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Abstract

In the past, a great deal of research has been conducted to determine the fractal properties which quantify the sinuosity of
individual streams and the branching configuration of stream channel networks in watersheds. Much of this work has been
conducted with sparse rather than dense stream networks. It seems appropriate that characteristics should be determined for
dense networks to decide if the ranges of values of the fractal characteristics computed by previous researchers hold for the
dense networks. The first objective of the present study is to compute the fractal measures for several watersheds, which have
dense network data, and to compare them to the values in the literature estimated by using sparse network data. The second
objective is to compare the different fractal measures for different watersheds and examine their variability. If there is
considerable variability in these measures, then the question of which measures to use arises. The third objective is to examine
whether these watersheds are self-similar or self-affine. The results indicate that the fractal dimensions vary widely, depending
on the definitions used. The watersheds have self-affine rather than self-similar characteristics.q 2001 Published by Elsevier
Science B.V.
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1. Introduction

Euclidean or classical geometry consists of
describing physical objects using lines, circles,
ellipses, etc. This type of geometry is appropriate
for discussing man-made technological objects;
however, patterns found in nature are significantly
more complex. To describe natural entities, Mandel-
brot (1983) developed fractal geometry — the so-
called ‘geometry of nature’. Fractal geometry is
useful for describing irregular and fragmented
patterns found in many disciplines. Fractal shapes
are characterized by their detail. A magnified view
of a fractal displays more detail than the unmagni-
fied view. Accordingly, it is impossible to draw a

tangent to a fractal because it is not smooth.
Although fractals can be either continuous or frag-
mented, they are not differentiable.

A fractal which has received significant attention in
the literature is the coastline. When measuring the
length of a coast on a map with a compass, researchers
find that the total length depends on the selected
spacing of the compass points. The smaller the unit
of measure, the longer the coast. Each time the unit of
measure is decreased, one measures more detail of the
coastline, thus increasing the apparent total length.
This phenomenon occurs due to the fractal nature of
the coastline, and hence it is impossible to assign a
single value as the length of a coastline. For a closed,
non-fractal object, such as a circle, the total length of
the outline will converge to a constant value as the
unit of measure decreases.
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1.1. General overview of self-similarity

Fractals are distinguished by their self-similarity.
The term self-similarity, which is used interchange-
ably with scalingandscale invariantin the literature,
simply means that the pieces of the object resemble
the whole object. For example, consider a cauliflower
(Peitgen et al. 1992). Magnified, the small pieces of a
cauliflower look similar to the whole cauliflower
head. In a mathematical idealization, this dissection
of infinitely detailedobjects could be carried on inde-
finitely (Peitgen et al., 1992). The cauliflower may be
consideredimperfectly self-similarsince, at some
point, the structure becomes too small to continue.
The metric system is another example of self-similar-
ity. A meter with divisions at each decimeter cannot
be distinguished from an enlarged view of a decimeter
with divisions at each centimeter.

Self-similarity takes many forms.Strict self-simi-
larity, the purest form of self-similarity, implies that
each piece is a perfect miniature copy of the whole.
Statistical self-similarityis the term used when small
pieces of the whole look similar to the whole, but
slightly varied (Takayasu, 1990). A fractal is termed
self-affinewhen a smaller piece of the whole appear to
have undergone different scale reductions in the long-
itudinal and transverse directions (Peitgen et al.,
1992). This unequal scaling effectively skews the
smaller replica. Although all fractals display some
variation of self-similarity, self-similarity in itself
does not define a fractal. For example, a cube can be
divided into smaller cubes which resemble the origi-
nal; however, a cube is not a fractal.

1.2. General overview of fractal dimensions

A line is one-dimensional, a plane is two-
dimensional, and a cube is three-dimensional;
however, the physical forms of fractals are more
complicated than these conventional geometric
objects. Fractals have dimensions which are frac-
tional, and these real valued dimensions are
termed fractal dimensions. The fractal dimension
quantifies the complexity or irregularity of a frac-
tal object, but not the shape of a fractal. An object
with a low fractal dimension is less complex than
an object with a higher fractal dimension. Accord-
ing to Barnsley (1993), the fractal dimension

‘attempts to quantify a subjective feeling we
have about how densely the fractal occupies the
metric space in which it lies’. Although it is
perceived that lines are one-dimensional and
planes are two-dimensional, Peano and Hilbert
(cited in Mandelbrot, 1983) complicated the
common thinking by introducing the concept of
space-filling curves which have dimensions
between one and two.

