44.). Shear-wave propagation along the symmetry axis can
be investigated merely on the basis of two velocities VS1 and Vsz, without knowing all elastic and gyration

constants.

THEORETICAL SEISMOGRAMS

Shear-wave propagation in gyrotropic media within the limits of dissymmetrical microinhomogeneity
models can be illustrated by a two-component (x, y) theoretical seismogram for a shear wave propagating
along the symmetry axis (z) in a transversely isotropic gyrotropic medium. In anisotropic gyrotropic media,
rotation of a shear-wave polarization plane — the principle gyrotropic effect — is observed along axes of
three-fold or higher symmetry [17].

Medium parameters and observation system

Modeling of theoretical seismograms in a general case (when waves propagate in different directions in
space) implies setting reduced* elastic moduli and gyration tensors (matrices of elastic moduli tensor !

and gyration pseudo-tensor go ! [30]). Propagation of a shear wave along the symmetry axis of a transversely
isotropic gyrotropic medium (or “rotating” gyrotropic medium) is described using an elastic modulus ¢y,
(C44 - C2323) and a gyralioﬂ constant b543 (b543 e b13233) [23].

On the symmetry axis, the velocities** 'Vsl and Vs, of two shear waves are

l/sL2 = VSO xd. (5)

Here Vso = Veyylp is the velocity on the Z-axis in the same medium but without gyration; d = (wbsy3)/(2c44)
is a gyrotropic addition to VS.,’ and w is circular frequency.

In mathematical modeling of shear-wave propagation along the symmetry axis it is more convenient to
set the gyrotropy constant d than the constant bs43 and the frequency w.
The defined values in our case were Vs0 = 300 m/s, d/V 5 0.01, ie.,

Vs = 303 m/S, VS =297 ln/S.
1 2

Divided by density p.
On symmetry axes phase and ray velocities are equal.
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Fig. 11. Two-component (x, y) seismogram of a shear wave generated by force X and propagat-
ing along symmetry axis z. Solid line shows u «(0) and dashed line shows u y(l).

The observation system was configured as follows. Shear waves from a source in the origin of coordinates

Oxyz propagated along z and were recorded by an array of five x, y geophones at offsets from 40 to 200 m.
The force in the source is directed along x.

The calculations were run at zero ray approximation. Source signal was set as a symmetrical pulse

F(t)=Uexp (—pt? coswt, (6)
with the following parameters: frequency f=w/(2r) =20 Hz; attenuation f = f2In(1/R), where R =

F(tyx1/f)/F(tg) = 0.01; the duration of signal F(t) = 2.5 periods, and time in its middle ¢,. Since the source
acts as an X-force, U = Ue,.

Calculation results

Calculated theoretical seismograms are shown in Fig. 11. The component u, (parallel to the force direction
in the source) is the in-line (main) and u, is the cross-line (additional) component. To facilitate comparison,
the two displacements are superposed. l\rforcover, the records for different offsets are given with no account
of scattering.

It is seen from Fig. 11 that the displacement u,(f) decreases and u(f) increases with offset, i.e., the initial
displacement vector U rotates as far as the wave travels. At offsets of about 200 m, the displacements of the
two components become equal. p

The rotation a of the displacement vector U for harmonic waves is expressed by the formula [2, 3]

= le!=£ _I-_L' . 7
a = moge Z[Vsz Vs @)

In the case of pulse signals of the type of (6), (7) remains valid for the amplitudes in the center of signals
u(t) and u(f). This can be seen both from a comparative analysis of expressions for harmonic and pulse

waves §; and S, on the x- and y-components and from calculations. The calculated u Ju, ratios and rotation
angles are given in Table 1.
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Table 1
uy/u, Ratios and a for Frequency f = 20 Hz and Velocity V,,-l'2 = 300%3 m/s
Channel r, m /it a®
1 40 0.169 J 9.6
2 80 0.344 19.2
3 120 0.550 28.8
4 160 0.793 ' 384
5 200 1.111 48.0

It is seen from the table that rotation angles a are proportional to offset 7. Specific rotation estimated
from these data is 0.24 deg/m, which is of the order of that for sands and clays in the uppermost section [3, 5].

Therefore, the cross-line displacement components arise in gyrotropic transversely isotropic media with
vertical symmetry (effective models of microheterogeneous horizontally stratified and granular media) as well
as in azimuthally anisotropic media (effective models of media with vertical aligned cracks).

The work was supported by grant 97-05-65-282 from the Russian Foundation for Basic Research and by
a grant from Young Scientist Award of SB RAS of 1998-99.
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