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Abstract

The post-blackening (PB) approach introduced by the authors for modeling annual stream¯ows in an earlier work is extended

to model periodic stream¯ows. This is basically a semi-parametric approach that blends a simple low-order, linear periodic

parametric model with the moving block resampling scheme. The ®rst part of the paper demonstrates the hybrid character of the

PB model through Monte-Carlo simulations performed on hypothetical data sets drawn from a known population. Following

this, the PB model is used for stochastic simulation of periodic stream¯ows of Beaver and Weber rivers in the US. The results

show that the PB model is more consistent in reproducing a wide variety of statistics of periodic stream¯ows, compared to low-

order linear periodic parametric models (Box±Jenkins type) and the periodic k-nearest-neighbor bootstrap (nonparametric)

method. In addition, the PB model is able to preserve cross-year serial correlations as well as the month-to-year cross-

correlations. This hybrid approach seems to offer considerable scope for improvement in hydrologic time series modeling.

q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Water resources planning studies essentially

require modeling of uncertainty inherent in hydrolo-

gic inputs such as stream¯ow, precipitation and

evaporation. This requires generation of synthetic

sequences that are similar to the observed historical

time series, in terms of summary statistics, marginal

distribution of ¯ows and dependence properties, and

are able to preserve the storage/drought related statis-

tics, consequently. For more than two decades, linear

autoregressive moving average (ARMA) models (Box

and Jenkins, 1976) have been used to model stream-

¯ows at single and multiple sites at the annual as well

as the periodic levels and the same have been

described at length in texts on the subject (e.g. Salas

et al., 1980; Salas, 1993; Loucks et al., 1981; Bras and

Rodriguez-Iturbe, 1985). In this approach, to account

for the fact that the real stream¯ows may not be Gaus-

sian, the ¯ows are often ®rst transformed to Gaussian

and then the transformed ¯ows are modeled using the

ARMA(p,q) models (Stedinger, 1981; Stedinger and

Taylor, 1982; Stedinger et al., 1985). The popularity

of linear ARMA models for hydrologic time series

analysis may be due to their simplicity, the availabil-

ity of a well-developed modeling framework in the

statistical literature for stationary processes and the

availability of standard software packages such as

SAS (1988); STATGRAPHICS (1984); IMSL

(1984); SPIGOT (Grygier and Stedinger, 1990);

CSUPAC1 (Salas et al., 1992); and LAST (Lane,

1979). However, there are a number of drawbacks

of the Box±Jenkins type of models (Lall and Sharma,
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1996; Srinivas and Srinivasan, 2000). The problems

encountered in the case of ®tting higher-order periodic

models have been discussed by Rasmussen et al.

(1996).

Furthermore, the incorporation of the parametric

uncertainty into the parametric time series models

(Stedinger and Taylor, 1982; Grygier and Stedinger,

1990) is quite involved and not that simple to be

understood or applied by practicing hydrologists.

Even though parametric nonlinear models (Bendat

and Piersol, 1986; Tong, 1990) can be used in place

of linear ARMA models to model nonlinear time

series, it is essential to specify the form of nonlinear

dependence, which may not be easy for the practi-

tioner. From the practitioner's perspective, the key

issues are: reproducibility of the observed data char-

acteristics, simplicity, dependability and robustness.

The recognition of nonlinearity of the underlying

dynamics of geophysical processes, gain in computa-

tional ability and the availability of large data sets, in

addition to the inherent simplicity, dependability and

the ability to reproduce the characteristics of the

historical data sets, have triggered the exploration of

¯exible, adaptive, data-driven nonparametric methods

for hydrologic applications. Silverman (1986) and

Scott (1992) provide introductory material on

nonparametric methods. Readers are referred to

Helsel and Hirsch (1992) and Lall (1995) for an over-

view of nonparametric applications to hydrology.

The bootstrap is a simple nonparametric technique

for simulating the probability distribution of any

statistic. Herein, the central idea is to resample from

the original data, either directly or through a ®tted

model to create replicate data sets, from which the

empirical probability distribution of the statistic of

interest can be found (Davison and Hinkley, 1997).

Indeed, the bootstrap offers the potential for highly

accurate inferencing and can do away with the need

to assume or impose a convenient model that may not

have a rational basis. However, modeling dependent

data poses a signi®cant challenge that calls for new

methods of resampling that would ensure the preser-

vation of the temporal and the spatial covariance

structure of the original time series. With the advent

of powerful computers, bootstrap techniques are

gaining importance in modern statistical analysis,

especially in the ®eld of time series analysis, as

documented by Lepage and Billard (1992), Efron

and Tibshirani (1993) Hjorth (1994) and Davison

and Hinkley (1997).

Efron (1979) introduced the classical bootstrap

resampling scheme which prescribes a data resam-

pling strategy using the random mechanism that

generated the data. Efron's bootstrap technique

provides good approximation to the distribution of

many commonly used statistics when the random

variables are independent and identically distributed

(i.i.d.), while it fails to model dependent random vari-

ables (Lahiri, 1995). Random resampling methods

have been used in hydrology by Tasker (1987),

Zucchini and Adamson (1988, 1989), Woo (1989)

and Moss and Tasker (1991). Some of the popular

bootstrapping techniques used to model dependent

hydrologic time series data are: model based resam-

pling (MBR); moving block bootstrap (MBB) and k-

nearest-neighbor (k-NN) bootstrap.

Model based resampling for time series has been

discussed by Freedman (1984), Freedman and Peters

(1984), Efron and Tibshirani (1986, 1993) and Bose

(1988), among others. In this method, to start with, a

model structure is assumed, its parameters and resi-

duals are estimated. Then the estimated model resi-

duals are recentered around their mean and are

resampled with replacement considering them as

i.i.d.. Finally, these bootstrapped residuals are used

to synthesize a time series. This approach preserves

the empirical density function of the original time

series. It is simple to apply and leads to good theore-

tical behavior, provided the ®tted model is correct.

The major drawback with this resampling scheme is

that, in practice, the model structure is to be correctly

identi®ed and its parameters are to be estimated from

the data. Otherwise, the resampled series will be

generated from a wrong model, and hence they will

not have the same statistical properties as that of the

original data (Davison and Hinkley, 1997). In the

context of hydrology, Pereira et al. (1984) and

Oliveira et al. (1988) randomly resampled residuals

from a multisite disaggregation model of lag-one

annual stream¯ows. Tasker and Dunne (1997) have

®tted a periodic autoregressive moving average

model with log transformation (PARMA(1,1)-LT) to

monthly stream ¯ows and have used a nonoverlapping

block bootstrap with a block size equal to 12 months

(equal to 1 year in annual context) for resampling

monthly residuals resulting from the periodic
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model. The 12-month-long traces of monthly runoff

generated have been used in position analysis model

for a water supply storage and delivery system in

central New Jersey, USA. This model can be

viewed as ªmodel based resampling applied to

periodic dataº.

The other popular approach to resample in the time

domain, known as the block bootstrap scheme, treats

blocks of consecutive observations as exchangeable.

This was developed by Hall (1985) and Carlstein

(1986). Subsequently, KuÈnsch (1989) and Liu and

Singh (1992) independently proposed the MBB

approach for time series analysis. The MBB provides

ªsyntheticº time series that preserve the empirical

probability distribution of the original observations.

In this method, the key issue is to select the appro-

priate block size that generates synthetic replicates

that are statistically indistinguishable from the histor-

ical trace. The idea that underlies the block resam-

pling scheme is that if the blocks are long enough,

the original dependence will be reasonably preserved

in the resampled series. Clearly, this approximation is

best if the dependence is weak and the blocks are as

long as possible. Hausman (1990) and Vogel and

Shallcross (1996) have used the MBB approach in

the context of water resources planning studies. For

the monthly stream¯ow modeling by the MBB

method, the block size may be chosen to be an integral

multiple of 12 months, in order to account for the

within-year effects. During the process of resampling,

the overlapping blocks that are picked at random are

pasted end-to-end to form a replicate of the historical

trace. In this method, the original dependence

structure is maintained within the blocks, but is

destroyed at boundaries between blocks. In other

words, the within-year monthly serial correlations

are well preserved, while the serial correlations

between months of one water year to the previous

(cross-year serial correlations), are not preserved

by the MBB method. We ®nd that even with

higher block sizes, this basic drawback of the

MBB method could not be overcome. Moreover,

the simulations from MBB cannot ®ll in the gaps

between the data points in the historical record.

Also, they fail to generate extrema more severe

than those found in the historical record. Further-

more, the value addition through simulations is

limited. Due to the above drawbacks, the moving

block bootstrap is not considered for modeling

monthly stream¯ows in this study.

More recently, Lall and Sharma (1996) have intro-

duced the k-NN bootstrap technique for modeling

stream¯ows. Here, the dependence is preserved in a

probabilistic sense. Multivariate nearest neighbor

probability density estimation provides the basis for

this method. This method involves searching the

observed record to ®nd the historical nearest neigh-

bors and subsequently resampling their successors

with a view to preserve the empirical dependence of

the ¯ow trace. This method uses only the historical

trace (without any perturbations) in constructing the

replicates, and as a result, the simulations from the k-

NN method do not produce values that have not been

observed in the historical data. This is a major limita-

tion if extreme values outside the available record are

of interest. The subsequent work of Sharma et al.

(1997) avoids this limitation by resampling the histor-

ical data with perturbations. The perturbations serve

to smooth over the gaps between the data points in the

density estimate and provide alternate stream¯ow

realizations that are different, but are statistically

similar to the historical record (Sharma et al., 1997).

However, since the stream¯ows are bounded, there is

the possibility of leakage of probabilities across

boundaries when the perturbation is added, and this

may result in bias in the simulated density in the

neighborhood of the boundary. In order to minimize

this bias, appropriate kernel functions and/or band-

widths are to be chosen (Sharma et al., 1997), which

may be a demanding task for any practicing hydrolo-

gist. The nearest-neighbor bootstrap technique and its

variations are preferable if the data are plentiful, as in

case of daily stream¯ow modeling (Lall and Sharma,

1996).

The generalized cross-validation (GCV) score

function (Craven and Wahba, 1979) can be used to

choose the number of nearest neighbors and the order

of the k-NN model. This is somewhat similar to the

use of Akaike information criteria (AIC) for model

selection in the traditional ARMA modeling frame-

work. A GCV-based choice of the model order and the

number of neighbors may be suboptimal for the parti-

cular water resources planning study under considera-

tion, since it only considers the performance of the

model with respect to conditional mean and variance

(Rajagopalan and Lall, 1999). This necessitates
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further tuning to arrive at the appropriate combination

of the model order and the number of neighbors for

the study of interest.

Tarboton et al. (1998) have extended the use of

nonparametric methods to disaggregation models. It

is shown therein that a kernel density estimate of the

joint distribution of disaggregation ¯ow variables can

form the basis for conditional simulation based on an

input aggregate ¯ow variable. The preservation of a

variety of statistical attributes using this conditional

simulation procedure has been demonstrated through

applications to synthetic data and stream¯ows from

the San Juan River in New Mexico, USA. Possibly

due to the smoothing of the kernel density estimate,

some amount of bias is observed in the standard

deviations and skewnesses of the disaggregated

monthly ¯ows from this nonparametric disaggrega-

tion model (see Figs. 8 and 9, Tarboton et al.,

1998). Even though the marginal distributions and

the state-dependent correlations of observed ¯ows

are reported to be better preserved compared to

SPIGOT (Fig. 11, Tarboton et al., 1998), further

improvement is desirable. The drawbacks of this

method as given by Tarboton et al. (1998) are:

(1) it is data and computationally intensive;

(2) estimating an optimal bandwidth to use is a

computationally demanding task. As with the method

of moments and the method of maximum likelihood in

the parametric case, different optimality criteria can

lead to quite different bandwidths being selected;

(3) the choice of kernel function is not crucial, but

the parameterization of the bandwidth matrix in the

multivariate case may affect the results dramatically;

(4) the sample size required increases, as the

complexity of the underlying density function

increases, thus reducing the advantage of the NPD

approach for heterogeneous functions; and

(5) no simple equation for the model is available to

report.