The following relationship exists between the
length,L, the area,A, and the volume,V, of a non-
fractal object.

L / A1=2 / V1=3 �1�
This relationship implies that if the side of a cube
is increased by a factor of 2, the area of one side
is increased by a factor of 22, and the volume is
increased by a factor of 23. In other words, each quan-
tity is increased by a factor equal to two raised to the
power of its dimension. If there existed a quantity,X,
which were increased by a factor of 2D when the
length of the side doubled, one would say thatX is
D-dimensional (Takayasu, 1990). In that case, the
following relationship would be satisfied.

L / A1=2 / V1=3 / X1=D �2�
Following the description by Takayasu (1990), if a
one unit cube is divided into similar cubes of half
sizes with sides of lengthd � 1

2 ; a single segment
becomes two smaller ones, a square becomes four
smaller ones, and a cube becomes eight smaller
ones. Since the numbers 2, 4, and 8 can be written
as 21, 22, and 23, the following power–law relation-
ship can be derived to relate the number of piecesN
and the sized for the side, the square, and the cube.

N�d� � 1
d

� �Ds �3�

In this case, the genericD is replaced byDs, thesimi-
larity dimension. The similarity dimension is the frac-
tal dimension for strictly self-similar fractals. It is not
limited to integer values; however, for common
shapes it will be identical to the empirical dimension
(Takayasu, 1990).

Since the similarity dimension is only defined
for strictly self-similar fractals, it is necessary to
define additional fractal dimensions which are
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appropriate for all fractals. Hausdorff (Takayasu,
1990) began the development of such a dimension
in 1919. Although the so-called Hausdorff dimen-
sion can be defined for any fractal, a rigorous
calculation of the Hausdorff dimension is difficult
(Takayasu, 1990). The following two methods
were developed to avoid the computational
complexities of the Hausdorff method.

The coastline scenario mentioned previously is
used to introduce the line segment method of
computing the fractal dimension. Peitgen et al.
(1992) suggested that this method is an effort
“to measure the degree of complexity by evaluat-
ing how fast length … increases if we measure
with respect to smaller and smaller scales”. For
several different compass settings, the number of
compass lengths,N(d ), to traverse the coast is
plotted against the corresponding compass setting,
d , on log–log paper. The plotted points fall on a
relatively straight line with a negative slope. The
observed relationship can be represented as a
power law in the following form.

N�d� / d2D �4�

In Eq. (4), D is the fractal dimension of the coast-
line, and it is determined by computing the slope
of the plotted relationship. For the coast of Brit-
ain, the fractal dimension is equal to approxi-
mately 1.3. The line segment method is
appropriate for non-branching fractals such as
individual rivers or coastlines. This method is
not applicable for stream networks. The line
segment or compass method is sometimes referred
to as the Richardson Method as it is attributed to
Richardson (1961).

The box counting method is similar to the line
segment method. In this method, a grid with spacing
d is placed over the fractal object, and the number of
boxes,N(d), in which a part of the fractal falls is
counted. This routine is performed at varying grid
spacings, and points representing the corresponding
box counts and grid spacings are plotted on a log–
log plot. The resulting relationship can again be repre-
sented as Eq. (4). The box counting method can be
used for branching fractals like stream networks as
well as for discontinuous fractals such as dusts and
galaxies.