More recently, Rajagopalan and Lall (1999) have

suggested a k-NN based multivariate nonparametric

time series simulation method to generate random

sequences of daily weather variables. Sharma and Lall

(1999) have used k-NN for daily rainfall simulation and

Kumar et al. (2000) have extended k-NN to multisite

disaggregation of monthly to daily stream¯ows.

Understanding the relative merits as well as the

limitations of both parametric and nonparametric

methods, it is felt that a proper blend of the two methods

might result in the generation of synthetic replicates that

would represent better the observed hydrologic time

series compared with the replicates generated from

either of the methods. The post-blackening (PB)

approach suggested by Davison and Hinkley (1997) is

one such method that seems to blend the two methods

effectively, and the authors have found that this would

be very much suited for the hydrologic time series

modeling. The ®rst step in the PB approach is to

ªprewhitenº the historical trace by ®tting a simple para-

metric model that is intended to remove much of the

dependence present in the observations of the historical

sequence. A series of innovations is then generated by

block resampling of the residuals obtained from the

®tted model, with a view to capture the weak

dependence (if any) present in the residuals. The inno-

vation series is then ªpost-blackenedº by applying the

estimated model to the resampled innovations.

However, it is to be mentioned that the properties of

this PB scheme have not yet been established theoreti-

cally (Davison, personal communication).

We wish to mention that this method has been

introduced by the authors in an earlier paper (Srinivas

and Srinivasan, 2000) for modeling annual stream-

¯ows with complex dependence. In this article, we

extend this scheme to periodic stream¯ow modeling.

Our interest is to investigate the performance of the

PB approach in terms of preservation of the following

characteristics of historical periodic stream¯ows:

(1) summary statistics;

(2) within-year and cross-year serial correlations;

(3) marginal distributions; and

(4) state-dependent correlations, and compare the

same with the low-order linear periodic parametric

models and the k-NN bootstrap method of Lall and

Sharma (1996). We also intend to examine the perfor-

mance of the PB model in terms of preservation of cross-

correlations between various months within the year as

well as the month-to-year cross-correlations. For the

purpose of the synthetic simulation, the monthly stream-

¯ow records of: (i) Weber River near Oakley, UT,

located at 40844 010 00N latitude, 111814 045 00W longitude

and at an elevation of 2012 m above mean sea level; and

(ii) Beaver River near Beaver, UT, located at

38816 050 00N latitude, 112834 025 00W longitude and at

an elevation of 1890 m above mean sea level, have

been used. The data have been extracted from the United
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States Geological Survey (USGS) hydro climate data

network (HCDN) CD-ROM. Table 3 presents the salient

features of these two rivers. Even though a number of

monthly stream¯ow data sets have been tested by the

authors, the modeling results are presented and

discussed herein only for the Weber and the Beaver

river stream¯ows. The reasons for selecting these two

rivers are: (i) they display a complex dependence struc-

ture extending over a number of lags; (ii) the month-to-

annual cross-correlations are also signi®cant in a

number of months; (iii) there is a variety of monthly

marginal distribution patterns; (iv) the dry and the wet

periods within the year are well de®ned; (v) reasonable

lengths of stream¯ow records are available; and (vi)

these two data sets have been used recently in literature

for nonparametric modeling (Lall and Sharma, 1996;

Sharma et al., 1997).

For the sake of comparison:

1. For the parametric approach, the best of the

commonly used low-order periodic parametric

models of Box-Jenkins type (PAR(1), PAR(2),

PARMA(1,1)), is considered. Natural logarithm

and Wilson±Hilferty transformations (WHT) are

considered for modeling.

2. For the k-NN method, the number of nearest neigh-

bors (k) is taken to be equal to the square root of the

sample size and the model order (d) adopted is

equal to 1 (as given in Lall and Sharma, 1996).

This was adopted after investigating/testing the

performance of the k-NN method over different

combinations of k and d for the two rivers selected.

Our investigations have shown that increase in the

model order �d . 1� results in further underestima-

tion of the standard deviation of the historical

¯ows. In addition, it has also been observed by

the authors that the ®rst few lag serial correlations

get distorted in an effort to preserve higher lag

serial correlations.

3. For the PB approach, a simple PAR(1) model (a

default option/model commonly adopted by

stochastic hydrologist to model the periodic stream-

¯ows) is used as the underlying parametric model.

The block size of MBB adopted for residual resam-

pling is decided based on visual inspection of box

plots (that indicate the spread) of various statistics.

It is to be noted that for the k-NN and the PB models,

no normalizing transformation is applied to the

observed stream¯ow data.

2. Model structure

This section describes the model structure of

the three models considered. In these descriptions,

vectors will be represented by bold upper case letters.

2.1. Periodic autoregressive moving average

(PARMA) models

Low-order periodic autoregressive moving average

(PARMA(p,q)) models are extensively used for

modeling periodic hydrologic time series (Tao and

Delleur, 1976; Hirsch, 1979; Salas et al., 1980).

The general structure of the PARMA(p,q) model is

given by:

Yv;t �
Xp

j�1

wj;tYv;t2j 1 ev;t 2
Xq

k�1

uk;tev;t2k �1�

where v � 1;¼;N and t � 1;¼;v; where v is the

index for year �v � 1;¼;N� and t denotes the index

for month within the year �t � 1;¼;v�; N refers to

the number of years of historical record and v repre-

sents number of months within the year; Yv,t is the

time series already suitably transformed (to satisfy

the normality assumption) and standardized (deseaso-

nalized). w1;t;¼;wp;t are autoregressive parameters

and u1;t;¼; uq;t are moving average parameters;

{ev;t} is the error or noise term assumed to be uncor-

related and has zero mean and variance s 2
t �e�:

The key steps involved in the generation of

synthetic stream¯ows by periodic stream¯ow model-

ing are (Salas et al., 1980):

1. Transformation of the observed (historical) stream-

¯ows to satisfy normality assumption followed by

standardization (deseasonalization).

2. Identi®cation of the appropriate model form using

autocorrelation function (ACF) and partial autocor-

relation function (PACF).

3. Estimation of the model parameters (method of

moments is used in this study).

4. Diagnostic checking of residuals: test for indepen-

dence; test for normality; skewness test for

individual months.

V.V. Srinivas, K. Srinivasan / Journal of Hydrology 241 (2001) 221±269 225



5. Generation of synthetic replicates (in the trans-

formed domain) each of size equal to that of the

observed sample.

6. Inverse standardization of the replicates generated,

followed by inverse transformation, to the original

¯ow domain.

For parameter estimation and diagnostic checking

of residuals of the low-order periodic models consid-

ered in this study (PAR(1), PAR(2), PARMA(1,1)),

the CSU001 program (Salas et al., 1992) has been

used.

2.2. The k-NN resampling algorithm

The k-NN bootstrap method for resampling hydro-

logic time series was proposed by Lall and Sharma

(1996). This method has been developed for depen-

dent data and it preserves the dependence in a prob-

abilistic sense. Multivariate nearest-neighbor

probability density estimation provides the basis for

this method.

Let the time series of historical stream¯ows be

denoted by Qv,t , where v is the index for year �v �
1;¼;N� and t denotes the index for month within the

year �t � 1;¼;v�; N refers to the number of years of

historical record and v represents number of months

(� 12) within the year.

Let us say that the hydrological water year starts

with the month of October of a calendar year and ends

with the month of September of the subsequent calen-

dar year. Now, the ®rst value to be simulated will be

October's ¯ow. For this, one has to pick randomly any

one of the N October ¯ows from the historical data.

Let it be denoted as qi;1; where i is the water year to

which the ¯ow value belongs.

Following are the sequential steps involved in the

synthetic simulation of historical stream¯ow data

using the method, as given by Lall and Sharma

(1996).

1. De®ne the composition of the ªfeature vectorº of

dimension d. For example, for order of dependence

equal to two �d � 2�; initial feature vector for

simulating October's ¯ow will be the conditioning

set {qi21;v; qi21;v21}: This represents the depen-

dence of the October ¯ow to be simulated on

two prior monthly ¯ows (i.e August and September

¯ows of the previous water year). The historical

state vectors Dt for any month t , are the

feature vectors of all qv;t in the historical record.

For example, for simulating October's ¯ow,

the historical state vectors will be:

{q1;v; q1;v21};¼; {qN;v; qN;v21}:

2. Denote the current feature vector as Di and deter-

mine its k-nearest-neighbors from among the

historical state vectors for that month Dt , using

the weighted Euclidean distance riv:

riv �
Xd
j�1

wj�vij 2 vtj�2
0@ 1A1=2

�2�

In Equation (2), riv is the weighted Euclidean

distance from the current feature vector to the vth

historical state vector among the historical state

vectors Dt for the month t; vij is the jth component

of the current feature vector; and vvj stands for the

jth component of the vth historical state vector. The

weights wj are chosen a priori as inverse of some

measure of scale such as standard deviation or

range of Vj. Where, Vj is a set comprising of the

jth components of the historical state vectors Dt

for the month t. The number of neighbors k is a

smoothing parameter. It may be chosen using any

appropriate order selection strategy such as GCV

(Craven and Wahba, 1979). Lall and Sharma

(1996) suggest using k equal to square root of the

sample size as a rule of thumb.

3. Denote the ordered set of nearest-neighbor indices

by Ji,u, where u � 1;¼; k: An element j�i� of this set

records the time v associated with the jth closest

historical state vector Di to Dt . Denote xs
j�i� as the

successor to Dj(i). If the data are highly quantized, it

is possible that a number of observations may be at

the same distance from the conditioning point, in

which case a permuting may help.

4. De®ne a discrete kernel K�j�i�� for resampling one

of the xs
j�i� as follows:

K�j�i�� � 1=jXk

j�1

1=j

�3�

where K�j�i�� is the probability with which xs
j�i� is

resampled. It is to be noted that this resampling

kernel is the same for any i, and can be computed
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and stored prior to the start of simulation. Lall and

Sharma (1996) develop this kernel through a local

Poisson approximation of the probability density

function of state space neighbors.

5. Using the discrete probability mass function

K�j�i��; resample an xs
j�i� and update the current

feature vector. Proceed to step 2 if additional

simulated values are required to be generated. For

a more detailed discussion on the k-NN algorithm,

the reader is referred to Lall and Sharma (1996)

and Rajagopalan and Lall (1999).

2.3. PB approach

This section presents a new algorithm for generat-

ing synthetic monthly stream¯ows, using the PB

approach suggested by Davison and Hinkley (1997).

Let the observed (historical) stream¯ows be repre-

sented by the vector Qv,t , where v is the index for year

�v � 1;¼;N� and t denotes the index for season

(period) within the year �t � 1;¼;v�; N refers to

the number of years of historical record and v repre-

sents the number of periods within the year. The

modeling steps involved are as follows:

1. Standardize the elements of the vector Qv,t as:

yv;t � qv;t 2 �qt

st
�4�

where �qt and st are, respectively, the mean and the

standard deviation of the observed stream¯ows in

period t . Note that the historical stream¯ows are not

transformed to remove skewness.