1.3. Fractal dimensions of individual streams and
stream networks

Research has shown that individual streams and the
networks which they comprise are fractals. Hydrolo-
gists are interested in calculating two fractal dimen-
sions for streams — the fractal dimension of
individual streams,d, and the fractal dimension of
the stream network,D. The fractal dimension for an
individual stream is a measure of its irregularity; it is a
measure of the extent of a stream’s meanderings. The
fractal dimension for the network is a measure of the
ability of a network to fill a plane, and it arises from
the branching nature of the network and from the
sinuosity of individual streams. If a stream network
were truly space-filling, as is the case with a topolo-
gically random network, one would expect to compute
a stream network fractal dimension of 2.0. Certain
researchers, including Mandelbrot (1983) and Tarbo-
ton et al. (1988) believe that this may be the case.
Most studies have shown that networks are not
space-filling — at some level, the stream network
stops and the hillslopes begin. The mechanisms,
which govern overland flow, channel flow, and
erosion, prevent the formation of a space-filling
network. Accordingly, it is generally anticipated that
the fractal dimension of a stream network is less than
2.0, and it is further acknowledged that the fractal
dimensions vary from one location to another.

The fractal nature of stream networks is important
to hydrologists for several reasons. A fractal dimen-
sion characterizes the scaling properties and indicates
how an associated measure changes with changes in
scale (La Barbera and Rosso, 1989). Geomorphologic
measures such as stream length, drainage density, and
slope are typically measured from maps and used in
hydraulic and hydrologic modeling. In his paper on
the connection between research and practice, Pilgrim
(1986) emphasized that different values of these
measurements are determined when maps of different
scales are used. McDermott and Pilgrim (1982) found
that mainstream length measurements can vary up to
80% between different scale maps. Unfortunately,
these scale effects have significant implications for
the resulting flood predictions. Al-Wagdany (1993)
suggested that the fractal dimensions of a watershed
are important to better understand the scaling proper-
ties of these measures. La Barbera and Rosso (1989)
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indicated that fractal geometry “can be used to inves-
tigate the scaling properties of the attributes and para-
meters describing drainage basin form and process.”

Takayasu (1990) suggested that the fractal
dimension of a meandering line can be determined
by examining the relationship between the straight
line length and the meandering length for several
segments of the line. If this approach is applied to a
stream network, it is possible to determine the average
fractal dimension of the individual streams,d, in the
following manner. For each logical stream, determine
the mainstream length,L, by measuring along the
curve, and determine the Euclidean mainstream
length, L 0, by measuring the straight line distance
between the endpoints of each logical stream. Accord-
ing to Eq. (2), it is expected that the relationship
between these two measures will be of the following
form if individual streams can be assumed to be
strictly self-similar.

L 0 / L1=d �5�
The fractal dimension can then be computed by deter-
mining the slope of the line formed when the main-
stream length is plotted against the Euclidean
mainstream length on a log–log graph.

Assuming that streams and stream networks are
strictly self-similar, a second relationship to estimate
the average fractal dimension of an individual stream
in a watershed can be derived from Eq. (2), whereA is
the drainage area.

L / Ad=2 �6�
If d � 2b; Eq. (6) can be re-written as the following
equation rather than as a proportional relationship.

L � aAb �7�
Eq. (7) is commonly called Hack’s law.

In this case, the average fractal dimension for indi-
vidual streams in a network can be determined by
computing two times the slope of the line formed on
the log–log plot of mainstream length versus drainage
area (Mandelbrot, 1983). Hack (1957) determineda
to be 1.4 andb to be 0.6�d � 1:2� for several rivers in
Virginia and Maryland. Hack’s work was performed
on non-overlapping basins, rather than investigating
sub-basins within a larger basin. Hack also examined
data from Langbein (1947) for 400 streams in the