2. Prewhiten the standardized historical stream-

¯ows, Yv,t , using a simple periodic autoregressive

model of order one (PAR(1)), and extract the residuals

ev;t:

ev;t � yv;t 2 w1;tyv;t21 �5�

In Eq. (5), w1;1;¼;w1;4 are the periodic autoregres-

sive parameters of order one. Herein, for the para-

meter estimation, a simple method of moments

(Salas et al., 1980) has been used. It is to be noted

that the residuals ev;t may possess some weak depen-

dence (since the parameters are estimated from a

simple PAR(1) model). Herein, we wish to mention

that bootstrap schemes like MBB (KuÈnsch, 1989) can

serve as a reliable tool for modeling the weak linear

dependence, if any, in the residuals. Moreover, this

scheme being data-driven can be expected to capture

the marginal distribution features, and to a certain

extent may be able to preserve the nonlinear depen-

dence inherent in the observed record, possibly with

some trade-off with regard to smoothing and

generation of extrema, compared to historical record.

The gains due to hybrid effect are discussed in Section

3.

3. Obtain the simulated innovations ep
v;t: by boot-

strapping ev;t: using the MBB (KuÈnsch, 1989) method.

Herein, the monthly residuals resulting from the

PAR(1) model are divided into q number of (possibly)

overlapping blocks Bi with block size L taken as an

integral multiple of the number of periods (v ) within

the year. It is to be noted that each of the overlapping

blocks starts with the ®rst period of a hydrological

water year. This is done with a view to capture the

within-year correlations for signi®cant number of

lags. For example, the block sizes of residuals in

monthly stream¯ow modeling context would be 12,

24, 36, and so on (abbreviated as L � v; L � 2v; L �
3v; and so on). Note that when blocklength L is n

years long, the overlap is �n 2 1� years, indicating

that when the block size is 1 year long, there is no

overlap.

In general, the ith block with size L � mv (m is a

positive integer, such that, m � 1;¼;N�; may be writ-

ten as: Bi � �ei;1;¼; ei1m21;v� where i � 1;¼; b and

b � N 2 m 1 1:

For example, if L � 3v and v � 12; the fourth

block is written as: B4 � �e4;1;¼; e6;12�:
The block size L, to be selected for resampling the

residuals, would primarily depend on the amount of

unextracted weak dependence present in the residuals.

Innovations ep
v;t; are generated by resampling the

overlapping blocks Bi, at random, with replacement

from the set �B1;¼;Bb� and pasting them end-to-end.

It is to be noted that each of the (possibly) over-

lapping blocks has equal probability �1=b� of being

resampled.

4. The innovation series ep
v;t is then post-blackened

by reversing Eq. (5), to obtain the sequence Zv,t

(Eq. (6)).

zv;t � w1;t zv;t21 1 ep
v;t �6�
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The synthetic generation process starts with z1;0 � 0:

The ªwarm-upº period is chosen to be large enough to

remove any initial bias. The values of Zv,t are then

inverse standardized (using Eq. (7)) to obtain the

synthetic stream¯ow replicate Xv,t .

xv;t � �zv;tst�1 �qt �7�
It is to be noted that no normalizing transformation is

applied in case of the PB model. Herein, we wish to

mention that when the number of data points in the

historical record is limited (as in case of annual

stream¯ow modeling), the mean of residuals recov-

ered from the prewhitening stage need not be neces-

sarily equal to zero. In such a case, the residuals are to

be recentered to zero before proceeding with resam-

pling them for generating the innovation series (See

Davison and Hinkley, 1997, p 397). However, when

the data points are relatively plentiful (as in case of

periodic stream¯ow modeling), we ®nd that the sum

of residuals recovered from partial prewhitening stage

tends to zero and hence the residuals need not be

recentered.

3. Hybrid effect

In this section of the article, we attempt to gain

some understanding into the roles played by the two

constituents of the PB model, namely, a simple low-

order linear periodic parametric model (PAR(1)NT)

and the MBB, in enhancing its performance. It is

also of interest to examine if the PB model can

recover statistical attributes and dependence struc-

ture from small samples generated from a known

population. To effect this, a two-level Monte-Carlo

simulation experiment is designed using hypotheti-

cal data sets generated from a known self-exciting

seasonal threshold ARMA model. In the ®rst level,

100 samples, each of length N years £ four seasons,

are generated from a known self-exciting seasonal

threshold ARMA model. These 100 samples are

referred to as level-1 samples. The second level

involves generating 100 replicates, each of size N

years £ 4 seasons, for each of the 100 level-1

samples, using each of the three models namely:

(i) a simple periodic autoregressive model of order

one, with no normalizing transformation

(PAR(1)NT); (ii) MBB; and (iii) PB. The 10,000

replicates resulting from the Monte-Carlo simula-

tions at the second level are referred to as level-2

replicates. These simulation experiments are done

for three typical sample sizes (N � 40; 60 and 80),

with a view to appreciate the effect of sample size on

the performance of the PB model.

The self-exciting seasonal threshold ARMA model

used for generating level-1 samples is:

First season:

xt � 0:2xt21 1 0:35xt22 1 0:6Wt if xt21 # 0

xt � 0:9xt21 2 0:16Wt21 1 0:6Wt otherwise

Second season:

xt � 0:5xt21 2 0:12Wt21 1 0:7Wt if xt21 # 0

xt � 0:9xt21 1 0:2xt22 1 0:7Wt otherwise

Third season:

xt � 0:45xt21 2 0:245Wt21 1 0:5Wt if xt21 # 0

xt � 0:15xt21 1 0:3xt22 1 0:5Wt otherwise

Fourth season:

xt � 21:0 2 0:5xt21 2 0:1Wt21 1 0:8Wt if xt21 # 0

xt � 0:8xt21 1 0:2xt22 1 0:8Wt otherwise

where Wt is a Gaussian random variate with zero mean

and unit standard deviation.

The performance of the PB model is examined in

terms of reproduction of the following statistics:

(i) summary statistics (mean, standard deviation and

skewness) at both seasonal and annual levels;

(ii) marginal distributions at seasonal and annual

levels; (iii) serial correlations (both within-year and

cross-year) at the seasonal level; (iv) autocorrelations

at the aggregated annual level; and (v) state-depen-

dent correlations (Sharma et al., 1997) at both

seasonal and annual levels (used as a measure of

nonlinear dependence). To enable better appreciation

of the hybrid character of PB model, the results from

this model are presented alongside those from its

constituent models (PAR(1)-NT and MBB) in Tables

V.V. Srinivas, K. Srinivasan / Journal of Hydrology 241 (2001) 241 (2001) 221±269228



V
.V

.
S

rin
iva

s,
K

.
S

rin
iva

sa
n

/
Jo

u
rn

a
l

o
f

H
yd

ro
lo

g
y

2
4
1

(2
0
0
1
)

2
2
1

±
2
6
9

2
2
9

Table 1

Preservation of average seasonal statistical attributes over 100 level-1 samples by 10,000 level-2 replicates from the AR(1)NT, MBB and PB models (L, block size used for

resampling; SC, serial correlation; AMF, above median and forward correlation; BMF, below median and forward correlation; AMB, above median and backward correlation;

BMB, below median and backward correlation)

Statistic Season N � 40 N � 60 N � 80

Historical PAR(1)NT MBB L � 5v PB L � 5v Historical PAR(1)NT MBB L � 5v PB L � 5v Historical PAR(1)NT MBB L � 5v PB L � 5v

Mean 1 0.305 0.302a 0.319 0.317 0.294 0.303 0.295 0.293 0.289 0.288 0.294 0.294

(0.276)b (0.291) (0.295) (0.206) (0.225) (0.227) (0.179) (0.190) (0.193)

2 0.457 0.449 0.470 0.469 0.445 0.445 0.443 0.442 0.440 0.435 0.447 0.447

(0.317) (0.333) (0.335) (0.251) (0.268) (0.270) (0.215) (0.226) (0.228)

3 0.187 0.178 0.196 0.195 0.181 0.170 0.179 0.179 0.180 0.176 0.181 0.181

(0.184) (0.187) (0.189) (0.145) (0.152) (0.154) (0.124) (0.130) (0.131)

4 0.107 0.100 0.117 0.116 0.086 0.094 0.080 0.080 0.086 0.092 0.087 0.088

(0.315) (0.333) (0.338) (0.263) (0.273) (0.267) (0.228) (0.242) (0.245)

Std. Dev. 1 0.870 0.871 0.846 0.843 0.869 0.851 0.852 0.849 0.870 0.862 0.859 0.856

(0.176) (0.176) (0.173) (0.142) (0.141) (0.138) (0.113) (0.122) (0.118)

2 1.048 1.051 1.021 1.008 1.043 1.041 1.021 1.007 1.035 1.029 1.023 1.010

(0.205) (0.216) (0.209) (0.161) (0.169) (0.165) (0.131) (0.143) (0.138)

3 0.600 0.592 0.585 0.579 0.594 0.583 0.583 0.577 0.600 0.589 0.592 0.586

(0.103) (0.105) (0.103) (0.080) (0.082) (0.081) (0.069) (0.073) (0.071)

4 1.095 1.096 1.071 1.063 1.085 1.066 1.067 1.060 1.084 1.070 1.074 1.067

(0.200) (0.188) (0.185) (0.161) (0.156) (0.154) (0.130) (0.135) (0.134)

Skew 1 0.317 20.007 0.270 0.210 0.332 20.003 0.290 0.226 0.356 0.009 0.326 0.257

(0.411) (0.482) (0.453) (0.298) (0.396) (0.377) (0.278) (0.358) (0.331)

2 0.434 20.040 0.361 0.296 0.420 20.019 0.377 0.312 0.432 20.018 0.395 0.326

(0.365) (0.500) (0.481) (0.291) (0.401) (0.383) (0.266) (0.378) (0.356)

3 0.168 0.034 0.128 0.106 0.141 0.017 0.117 0.100 0.160 0.038 0.153 0.133

(0.381) (0.490) (0.478) (0.320) (0.414) (0.411) (0.260) (0.378) (0.368)

4 0.054 0.008 0.025 0.012 0.047 20.009 0.027 0.017 0.053 0.013 0.048 0.037

(0.387) (0.469) (0.466) (0.303) (0.376) (0.381) (0.251) (0.329) (0.329)

Lag-1 SC 1 0.675 0.674 .539 0.662 0.673 0.664 .535 0.660 0.680 0.677 .544 0.672

(0.143) (0.158) (0.147) (0.116) (0.128) (0.123) (0.089) (0.106) (0.097)

2 0.693 0.696 0.677 0.669 0.694 0.688 0.680 0.672 0.697 0.691 0.690 0.682

(0.131) (0.150) (0.150) (0.105) (0.118) (0.120) (0.089) (0.097) (0.097)

3 0.470 0.453 0.455 0.439 0.471 0.450 0.454 0.439 0.474 0.456 0.467 0.451

(0.204) (0.205) (0.206) (0.164) (0.160) (0.161) (0.136) (0.141) (0.143)

4 0.583 0.585 0.573 0.567 0.579 0.574 0.567 0.561 0.579 0.572 0.575 0.568

(0.153) (0.157) (0.156) (0.125) (0.124) (0.126) (0.103) (0.105) (0.105)

Lag-2 SC 1 0.535 0.416 .418 0.487 0.532 0.397 .417 0.485 0.538 0.399 .423 0.494

(0.186) (0.178) (0.179) (0.148) (0.144) (0.147) (0.124) (0.125) (0.125)

2 0.575 0.475 .454 0.543 0.569 0.459 .447 0.538 0.572 0.466 .456 0.549

(0.171) (0.176) (0.175) (0.137) (0.141) (0.143) (0.118) (0.122) (0.119)

3 0.517 0.314 0.503 0.481 0.514 0.304 0.500 0.478 0.523 0.318 0.513 0.490
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0Table 1 (continued)

Statistic Season N � 40 N � 60 N � 80

Historical PAR(1)NT MBB L � 5v PB L � 5v Historical PAR(1)NT MBB L � 5v PB L � 5v Historical PAR(1)NT MBB L � 5v PB L � 5v

(0.191) (0.187) (0.185) (0.171) (0.153) (0.152) (0.130) (0.136) (0.136)

4 0.394 0.266 0.373 0.358 0.393 0.263 0.374 0.358 0.392 0.263 0.382 0.366

(0.193) (0.219) (0.215) (0.152) (0.179) (0.179) (0.135) (0.156) (0.153)

Lag-3 SC 1 0.351 0.185 .255 0.293 0.351 0.193 .258 0.294 0.350 0.177 .269 0.306

(0.173) (0.199) (0.205) (0.140) (0.163) (0.171) (0.123) (0.145) (0.150)

2 0.441 0.298 .339 0.388 0.435 0.282 .335 0.383 0.438 0.281 .343 0.393

(0.185) (0.193) (0.196) (0.146) (0.156) (0.161) (0.127) (0.139) (0.141)

3 0.389 0.204 .297 0.340 0.387 0.209 .296 0.340 0.394 0.217 .307 0.351

(0.195) (0.198) (0.204) (0.168) (0.159) (0.165) (0.127) (0.139) (0.143)

4 0.387 0.184 0.368 0.345 0.388 0.174 0.370 0.345 0.391 0.187 .380 0.355

(0.198) (0.228) (0.221) (0.163) (0.186) (0.182) (0.133) (0.155) (0.151)

Lag-4 SC 1 0.338 0.123 .239 0.269 0.337 0.132 .239 0.267 0.345 0.120 .258 0.286

(0.172) (0.191) (0.195) (0.133) (0.159) (0.166) (0.112) (0.140) (0.143)

2 0.299 0.135 .199 0.222 0.297 0.139 .207 0.229 0.296 0.120 .218 0.243

(0.163) (0.200) (0.205) (0.139) (0.162) (0.168) (0.114) (0.142) (0.145)

3 0.295 0.113 .205 0.228 0.301 0.142 .218 0.240 0.314 0.138 .232 0.255

(0.184) (0.194) (0.198) (0.148) (0.160) (0.165) (0.113) (0.136) (0.138)

4 0.275 0.100 .190 0.216 0.285 0.109 .202 0.224 0.290 0.121 .212 0.237

(0.183) (0.202) (0.208) (0.148) (0.161) (0.167) (0.120) (0.148) (0.153)

AMF 1 0.683 0.515 0.651 0.619 0.684 0.513 0.658 0.624 0.684 0.506 0.671 0.637

(0.206) (0.211) (0.206) (0.164) (0.176) (0.176) (0.143) (0.137) (0.138)

2 0.430 0.302 0.407 0.382 0.438 0.280 0.421 0.397 0.451 0.286 0.436 0.409

(0.228) (0.270) (0.261) (0.200) (0.217) (0.211) (0.165) (0.192) (0.187)

3 0.436 0.441 0.418 0.416 0.425 0.433 0.424 0.426 0.438 0.423 0.431 0.429

(0.216) (0.292) (0.281) (0.191) (0.235) (0.232) (0.162) (0.213) (0.208)

4 0.634 0.486 .466 0.577 0.638 0.467 .476 0.589 0.650 0.493 .490 0.605

(0.222) (0.247) (0.219) (0.158) (0.197) (0.171) (0.141) (0.167) (0.140)

BMF 1 0.241 0.493 0.242 0.293 0.233 0.488 0.227 0.279 0.231 0.491 0.233 0.285

(0.215) (0.303) (0.277) (0.166) (0.250) (0.226) (0.134) (0.225) (0.201)

2 0.140 0.319 0.156 0.170 0.131 0.295 0.136 0.151 0.145 0.309 0.147 0.160

(0.246) (0.308) (0.291) (0.206) (0.262) (0.247) (0.163) (0.217) (0.204)

3 0.065 0.379 0.069 0.097 0.009 0.385 0.017 0.046 0.032 0.387 0.030 0.054

(0.209) (0.377) (0.360) (0.170) (0.324) (0.313) (0.141) (0.292) (0.280)

4 0.273 0.478 .203 0.326 0.273 0.480 .194 0.316 0.272 0.479 .193 0.315

(0.212) (0.277) (0.272) (0.161) (0.218) (0.219) (0.139) (0.193) (0.193)

AMB 1 0.610 0.497 .445 0.557 0.605 0.487 .447 0.565 0.613 0.498 .458 0.575

(0.216) (0.260) (0.233) (0.157) (0.207) (0.187) (0.148) (0.170) (0.150)

2 0.639 0.517 0.614 0.592 0.643 0.503 0.622 0.595 0.646 0.503 0.635 0.607

(0.198) (0.219) (0.211) (0.173) (0.173) (0.175) (0.153) (0.148) (0.147)

3 0.379 0.306 0.357 0.339 0.388 0.281 0.365 0.346 0.400 0.283 0.386 0.366
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Table 1 (continued)

Statistic Season N � 40 N � 60 N � 80

Historical PAR(1)NT MBB L � 5v PB L � 5v Historical PAR(1)NT MBB L � 5v PB L � 5v Historical PAR(1)NT MBB L � 5v PB L � 5v

(0.222) (0.287) (0.277) (0.178) (0.227) (0.225) (0.152) (0.207) (0.200)

4 0.444 0.403 0.430 0.425 0.452 0.408 0.430 0.424 0.436 0.394 0.433 0.424

(0.214) (0.271) (0.263) (0.173) (0.220) (0.217) (0.153) (0.194) (0.189)

BMB 1 0.346 0.486 .258 0.380 0.336 0.486 .254 0.368 0.325 0.488 .241 0.359

(0.211) (0.266) (0.251) (0.162) (0.216) (0.209) (0.141) (0.194) (0.188)

2 0.288 0.498 0.292 0.334 0.284 0.498 0.285 0.323 0.300 0.493 0.300 0.337

(0.212) (0.289) (0.264) (0.165) (0.247) (0.226) (0.130) (0.208) (0.191)

3 0.168 0.295 0.171 0.183 0.186 0.293 0.189 0.200 0.194 0.301 0.190 0.197

(0.251) (0.293) (0.284) (0.192) (0.244) (0.237) (0.159) (0.214) (0.204)

4 0.212 0.388 0.217 0.232 0.216 0.388 0.213 0.222 0.220 0.393 0.224 0.233

(0.226) (0.301) (0.289) (0.180) (0.236) (0.232) (0.136) (0.203) (0.198)

a Mean value of statistic over 10,000 level-2 replicates.
b ( ) Standard deviation of statistic over 10,000 level-2 replicates.
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Table 2

Preservation of average annual statistical attributes over 100 level-1 samples by 10,000 level-2 replicates from the AR(1)NT, MBB and PB models (L, block size used for

resampling; AC, autocorrelation; AMF, above median and forward correlation; BMF, below median and forward correlation; AMB, above median and backward correlation; BMB,

below median and backward correlation)

Statistic N � 40 N � 60 N � 80

Historical PAR(1)NT MBB L � 5v PB L � 5v Historical PAR(1)NT MBB L � 5v PB L � 5v Historical PAR(1)NT MBB L � 5v PB L � 5v

Mean 0.264 0.257a 0.276 0.274 0.252 0.253 0.249 0.249 0.249 0.248 0.253 0.252

(0.251)b (0.267) (0.271) (0.198) (0.212) (0.215) (0.172) (0.182) (0.185)

Std. dev. 0.720 0.680 0.698 0.685 0.714 0.663 0.695 0.683 0.714 0.665 0.704 0.691

(0.148) (0.164) (0.158) (0.120) (0.131) (0.127) (0.096) (0.114) (0.109)

Skew 0.548 0.005 0.474 0.402 0.559 0.000 0.509 0.442 0.571 20.005 0.533 0.459

(0.378) (0.470) (0.449) (0.308) (0.388) (0.377) (0.261) (0.364) (0.347)

Lag-1 AC 0.509 0.313 0.372 0.435 0.514 0.332 0.383 0.445 0.527 0.332 0.402 0.468

(0.159) (0.167) (0.165) (0.128) (0.140) (0.141) (0.107) (0.123) (0.121)

Lag-2 AC 0.163 20.006 0.048 0.073 0.174 0.029 0.067 0.092 0.189 0.028 0.088 0.117

(0.168) (0.184) (0.193) (0.148) (0.160) (0.170) (0.130) (0.142) (0.151)

AMF 0.400 0.197 0.267 0.312 0.413 0.218 0.294 0.336 0.411 0.221 0.302 0.348

(0.226) (0.264) (0.243) (0.175) (0.215) (0.201) (0.150) (0.197) (0.183)

BMF 0.198 0.199 0.129 0.185 0.174 0.207 0.123 0.177 0.183 0.197 0.137 0.190

(0.211) (0.273) (0.256) (0.164) (0.223) (0.212) (0.153) (0.192) (0.181)

AMB 0.433 0.203 0.298 0.335 0.442 0.230 0.318 0.353 0.459 0.230 0.337 0.375

(0.210) (0.261) (0.245) (0.172) (0.210) (0.201) (0.147) (0.179) (0.168)

BMB 0.174 0.204 0.124 0.194 0.195 0.197 0.141 0.210 0.212 0.200 0.146 0.218

(0.215) (0.281) (0.260) (0.182) (0.218) (0.206) (0.163) (0.191) (0.183)

a Mean value of statistic over 10,000 level-2 replicates.
b ( ) Standard deviation of statistic over 10,000 level-2 replicates.



1 and 2. It may be noted that the results of PB and

MBB are presented for a typical block size of L � 5v
(5 £ 4 � 20 seasons), and the blocks start with the

®rst season of a water year. The issue of block size

selection is discussed in a later section of this article.

Tables 1 and 2 show that mean and standard

deviation over 100 level-1 samples (referred to as

population statistics) are well preserved by the

10,000 replicates generated from all the three models,

at both seasonal and annual levels, for all three sample

sizes considered.

The level-2 replicates generated from PAR(1)NT

model are seen to exhibit near-zero skewness at

both seasonal and annual levels. This is because no

normalizing transformation is applied in model ®tting.

In contrast, the level-2 replicates from the MBB

model are seen to be good at reproducing the skew-

ness at both seasonal and annual levels because MBB

is a data-driven model. Whereas, in case of PB model,

the skewness exhibited by level-2 replicates is seen to

be quite close to that of the MBB model. The reason

for this behavior of PB model can be understood, if we

look into the construction of the PB model. In the case

of the PB model, level-1 samples are prewhitened

using a simple PAR(1) model without any normaliz-

ing transformation. As a result, skewness of level-1
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Table 3

Salient features of the rivers selected for the study

Name

of river

USGS station

number

State

code

County Basin name Drainage

area (km2)

Record duration Mean annual

discharge (m3/s)

Beaver 10234500 49 Beaver Beaver bottoms-upper Beaver 236 1914±1992 (79 years) 1.476

Weber 10128500 49 Summit Upper Weber 420 1905±1988 (83 years) 6.316
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Fig. 1. Preservation of marginal distribution of the ®rst season data points in a typical level-1 sample of size 40 years by 100 level-2 realizations.