northeastern United States and found the same rela-
tionship. For two regions in the western United States,
Hack foundb to be 0.7�d � 1:4�; thus proving that
fractal dimensions vary from region to region. Gray
(1961) founda to be 1.4 andb to be 0.568, and thus
the individual stream fractal dimension is twice 0.568
or 1.136. Often 1.136 is rounded to 1.14, and this
number is used as the standard individual stream frac-
tal dimension. For eight rivers in Missouri, Hjelmfelt
(1988) found the fractal dimension of the mainstream
length to vary from 1.036 to 1.219, with an average of
1.158. Muller (1973) reported thatb is 0.6 �d � 1:2�
for basins less than 8000 mi2, b is 0.5 �d � 1:0� for
basins between 8000 and 100,000 mi2, andb is 0.47
�d � 0:94� for basins larger than 100,000 mi2. One
may question the smallest value ofb , since it implies
that the fractal dimension of the mainstream length is
less than one. In other words, it suggests that a stream
can have a lower dimension than a straight line. This
contradiction can be explained, in part, by recalling
that defining the fractal dimension in terms of the
exponent of the length-area relationship assumes
that streams are self-similar. If the streams are not
self-similar, then twice the exponent of the length–
area relationship is not necessarily an accurate esti-
mate of the fractal dimension. Moreover, Mesa and
Gupta (1987) claimed that for a network which
behaves according to the random topological model,
b should asymptotically tend toward 0.5 as the basin
increases in size.

Prior to the development of fractal mathematics,
researchers believed thatb values greater than 0.5
indicated the tendency of basins to elongate as their
sizes increase. Mandelbrot was the first to attributeb
values greater than 0.5 to fractal properties which
cause the measured length to vary with spatial scale.
Rigon et al. (1996) examined Hack’s law in detail and
concluded that theb value is primarily due to fractal
sinuosity of streams and, to a much lesser extent, is
due to elongation of the basins.

The stream network fractal dimension,D, measures
the fractal characteristic of the total stream length,Z.
Assuming that the stream network is strictly self-simi-
lar, the following relationship to determine the fractal
dimension of the total stream length can be derived
from Eq. (2).

Z / AD=2 �8�
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If D � 2e; the proportional relationship can be rewrit-
ten as the following equation.

Z � fAe �9�
If a log–log plot of the total stream length versus

the drainage area is developed, the stream network
fractal dimension can be determined by doubling the
slope of the straight line formed by the plotted points.
Typical values of network fractal dimensions for total
stream length vary from 1.5 to 2.0. Takayasu (1990)
computed total stream length fractal dimensions for
the Amazon and the Nile using the box counting
method. He determined thatD is 1.85 for the Amazon
and 1.40 for the Nile. Takayasu suggested that the
fractal dimension is greater in regions of greater rain-
fall. As mentioned previously, some researchers
believe that the stream network fractal dimension is
actually 2.0. Mandelbrot (1983) described fractal
geometrical patterns which resemble river networks,
and he suggested that these space-filling fractals are
models of river networks. In his patterns, the fractal
dimension of individual streams is 1.1 while the
network fractal dimension is 2.0, since the patterns
completely fill the space. Tarboton et al. (1988)
asserted that if the fractal dimension is 2.0, then the
fractal description of river scaling is consistent with
the random topology model.

Since natural stream networks are not strictly self-
similar, it should be emphasized that the fractal
dimensions computed from the empirically derived
exponents of the length–area relationships are only
estimates of the actual fractal dimensions. Several
researchers, however, use the fractal dimensions
calculated in this manner as the actual fractal dimen-
sions when attempting to investigate the utility of
fractal dimension formulas (Rosso et al., 1991). All
the proposed methods of determining the fractal
dimensions are simply estimates of the fractal dimen-
sions.

According to Rosso et al. (1991), Horton’s laws of
network composition (i.e. the Laws of Stream
Numbers, Lengths, and Areas) are geometric-scaling
relationships because they hold regardless of the order
or resolution at which the network is viewed and
because they yield self-similarity of the catchment–
stream system. These laws typically hold for a wide
range of scales in nature, with the exception of the
largest watersheds. The Horton ratios can, thus, be

employed to determine the fractal dimensions of indi-
vidual streams and stream networks. Several research-
ers have followed this approach.

Hack (1957) suggested that the drainage density is
constant throughout a watershed, or alternatively, that
the overland flow distance to each stream is the same.
Based upon this hypothesis, Feder (1988) derived the
following relationship to relate the Horton ratios to the
fractal dimension of the mainstream length which
arises due to a stream’s sinuosity.

d � 2
ln RL

ln RB
�10�

La Barbera and Rosso (1987, 1989) proposed that the
network fractal dimension can be computed as the
maximum of the ratio of the logarithm of the bifurca-
tion ratio to the logarithm of the length ratio and 1.0.