A comparison between the PB and the MBB models.



samples is apparently retained in the residuals

extracted from the prewhitening stage. Bootstrapping

these residuals using MBB, with a reasonable block

size enables residual skewness to be preserved in the

resampled innovations. Post blackening of these

innovations, in turn, generates level-2 replicates that

exhibit nearly the same behavior as MBB with regard

to preservation of skewness. Furthermore, it may be

noted that with further increase in block size of MBB

used for bootstrapping the residuals, the skewness

exhibited by level-2 replicates from PB model tends

more towards the skewness exhibited by level-2 repli-

cates from MBB model. Thus, we infer that PB model

gains from its nonparametric constituent, MBB, in

simulating skewness.

Figs. 1a±c and 2a±c show the respective preserva-

tion of marginal distribution corresponding to the ®rst

two seasons of a typical level-1 sample of size 40, by

the level-2 simulations from: (i) PB model with L �
v; (ii) PB model with L � 5v; and (iii) MBB model

with L � 5v: Herein, it is to be mentioned that in the

MBB model, level-1 sample record of length N is

divided into �N 2 L 1 1� overlapping blocks each of

equal length L. These overlapping blocks are then

resampled with replacement to produce level-2 repli-

cates. As a result, the level-2 replicates from MBB

model are able to capture the salient features of the

marginal distribution, namely, multimodality, asym-

metry and peakedness (Figs. 1c and 2c), but they

cannot either ®ll in the gaps within the data points

of the level-1 sample or extrapolate the data beyond

the extrema of level-1 sample. In contrast, it is well

known that the parametric models offer appreciable

amount of smoothing in modeling marginal distribu-

tion and can generate some values beyond extrema.

The PB model is seen to gain this smoothing charac-

teristic from its parametric constituent (PAR(1)NT)

(see Figs. 1a and b and 2a and b). On the other

hand, the nonparametric constituent of PB model

(MBB) is responsible for the preservation of impor-

tant features of the marginal distribution (multimod-

ality, asymmetry and peakedness) like level-2

replicates from MBB (see Figs. 1c and 2c). A compar-

ison between Fig. 1a and b (or Fig. 2a and b) reveal
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that when low block size �L � v� is adopted for

resampling in the PB model, signi®cant amount of

smoothing and extrapolation beyond the extrema

result (as in case of parametric models), and in the

process, preservation of peakedness and multimodal-

ity of the distribution get affected. On the other hand,

a longer block size (L � 5v; Figs. 1b and 2b) aids in

preservation of these distributional features better, but

smoothing and extrapolation beyond the extrema get

reduced. Thus, the level-2 replicates from the PB

model gain from both the constituent models (hybrid

effect) and as a result they are able to not only repro-

duce the features of the marginal distribution of level-

1 samples, adequately, but also provide some smooth-

ing and extrapolation.

The theoretical structure of PAR(1)-NT model

enables it to preserve the lag-1 serial correlations

over all seasons (see Table 1), but not thereafter. In

addition, being a periodic model, it is not able to

capture the autocorrelations at the aggregated annual

level. In the case of MBB model, the dependence of

level-1 sample gets destroyed at the boundaries

between adjoining blocks, though the dependence is

preserved within the block. This enables all the

within-year serial correlations to be well reproduced

by the MBB model (see Table 1), since the block size

is taken in multiples of years. However, the serial

correlations between seasons of adjoining years

(shown in bold font) may not be preserved by MBB

owing to the discontinuities between the blocks. Due

to the same reason, the autocorrelation structure at the

annual level is also not preserved (see Table 2). In

contrast, the PB model is able to preserve both

within-year and cross-year serial correlations at seaso-

nal level and autocorrelations at the aggregated annual

level. This is because, considerable portion of depen-

dence in level-1 sample is extracted by the parametric

constituent (PAR(1)-NT) of the PB model during the

prewhitening process and the uncaptured weak struc-

ture remaining in the residuals is modeled by the

nonparametric constituent (MBB).

Now, we proceed to illustrate the hybrid effect on the

preservation of state-dependent correlations. State-

dependent correlation is a statistic that serves as a

measure to quantify nonlinear dependence in ¯ow data

(Sharma et al., 1997). It quanti®es the dependence of

correlation on the magnitude of ¯ow. These are

computed as the correlations between ¯ows above or

below the median ¯ow value in a month with the preced-

ing or succeeding month ¯ows. For a linear Gaussian

process, the pair of above- and below-median correla-

tions should be the same in either the forward or the

backward direction. Differences between above-median

and below-median correlations indicate nonlinearity or

state dependence in the correlation structure. Sharma et

al. (1997) de®nes the following four state-dependent

correlations: (a) forward above-median correlation is

de®ned as the correlation between above-median

¯ows and ¯ows in the subsequent time step; (b)

forward below-median correlation is the correla-

tion between all below-median ¯ows and the

¯ows in the subsequent time step; (c) backward

above-median correlation is the correlation

between above-median ¯ows and the preceding

time step's ¯ows; and (d) backward below-median

correlation is the correlation between below-

median ¯ows and the preceding time step's ¯ows.

Table 1 shows that the pairs of above- and below-

median state-dependent correlations for each season is

nearly the same for PAR(1)-NT model simulations in

both forward and backward directions, which is a

typical characteristic of the linear Gaussian process.

In other words, the level-2 simulations from PAR(1)-

NT fail to capture the nonlinearity inherent in the

level-1 sample. In contrast, MBB is good at reprodu-

cing the within-year state-dependent correlations

because it resamples overlapping blocks of level-1

sample with block sizes in multiples of years (see

Tables 1 and 2). However, MBB is not able to

preserve the cross-year state-dependent correlations

(i.e. forward and above-median, forward and below-

median correlations for the last season of a year; back-

ward and above-median, backward and below-median

correlations for the ®rst season of a year) due to the

discontinuities between adjoining blocks. For the

same reason, it is not able to reproduce any of

the state-dependent correlations at the aggregated

annual level. Note that the cross-year correlations

are shown in bold italics font in Table 1. Some

improvement can be seen in the preservation of the

statistic by MBB with higher block size. But, this

implies repeating large chunks of level-1 record as

such in level-2 simulations and this is against the

goal/spirit of stochastic simulation since this fails to

offer any variety in simulations. On the other hand, the

PB model is able to overcome the aforementioned
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shortcoming of MBB owing to the hybrid effect (see

Tables 1 and 2).

In summary,

1. The PB model is able to perform well even for

small sample sizes and the performance improves

with increase in sample size.

2. With regard to the preservation of skewness,

within-year serial correlations and within-year

state-dependent correlations, the PB model seems

to gain from its nonparametric constituent (MBB)

signi®cantly.

3. The hybrid character of the PB model enables it to

overcome the ill-effects resulting from block

discontinuities found in the MBB model.

4. The PB model exhibits some smoothing in simula-

tions owing to its parametric constituent and is able

to gain in terms of modeling multimodality, peak-

edness and asymmetry, from its nonparametric

constituent (MBB).

4. Results and discussion

The results from the application of the PB approach

to modeling the periodic stream¯ows are compared

with those resulting from the best low-order para-

metric model (out of the ones considered) and the

k-NN bootstrap method. Five hundred replicates are

generated from each one of the above three models,

for both Beaver and Weber rivers. A detailed compar-

ison of the preservation of a wide variety of statistics

considered for the study is presented using Box-plots

and tables. The box-plot referred to consists of a box

that ranges from the upper to the lower quartile of the

quantity being plotted and ªwhiskersº that extend

from the box to 5 and 95% quantiles on the lower

and the upper sides of the box, respectively. A line

in the middle of the box represents the sample median.

The span of the box represents the interquartile range

of the statistic of concern. The historical statistic is

represented by a circle and the mean of the generated

statistic over 500 replicates is represented by a

darkened square. If the historical statistic falls within

the range of the box, then, differences between model

and data can be ascribed to sampling variability. If the

historical statistic falls outside the range of the box,

then this indicates that the model does not reproduce

the statistic.

4.1. Preservation of summary statistics

For the two rivers considered, the preservation of

summary statistics of historical ¯ows at both monthly

and annuals levels, is discussed herein for parametric,

k-NN and PB models. For the Beaver River, the

summary statistics are presented in the form of box

plots, while for the Weber river, most of the results are

reported in tables.

For the Beaver River, the historical mean monthly

¯ows are well reproduced by all the three models.

However, the replicates from the PB model have

been found to exhibit more variation of the mean

monthly ¯ows, compared to the other two models.

This is not presented herein due to brevity. It may

be noted from Fig. 3 that the PB model is able to

model the standard deviation of monthly stream¯ows

reasonably well, followed by the parametric model. In

contrast, in the case of the k-NN model, considerable

underestimation of the standard deviation is observed

in eight out of 12 months (Fig. 3). The preservation of

skewness of the monthly stream¯ows is shown in

Fig. 4. It is seen that the parametric model (wherein

a WHT is adopted) is able to reproduce the skewness

of the monthly stream¯ows well, followed by the PB

model. In contrast, the k-NN model considerably

underestimates the statistic in ®ve out of 12 months.

At the aggregated annual level, the historical mean

annual ¯ow is well reproduced by all the three models

being studied. It may be noted from Table 4 that the

parametric model overestimates the standard devia-

tion, while the k-NN model slightly de¯ates the statis-

tic. In contrast, the PB model is able to reproduce the

standard deviation better. The parametric model

highly overestimates the skewness at the aggregated

annual level with a high standard deviation of the

same. In contrast, the k-NN model is able to preserve

the same better, though with some de¯ation, while the

PB model is seen to exhibit a better performance

(Table 4 and Fig. 4).

In case of the Weber River, it may be observed

from Table 5 that the trend of preservation of the

historical mean monthly ¯ows is similar to that

noted for the Beaver River ¯ows. Furthermore, the

parametric model is able to reproduce the standard
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deviation of monthly stream¯ows reasonably well in

most of the months. However, considerable overesti-

mation of the statistic is observed in the months of

October and September. On the other hand, the k-NN

model consistently underestimates the standard devia-

tion of monthly stream¯ows. In contrast, the PB

model is able to preserve the same reasonably well,

even though a slight de¯ation is observed. The

parametric model (PAR(2) with WHT) is able to

reproduce the skewness of monthly ¯ows reasonably

well, except in the months of March and July wherein

skewness of the ¯ows is high. The performance of the

k-NN and the PB models in terms of skewness preser-

vation, is quite comparable to the parametric model,

even though no normalizing transformation is applied.

At the aggregated annual level, the mean ¯ow is

well reproduced by all the three models (Table 6).

Furthermore, the replicates from the PB model exhibit

more variation of the statistic compared to the other

two models. It may be noted from Table 6 that the

parametric and the PB models reproduce the standard

deviation of stream¯ows at the aggregated annual

level reasonably well, though with a small de¯ation.

On the other hand, the k-NN model underestimates the

standard deviation considerably, with low variation of

the same compared to the other two models. More-

over, it can be seen that the parametric model (PAR(2)

WHT) highly overestimates the skewness with a high

standard deviation of the same. In contrast, both the k-

NN and the PB models are better in reproducing the

skewness.

4.2. Preservation of the empirical marginal

distribution

The empirical marginal distributions for a few

selected months obtained from the historical as well

as the 500 synthetic stream¯ow replicates generated

from parametric, k-NN and PB models are presented

in Figs. 5±9. The observed historical ¯ow values are

marked as individual dots below the box plots. The

box plot drawn for each class interval represents the

spread of the synthetic ¯ows (over 500 replicates)

falling in that class interval. The dashed line repre-

sents the distribution of synthetic ¯ows averaged over

500 replicates.

For the Beaver River, the preservation of the

marginal distribution is presented typically for the

months of June and July (Figs. 5 and 6). Both k-NN

and PB models are seen to capture the complex

pattern of the marginal distribution of the historical

¯ows of both months. While, the parametric model

(PARMA(1,1) with WHT) fails to capture the

marginal distributional patterns, even though the

skewness of the monthly stream¯ows is well

preserved.

For the Weber River, the marginal distributions

plotted for the months of October, June and July are

shown in Figs. 7±9. It can be seen from these ®gures

that the parametric model (PAR(2) with WHT) is poor

in reproducing marginal distribution of the historical

¯ows. In contrast, the PB model is able to capture the

asymmetry, peakedness, multimodality and the tail

behavior, closely followed by the k-NN model.

Herein, it is to be mentioned that the k-NN model

cannot generate ¯ow values other than the ones

found in the historical record. On the other hand, the

parametric model offers considerable smoothing,

while the PB model being a hybrid one, is able to

offer some smoothing (Figs. 5±9).

4.3. Preservation of dependence structure

A comparison of the results from the investigation

regarding the preservation of the serial correlations,

cross-correlations and state-dependent correlations of

the historical monthly stream¯ows, and the autocor-

relations of the aggregated annual stream¯ows,

between the three models considered, is presented in

this section.
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Table 4

Preservation of aggregated annual ¯ow statistics: Beaver River

(®gures in parentheses denote the standard deviation over 500

synthetic replicates)

Model Summary statistics Lag-1

Mean (m3/s) SD (m3/s) Skew Autocorrelation

Hist. 1.476 0.564 0.59 0.362

PAR 1.483 0.604 1.07 0.154

(0.085) (0.076) (0.45) (0.109)

k-NN 1.486 0.542 0.44 0.143

(0.067) (0.044) (0.27) (0.105)

PB 1.471 0.555 0.51 0.275

L � 4v (0.087) (0.054) (0.30) (0.110)

PB 1.477 0.558 0.51 0.293

L � 5v (0.087) (0.061) (0.29) (0.102)
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Table 5

Preservation of summary statistics of monthly ¯ows. A comparison between: (a) parametric (PAR); (b) k-nearest-neighbor (k-NN); and (c) PB

models. River: Weber (®gures in parentheses denote the standard deviation over 500 synthetic replicates)

Month Model Summary statistics Serial correlations

Mean (m3/s) SD (m3/s) Skew Cor1 Cor2 Cor3 Cor4 Cor5 Cor6 Cor7

Oct. Hist. 2.305 0.777 1.38 0.741 0.573 0.375 0.428 0.248 0.149 0.324

PAR 2.324 0.885 1.42 0.826 0.636 0.481 0.477 0.124 0.016 0.035

(0.096) (0.118) (0.48) (0.045) (0.072) (0.107) (0.087) (0.111) (0.110) (0.109)

k-NN 2.287 0.695 1.22 0.682 0.541 0.420 0.394 0.083 0.011 0.017

(0.080) (0.091) (0.56) (0.060) (0.083) (0.099) (0.083) (0.107) (0.104) (0.109)

PB 2.290 0.758 1.06 0.731 0.590 0.408 0.432 0.211 0.083 0.234

(0.114) (0.112) (0.48) (0.051) (0.061) (0.091) (0.061) (0.104) (0.095) (0.102)

Nov. Hist. 2.022 0.514 0.65 0.843 0.751 0.615 0.395 0.517 0.289 0.110

PAR 2.019 0.506 0.61 0.820 0.726 0.585 0.426 0.449 0.117 0.014

(0.055) (0.047) (0.32) (0.040) (0.058) (0.075) (0.097) (0.089) (0.113) (0.111)

k-NN 2.005 0.472 0.66 0.822 0.606 0.496 0.384 0.369 0.081 0.014

(0.054) (0.039) (0.21) (0.039) (0.077) (0.091) (0.103) (0.093) (0.105) (0.105)

PB 2.011 0.492 0.68 0.835 0.720 0.598 0.410 0.476 0.232 0.047

(0.076) (0.050) (0.23) (0.030) (0.056) (0.078) (0.104) (0.076) (0.100) (0.103)

Dec. Hist. 1.756 0.406 0.60 0.866 0.709 0.693 0.616 0.456 0.541 0.242

PAR 1.753 0.407 0.57 0.877 0.666 0.598 0.488 0.354 0.376 0.097

(0.046) (0.040) (0.33) (0.027) (0.065) (0.073) (0.086) (0.105) (0.099) (0.113)

k-NN 1.750 0.369 0.62 0.847 0.693 0.520 0.429 0.332 0.322 0.074

(0.041) (0.032) (0.28) (0.033) (0.059) (0.087) (0.095) (0.104) (0.100) (0.109)

PB 1.748 0.384 0.57 0.853 0.687 0.655 0.578 0.438 0.482 0.200

(0.059) (0.039) (0.29) (0.029) (0.047) (0.082) (0.091) (0.091) (0.087) (0.102)

Jan. Hist. 1.623 0.331 0.66 0.831 0.782 0.637 0.681 0.601 0.403 0.503

PAR 1.621 0.326 0.60 0.848 0.784 0.605 0.540 0.440 0.318 0.339

(0.036) (0.031) (0.33) (0.034) (0.046) (0.075) (0.082) (0.091) (0.107) (0.101)

k-NN 1.619 0.298 0.59 0.819 0.714 0.581 0.440 0.364 0.283 0.275

(0.032) (0.024) (0.24) (0.071) (0.069) (0.081) (0.095) (0.103) (0.107) (0.107)

PB 1.617 0.312 0.62 0.818 0.751 0.591 0.616 0.540 0.382 0.433

(0.049) (0.028) (0.24) (0.073) (0.056) (0.085) (0.082) (0.087) (0.096) (0.085)

Feb. Hist. 1.621 0.318 0.56 0.889 0.768 0.726 0.590 0.561 0.450 0.270

PAR 1.618 0.315 0.49 0.886 0.788 0.725 0.557 0.497 0.404 0.292

(0.035) (0.028) (0.31) (0.027) (0.045) (0.059) (0.083) (0.088) (0.093) (0.109)

k-NN 1.625 0.288 0.53 0.858 0.717 0.627 0.516 0.390 0.320 0.249

(0.031) (0.026) (0.24) (0.031) (0.073) (0.080) (0.090) (0.100) (0.106) (0.106)

PB 1.617 0.303 0.58 0.880 0.750 0.700 0.559 0.517 0.422 0.279

(0.049) (0.029) (0.24) (0.028) (0.057) (0.063) (0.072) (0.084) (0.098) (0.103)

Mar. Hist. 1.904 0.656 2.97 0.671 0.671 0.674 0.658 0.438 0.485 0.379

PAR 1.939 0.640 2.39 0.661 0.660 0.570 0.528 0.423 0.372 0.290

(0.074) (0.135) (0.81) (0.064) (0.068) (0.083) (0.090) (0.116) (0.120) (0.114)

k-NN 1.925 0.630 2.64 0.660 0.570 0.486 0.427 0.355 0.267 0.220

(0.073) (0.141) (0.88) (0.052) (0.068) (0.083) (0.097) (0.108) (0.119) (0.119)

PB 1.889 0.593 2.43 0.664 0.669 0.658 0.650 0.424 0.456 0.350

(0.075) (0.127) (0.93) (0.072) (0.050) (0.058) (0.059) (0.086) (0.100) (0.113)

Apr. Hist. 5.124 2.457 1.15 0.637 0.393 0.426 0.411 0.399 0.213 0.392

PAR 5.113 2.371 1.03 0.521 0.386 0.391 0.339 0.313 0.237 0.215

(0.271) (0.253) (0.37) (0.095) (0.097) (0.095) (0.101) (0.104) (0.110) (0.109)

k-NN 5.077 2.291 0.99 0.505 0.356 0.316 0.280 0.247 0.205 0.157



4.3.1. Preservation of monthly serial correlations

In the case of the Beaver River, it may be noted

from Fig. 10 that lag-1 serial correlations are reason-

ably preserved by the parametric model, while a

consistent underestimation is observed in seven out

of the 12 months in case of the k-NN model. In

contrast, the PB model is able to preserve the statistic

better. The lag-2 serial correlations are reasonably

preserved by the parametric model (Fig. 11).

However, there is a considerable in¯ation of the statis-

tic in the months of June±August. On the other hand,

the k-NN model does not preserve the lag-2 serial

correlations, since its structure is designed to preserve

only lag-1 serial correlation �d � 1�: Furthermore, it is

V.V. Srinivas, K. Srinivasan / Journal of Hydrology 241 (2001) 221±269 241

Table 5 (continued)

Month Model Summary statistics Serial correlations

Mean (m3/s) SD (m3/s) Skew Cor1 Cor2 Cor3 Cor4 Cor5 Cor6 Cor7

(0.252) (0.226) (0.34) (0.116) (0.097) (0.100) (0.102) (0.107) (0.113) (0.112)

PB 5.089 2.380 1.01 0.597 0.348 0.382 0.360 0.341 0.157 0.320

(0.237) (0.240) (0.36) (0.107) (0.091) (0.094) (0.099) (0.104) (0.100) (0.114)

May Hist. 19.752 6.440 0.35 0.410 0.419 0.404 0.462 0.419 0.443 0.296

PAR 19.716 6.460 0.36 0.418 0.405 0.333 0.334 0.291 0.270 0.202

(0.723) (0.511) (0.28) (0.095) (0.096) (0.103) (0.103) (0.105) (0.108) (0.111)

k-NN 19.858 6.356 0.37 0.367 0.214 0.169 0.145 0.129 0.114 0.096

(0.725) (0.522) (0.21) (0.083) (0.103) (0.108) (0.110) (0.108) (0.106) (0.106)

PB 19.776 6.319 0.33 0.388 0.401 0.366 0.432 0.373 0.393 0.229

(0.726) (0.509) (0.21) (0.075) (0.071) (0.100) (0.091) (0.099) (0.087) (0.094)

June Hist. 26.512 12.477 0.45 0.165 20.007 0.225 0.342 0.304 0.309 0.271

PAR 26.483 12.373 0.43 0.185 0.006 0.043 0.033 0.034 0.030 0.021

(1.368) 1.072 (0.30) (0.110) (0.111) (0.110) (0.112) (0.109) (0.109) (0.112)

k-NN 26.477 12.006 0.41 0.131 0.007 0.046 0.045 0.039 0.034 0.029

(1.338) 0.995 (0.25) (0.104) (0.109) (0.114) (0.115) (0.113) (0.115) (116)

PB 26.516 12.273 0.40 0.138 20.023 0.202 0.331 0.303 0.294 0.254

(1.442) (1.028) (0.24) (0.105) (0.097) (0.140) (0.089) (0.080) (0.093) (0.107)

July Hist. 7.629 5.821 3.17 0.672 0.100 0.044 0.117 0.219 0.189 0.243

PAR 7.825 5.655 2.57 0.740 0.191 0.034 0.055 0.043 0.042 0.037

0.624 (1.216) (0.81) (0.048) (0.111) (0.114) (0.117) (0.115) (0.114) (0.111)

k-NN 7.603 5.411 2.58 0.696 0.097 0.006 0.029 0.030 0.029 0.025

(0.596) (1.177) (0.92) (0.061) (0.097) (0.110) (0.109) (0.107) (0.109) (0.108)

PB 7.676 5.747 2.72 0.692 0.089 0.021 0.113 0.219 0.188 0.231

(0.703) (1.260) (0.84) (0.063) (0.093) (0.147) (0.110) (0.082) (0.087) (0.105)

Aug. Hist. 3.205 1.211 1.01 0.777 0.754 0.288 0.034 0.130 0.310 0.355

PAR 3.204 1.241 0.97 0.795 0.775 0.194 0.027 0.054 0.046 0.044

(0.138) (0.125) (0.38) (0.047) (0.047) (0.110) (0.109) (0.105) (0.110) (0.109)

k-NN 3.208 1.130 1.00 0.766 0.709 0.153 0.027 0.040 0.040 0.036

(0.123) (0.117) (0.31) (0.078) (0.053) (0.109) (0.107) (0.107) (0.108) (0.109)

PB 3.212 1.194 0.92 0.791 0.759 0.262 0.012 0.104 0.274 0.315

(0.155) (0.130) (0.26) (0.037) (0.040) (0.100) (0.112) (0.115) (0.099) (0.100)

Sep. Hist. 2.341 0.834 1.33 0.881 0.593 0.624 0.284 0.031 0.177 0.357

PAR 2.364 0.951 1.38 0.853 0.664 0.640 0.161 0.023 0.045 0.040

(0.104) (0.118) (0.46) (0.035) (0.083) (0.070) (0.110) (0.113) (0.107) (0.111)

k-NN 2.326 0.753 1.17 0.845 0.661 0.602 0.122 0.016 0.029 0.026

(0.084) (0.086) (0.36) (0.042) (0.087) (0.067) (0.109) (0.108) (0.110) (0.108)

PB 2.341 0.816 1.19 0.873 0.612 0.622 0.259 0.006 0.145 0.321

(0.109) (0.111) (0.33) (0.034) (0.081) (0.058) (0.096) (0.089) (0.107) (0.087)



to be mentioned that adopting the higher-order k-NN

models distorts the preservation of lag-1 serial corre-

lations. In contrast, the PB model is able to capture

lag-2 serial correlations (Fig. 11). It is to be mentioned

that neither the parametric nor the k-NN model

captures serial correlations for lag-3 (Fig. 12) and

higher lags. In contrast, the PB model exhibits a

much better performance in terms of preservation of

monthly serial correlations upto several lags (Figs. 12

and 13).

4.3.2. Preservation of annual autocorrelations

The preservation of autocorrelation of ¯ows at the

aggregated annual level is examined for both

the rivers for all the three models considered. Both

the parametric and the k-NN models are not able to

reproduce the autocorrelations of the Beaver and

Weber rivers (Tables 4 and 6, respectively). In

contrast, the PB model (L � 4v for Beaver and L �
3v for Weber) is able to preserve the same reason-

ably. For the PB model, the results are presented for

an alternative block size �L � 5v� that enables the

appreciation of the ¯exibility associated with the

method. In the case of the Beaver River, there is a

signi®cant improvement in the preservation of lag-1

autocorrelation of ¯ows (Table 4). A similar trend

may be noted in the preservation of lag-1 and lag-2

autocorrelations for the Weber River (Table 6).

4.3.3. Preservation of monthly state-dependent

correlations

For the Beaver River, the preservation of ªabove

and forwardº, ªabove and backwardº, ªbelow and

forwardº and ªbelow and backwardº state-dependent

correlations are presented in Figs. 14±17, respec-

tively, for the three models being compared. It may

be noted from the ®gures that the parametric model

(PARMA(1,1) WHT) overestimates ªabove and

forwardº and ªabove and backwardº correlations

considerably, while it underestimates ªbelow and

forwardº and ªbelow and backwardº state-dependent

correlations. On the other hand, the k-NN model de¯a-

tes ªabove and forwardº and ªabove and backwardº

correlations signi®cantly for most of the months. In

contrast, the PB model exhibits better performance in

modeling the same. It is to be noted that the ªbelow

and forwardº and the ªbelow and backwardº correla-

tions are reasonably well preserved by both k-NN and

PB models.

In the case of the Weber River, Figs. 18±21 show

the preservation of ªabove and forwardº, ªabove and

backwardº, ªbelow and forwardº and ªbelow and

backwardº state-dependent correlations, respectively,

by the three models considered. It may be noted that

the parametric model shows high amount of bias for

all the four state-dependent correlations, whereas, the

k-NN model is able to perform reasonably well in

most months. However, considerable underestimation

is noted in a few of the months. In contrast, the PB

model is able to capture the typical historical trend of

all the four state-dependent correlations.

4.3.4. Preservation of cross-correlations

An additional attraction of the PB model is that the

within-year cross-correlations between different

month pairs and the month-to-annual cross-correla-

tions are reasonably preserved. This may be appre-

ciated from the results presented in Tables 7 and 8

for month-to-month cross-correlations between the

various month pairs and Figs. 22 and 23 for the

month-to-annual cross-correlations for the Beaver

and the Weber rivers. On the other hand, the other

two models are not able to preserve the same, since

they are not designed for preserving these cross-corre-

lations (not shown for brevity).

4.4. Preservation of storage capacity statistics

Synthetic stream¯ow sequences are often used for

estimation of reservoir storage capacity for a
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Table 6

Preservation of aggregated annual ¯ow statistics: Weber River

(®gures in parentheses denote the standard deviation over 500

synthetic replicates)

Model Summary statistics Autocorrelation

Mean (m3/s) SD (m3/s) Skew Lag-1 Lag-2

Hist. 6.316 1.874 0.44 0.253 0.180

PAR 6.331 1.844 0.77 0.098 20.015

(0.225) (0.192) (0.41) (0.104) (0.108)

k-NN 6.313 1.701 0.39 0.063 20.021

(0.199) (0.153) (0.28) (0.105) (0.108)

PB 6.315 1.820 0.38 0.190 0.038

L � 3v (0.251) (0.162) (0.26) (0.089) (0.114)

PB 6.296 1.779 0.30 0.231 0.104

L � 5v (0.267) (0.163) (0.27) (0.085) (0.116)
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Fig. 15. Preservation of backward, above median correlation. A comparison between: (a) parametric; (b) k-nearest-neighbor bootstrap; and (c) PB models for the Beaver River.
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Fig. 16. Preservation of forward, below median correlation. A comparison between: (a) parametric; (b) k-nearest-neighbor bootstrap; and (c) PB models for the Beaver River.
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Fig. 17. Preservation of backward, below median correlation. A comparison between: (a) parametric; (b) k-nearest-neighbor bootstrap; and (c) PB models for the Beaver River.
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Fig. 18. Preservation of forward, above median correlation. A comparison between: (a) parametric; (b) k-nearest-neighbor bootstrap; and (c) PB models for the Weber River.
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Fig. 19. Preservation of backward, above median correlation. A comparison between: (a) parametric; (b) k-nearest-neighbor bootstrap; and (c) PB models for the Weber River.
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Fig. 20. Preservation of forward, below median correlation. A comparison between: (a) parametric; (b) k-nearest-neighbor bootstrap; and (c) PB models for the Weber River.
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Fig. 21. Preservation of backward, below median correlation. A comparison between: (a) parametric; (b) k-nearest-neighbor bootstrap; and (c) PB models for the Weber River.



prespeci®ed demand. In this section, the reservoir

storage capacities required to meet various prespeci-

®ed demand levels (ranging from 50 to 95% mean

annual ¯ow (MAF), distributed uniformly over 12

months of the year) are computed, using the sequent

peak algorithm (Loucks et al., 1981, p. 235), for the

historical stream¯ows as well as the 500 synthetic

replicates generated from each of the three models

considered (parametric, k-NN and PB). A relative

comparison of the errors in the prediction of the reser-

voir storage capacity statistics between the three

models is presented in Tables 9 and 10 for the

rivers Beaver and Weber, respectively, in terms of the

performance measures relative bias (R-bias) and

relative root mean square error (R-RMSE), given below.

R-bias �
Sh 2

1

nr

Xnr

i�1

Ssi

 !
Sh

�8�

R-RMSE �
1

nr

Xnr

i�1

Sh 2 Ssi

ÿ �2 !1=2

Sh

�9�

where Sh denotes the storage capacity estimated from

the observed (historical) ¯ows, Ssi is the storage capacity

estimated from the ith synthetic replicate and nr denotes

the number of synthetic replicates.
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Table 7

Preservation of the month-to-month cross-correlations by the PB model. River: Beaver (®gures in parentheses denote the standard deviation

over 500 synthetic replicates)

Month Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

Oct. Hist. 1.000 0.876 0.801 0.799 0.794 0.539 0.407 0.361 0.151 0.144 0.199 0.359

PB 1.000 0.883 0.794 0.786 0.762 0.540 0.347 0.314 0.101 0.135 0.264 0.326

(0.000) (0.054) (0.057) (0.051) (0.048) (0.082) (0.077) (0.119) (0.129) (0.136) (0.119) (0.117)

Nov. Hist. 1.000 0.893 0.788 0.823 0.565 0.396 0.439 0.174 0.194 0.303 0.429

PB 1.000 0.883 0.781 0.796 0.569 0.348 0.382 0.120 0.140 0.227 0.336

(0.000) (0.036) (0.053) (0.036) (0.091) (0.072) (0.116) (0.130) (0.137) (0.151) (0.115)

Dec. Hist. 1.000 0.846 0.777 0.506 0.429 0.454 0.103 0.168 0.257 0.380

PB 1.000 0.839 0.755 0.506 0.386 0.402 0.063 0.127 0.195 0.307

(0.000) (0.037) (0.057) (0.091) (0.070) (0.112) (0.096) (0.106) (0.122) (0.088)

Jan. Hist. 1.000 0.813 0.548 0.380 0.357 0.151 0.147 0.250 0.365

PB 1.000 0.815 0.572 0.347 0.309 0.121 0.115 0.211 0.315

(0.000) (0.061) (0.101) (0.098) (0.113) (0.097) (0.104) (0.113) (0.093)

Feb. Hist. 1.000 0.755 0.484 0.392 0.137 0.148 0.268 0.427

PB 1.000 0.750 0.436 0.354 0.105 0.115 0.225 0.374

(0.000) (0.045) (0.078) (0.107) (0.103) (0.115) (0.119) (0.092)

Mar. Hist. 1.000 0.546 0.322 0.053 0.087 0.304 0.424

PB 1.000 0.495 0.287 0.023 0.046 0.248 0.370

(0.000) (0.073) (0.088) (0.102) (0.108) (0.123) (0.096)

Apr. Hist. 1.000 0.382 20.018 0.058 0.206 0.282

PB 1.000 0.366 20.029 0.049 0.187 0.258

(0.000) (0.114) (0.115) (0.122) (0.109) (0.119)

May Hist. 1.000 0.550 0.579 0.580 0.656

PB 1.000 0.555 0.582 0.575 0.661

(0.000) (0.069) (0.065) (0.065) (0.058)

Jun. Hist. 1.000 0.882 0.778 0.757

PB 1.000 0.879 0.776 0.744

(0.000) (0.031) (0.055) (0.072)

Jul. Hist. 1.000 0.888 0.840

PB 1.000 0.884 0.831

(0.000) (0.030) (0.055)

Aug. Hist. 1.000 0.915

PB 1.000 0.911

(0.000) (0.027)



For the Beaver River, it is seen from Table 9 that the

k-NN model highly underestimates the storage capa-

city at low (50±55% MAF) and high (85±95% MAF)

demand levels. Even though the parametric model

(PARMA(1,1)WHT) also exhibits considerably high

R-bias at both low and high demand levels, it is signif-

icantly lower that that of the k-NN model. However, at

the intermediate demand levels (60±80% MAF) the

performance in terms of both R-bias and R-RMSE for

either of these models is comparable. In contrast, the

PB model (with L � 4v� exhibits much lower R-bias

compared to the other two models, at low as well as

high demand levels speci®ed. Though the perfor-

mance of the three models in terms of R-RMSE is

comparable for the demands 50±55% MAF and

80±90% MAF, the bias in the reservoir storage is

considerably higher for simulations from the para-

metric and k-NN models than those from the PB

model, indicating inadequacy of both the parametric

and k-NN models in predicting the reservoir storage

capacity for this river's ¯ow data. The better perfor-

mance of the PB model at the higher demand levels,

may be attributed to the better preservation of higher-

order dependence by the model (Fig. 13).

For the Weber River, it is seen from Table 10

that both the parametric and the k-NN models

highly underestimate the storage capacity at low

(50±60% MAF) as well as high (90±95% MAF)
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Table 8

Preservation of the month-to-month cross-correlations by the PB model. River: Weber (®gures in parentheses denote the standard deviation over

500 synthetic replicates)

Month Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

Hist. 1.000 0.843 0.709 0.637 0.590 0.438 0.213 0.296 0.249 0.195 0.399 0.478

Oct. PB 1.000 0.835 0.687 0.591 0.559 0.424 0.157 0.229 0.221 0.163 0.284 0.361

(0.000) (0.030) (0.047) (0.085) (0.072) (0.086) (0.100) (0.094) (0.109) (0.121) (0.156) (0.163)

Hist. 1.000 0.866 0.782 0.726 0.658 0.399 0.443 0.271 0.158 0.345 0.432

Nov. PB 1.000 0.853 0.751 0.700 0.650 0.341 0.393 0.254 0.143 0.272 0.364

(0.000) (0.029) (0.056) (0.063) (0.059) (0.104) (0.087) (0.107) (0.120) (0.108) (0.109)

Hist. 1.000 0.831 0.768 0.674 0.411 0.419 0.309 0.243 0.393 0.432

Dec. PB 1.000 0.818 0.750 0.658 0.360 0.373 0.294 0.231 0.337 0.377

(0.000) (0.073) (0.057) (0.058) (0.099) (0.099) (0.093) (0.105) (0.093) (0.090)

Hist. 1.000 0.889 0.671 0.426 0.462 0.304 0.189 0.355 0.391

Jan. PB 1.000 0.880 0.669 0.382 0.432 0.303 0.188 0.315 0.349

(0.000) (0.028) (0.050) (0.094) (0.091) (0.080) (0.087) (0.100) (0.091)

Hist. 1.000 0.672 0.393 0.404 0.342 0.219 0.310 0.357

Feb. PB 1.000 0.664 0.348 0.366 0.331 0.219 0.274 0.321

(0.000) (0.072) (0.091) (0.100) (0.089) (0.082) (0.099) (0.087)

Hist. 1.000 0.637 0.419 0.225 0.117 0.130 0.177

Mar. PB 1.000 0.597 0.401 0.202 0.113 0.104 0.145

(0.000) (0.107) (0.071) (0.140) (0.110) (0.115) (0.107)

Hist. 1.000 0.410 20.007 0.044 0.034 0.031

Apr. PB 1.000 0.388 20.023 0.021 0.012 0.006

(0.000) (0.075) (0.097) (0.147) (0.112) (0.089)

Hist. 1.000 0.165 0.101 0.288 0.284

May PB 1.000 0.138 0.089 0.262 0.259

(0.000) (0.105) (0.093) (0.100) (0.096)

Hist. 1.000 0.672 0.754 0.624

Jun. PB 1.000 0.692 0.759 0.622

(0.000) (0.063) (0.040) (0.058)

Hist. 1.000 0.777 0.593

Jul. PB 1.000 0.791 0.612

(0.000) (0.037) (0.081)

Hist. 1.000 0.881

Aug. PB 1.000 0.873

(0.000) (0.034)



demand levels. However, for the lower demand levels,

the k-NN model exhibits less R-bias and R-RMSE

compared to the parametric model, whereas at higher

demand levels, both the models exhibit nearly the

same level of performance. In contrast, the PB

model (with L � 3v� shows a consistently better

performance at both lower and higher demand levels

mentioned (Table 10) in terms of both R-bias and R-

RMSE. This may be attributed to the better preserva-

tion of the correlation structure by the PB model at

both periodic and annual levels. For the PB model, an

alternative block choice �L � 5v� is also presented

that enables appreciation of the ¯exibility offered by

the model. However, for L � 5v; the R-bias of the

storage capacity estimate at higher demand levels

(90±95% MAF) reduces considerably. Herein, we
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Fig. 23. Preservation of month-to-annual cross-correlation by the

PB model for the Weber River. The circle denotes correlation of

historical ¯ows and the darkened square denotes the average corre-

lation computed from the 500 synthetic replicates.

Fig. 22. Preservation of month-to-annual cross-correlation by the

PB model for the Beaver River. The circle denotes correlation of

historical ¯ows and the darkened square denotes the average corre-

lation computed from the 500 synthetic replicates.

Table 9

Preservation of storage capacity statistics. A comparison between: (a) parametric; (b) k-nearest-neighbor (k-NN) bootstrap; and (c) PB models.

River: Beaver

Demand level Hist. storage

capacity

(million m3)

Model

Parametric k-NN PB

PARMA(1,1)WHT L � 4v L � 5v

R-Bias R-RMSE R-Bias R-RMSE R-Bias R-RMSE R-Bias R-RMSE

50 16.90 0.184 0.310 0.291 0.338 0.163 0.299 0.156 0.273

55 22.21 0.166 0.300 0.220 0.293 0.123 0.265 0.113 0.233

60 28.41 0.142 0.291 0.157 0.269 0.080 0.248 0.072 0.213

65 34.62 0.087 0.284 0.081 0.265 0.013 0.249 0.013 0.219

70 40.95 0.006 0.302 20.006 0.287 20.085 0.302 20.068 0.268

75 57.97 0.101 0.305 0.093 0.284 0.001 0.288 0.019 0.261

80 78.34 0.144 0.325 0.152 0.306 0.043 0.306 0.054 0.282

85 113.25 0.219 0.372 0.255 0.356 0.134 0.338 0.140 0.318

90 166.99 0.276 0.432 0.345 0.421 0.198 0.417 0.201 0.391

95 226.54 0.191 0.506 0.310 0.468 0.096 0.547 0.112 0.510



wish to mention that caution has to be exercised in

opting for such a high block size, since the smoothing

effect gets drastically reduced. Although the R-RMSE

of the storage capacity estimate of the three models

are quite comparable at higher demand levels, it is to

be noted that the parametric and the k-NN models

exhibit high amount of bias in addition to poor varia-

tion, which are undesirable.

4.5. Selection of block size

In the PB method applied to monthly stream¯ow

modeling, the block sizes considered for resampling

the residuals obtained from the periodic parametric

model ®tted are in multiples of 12. Just like in the

case of the MBB technique, the selection of the appro-

priate block size is subjective. It depends on the parti-

cular statistic being modeled for the application of

interest. We have investigated the effect of block

size on the preservation of a wide variety of statistics

from historical ¯ows. For want of space, only a few of

these results are presented herein.

For the Weber River, the improvement obtained in

preservation of skewness, lag-3 and lag-5 serial corre-

lations and month-to-annual cross-correlations, is

shown in Figs. 24±27. In general, it may be noted

from these ®gures that the preservation of the statistics

of historical ¯ows improves with increase in block

size. However, beyond a particular block size (in

this case, L � 3v�; no substantial improvement is

seen in the preservation of the various statistics

considered, besides a drastic reduction in smoothing

in the simulated replicates. Hence, the block size of

L � 3v is selected for the Weber River.

5. Summary and conclusions

In this article, the PB approach is extended to

modeling periodic stream¯ows. In the ®rst part of

the paper, the hybrid character of the PB model is

demonstrated through Monte-Carlo simulations

performed on hypothetical data sets drawn from a

known self-exciting seasonal threshold ARMA

model. Following this, the performance of PB model

is compared with that of the low-order periodic para-

metric models (commonly used in hydrology) and the

recently introduced k-NN bootstrap method.

For the PB approach, only a simple PAR(1) model

(a default option/model commonly used by stochastic

hydrologist to model monthly stream¯ows) is used as

the underlying parametric model. For the k-NN

model, the model order d and number of nearest

neighbors k are adopted as 1, and square root of the

sample size, respectively (as recommended by Lall

and Sharma, 1996). On the other hand, for the
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Table 10

Preservation of storage capacity statistics. A comparison between: (a) parametric; (b) k-nearest-neighbor (k-NN) bootstrap; and (c) PB models.

River: Weber

Demand level Hist. storage

capacity

(million m3)

Model

Parametric k-NN PB

PAR(2)WHT L � 3v L � 5v

R-Bias R-RMSE R-Bias R-RMSE R-Bias R-RMSE R-Bias R-RMSE

50 68.13 0.294 0.321 0.219 0.271 0.061 0.149 0.060 0.140

55 84.73 0.284 0.320 0.180 0.245 0.048 0.141 0.048 0.132

60 101.85 0.249 0.296 0.138 0.221 0.033 0.132 0.035 0.121

65 119.28 0.197 0.260 0.096 0.208 0.015 0.134 0.018 0.120

70 136.71 0.132 0.228 0.046 0.211 20.015 0.160 20.005 0.131

75 158.53 0.073 0.219 0.009 0.232 20.053 0.205 20.046 0.163

80 195.87 0.061 0.230 0.028 0.244 20.051 0.241 20.055 0.208

85 235.87 20.002 0.256 20.003 0.261 20.120 0.319 20.159 0.339

90 397.06 0.200 0.317 0.227 0.317 0.088 0.316 20.002 0.374

95 776.78 0.374 0.472 0.424 0.486 0.278 0.463 0.168 0.485
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Fig. 24. Effect of block size on the preservation of skewness by the PB model for the Weber River. The circle denotes the historical value and the darkened square denotes the

average statistic from 500 synthetic replicates.
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Fig. 25. Effect of block size on the preservation of lag-3 monthly serial correlation by the PB model for the Weber River.
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Fig. 26. Effect of block size on the preservation of lag-5 monthly serial correlation by the PB model for the Weber River.
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Fig. 27. Effect of block size on the preservation of month-to-annual cross-correlation by the PB model for the Weber River. The circle denotes correlation of historical ¯ows and the

darkened square denotes the mean correlation computed from the 500 synthetic replicates.



parametric approach, the best low-order linear

stochastic model from among PAR(1), PAR(2) and

PARMA(1,1), has been considered along with natural

logarithm and WHT options. In the case of the k-NN

and the PB models, no normalizing transformation has

been applied.

A wide variety of statistics were considered for the

comparison. Further, the three models were tested for

their precision in predicting the reservoir storage

capacity statistic, for various prespeci®ed demand

levels (ranging from 50 to 95% of the mean annual

¯ow) for both the Beaver and the Weber rivers in

USA.

The PB approach seems to gain considerably by

utilizing the merits of both the parametric model and

the MBB (nonparametric model adopted for resam-

pling residuals). The PB model is found to exhibit a

consistently better performance compared to the

parametric and the k-NN models, in terms of the

preservation of basic summary statistics, marginal

distributions, dependence structure (monthly serial

correlations, monthly state-dependent correlations

and lag-1 autocorrelations at the aggregated annual

level) and reservoir storage capacity statistics, in

spite of no normalizing transformation being

applied. In addition, it is seen that the month-to-

annual and month-to-month cross-correlations are

well preserved.

There seems to be considerable scope for extending

the PB approach to disaggregation/multivariate/multi-

site modeling of geophysical data at different time

levels. Furthermore, the PB approach offers consider-

able ¯exibility to the practicing hydrologist for deci-

sion making in water resources planning studies. It is

also easy to implement on a personal computer.
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