D � max
log RB

log RL
;1

� �
�11�

They claimed that this equation permits values ofD
between 1.0 and 2.0 with the mean value falling in the
range of 1.6–1.7. They also claimed that empirical
results demonstrating decreasing drainage densities
with increasing area imply thatD should not equal
2.0.

In a published comment, Tarboton et al. (1990)
referred to the fact that La Barbera and Rosso
(1989) assumed that individual streams, especially
first order, were linear measures with a fractal dimen-
sion of 1.0. Taking into account the effects of the
individual fractal streams, Tarboton et al. derived
the following formulation of the network fractal
dimension.

D � d
log RB

log RL
�12�

Tarboton et al. argued that, when using the stream
fractal dimension of 1.14, this formulation produces
network fractal dimensions closer to 2.0. They
contended that the dimension should be 2.0 since, at
high resolutions, one could imagine a network that
drains every point and thus fills the area it drains.
Tarboton et al. suggested that the phenomenon
whereby the drainage density decreases with increas-
ing area may be due to the fact that higher resolution
maps are typically used when examining smaller
catchments.
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In a reply to the published comment by Tarboton et
al. (1990); La Barbera and Rosso (1990) derived the
following network fractal dimension equation which
includes the sinuosity of individual streams.

D � 1
2 2 d

� �
log RB

log RL
�13�

La Barbera and Rosso acknowledged that this equa-
tion provides fractal dimensions very similar to those
of Eq. (12) when the fractal dimension of individual
streams is close to 1.0. The researchers also refer to
additional research indicating that stream networks do
not have fractal dimensions of 2.0.

Rosso et al. (1991) proposed the following two
equations for computing the individual stream and
network fractal dimensions.

d � max 1;2
log RL

log RA

� �
�14�

and

D � min 2;2
log RB

log RA

� �
�15�

In deriving the first equation, they relaxed Hack’s
(1957) suggestion regarding constant drainage density
and instead opted to permit drainage density to vary
inversely with area as suggested by Horton (1945).
For five Italian watersheds, they computed the indivi-
dual stream fractal dimensions using Eqs. (10) and
(14), and the measured value determined via the box
counting method. The authors also investigated data
from Hjelmfelt’s (1988) Missouri watersheds by esti-
mating thed value using these two equations and
comparing the results to the values which Hjelmfelt
measured. They found that the fractal dimensions
computed by using Eq. (14) compare quite favorably
with the measured values for both the Italian and
Missouri watersheds. They concluded that Eq. (10)
overpredicts the fractal dimension for individual
streams. In another segment of this study, they inves-
tigated the fractal characteristics of individual streams
in 60 sub-basins of the Alta Liri watershed. They
found that thed values estimated using Eq. (14)
compare quite favorably with the fractal dimension
calculated as twice the value of the empirical expo-
nent in the length–area relationship (1.12^ 0.08
compared to 1.16̂ 0.07, respectively). They
computedd values for 30 river basins around the

world using Eq. (14). For these basins, thed values
range from 1.0 to 1.3 with the bulk of the values
between 1.1 and 1.2. From this investigation, they
concluded that the range of values observed precludes
the arbitrary assignment of one particular individual
stream fractal dimension to all rivers.

For the Alta Liri basin, Rosso et al. also determined
the network fractal dimension via the length–area
relationship and compared the result to the value
determined using Eq. (15). They found close agree-
ment between these two fractal dimensions. Both
methods resulted inD values of the order of 1.9.
They computedD values for 30 rivers around the
world using Eq. (15). For these basins, theD values
range from 1.2 to 2.0 with the majority of the values
falling between 1.7 and 1.8. From this investigation,
they concluded that the range of values observed
precludes the arbitrary assignment of a particular
network fractal dimension to all river networks.

1.4. Self-similarity of stream networks

Although the concept of self-similarity has been
briefly discussed previously, it is worthwhile to
focus specifically on the meaning of self-similarity
of a stream network. Much of the present discussion
is derived from the work of Tokanaga (1978) and
Peckham (1995). For stream networks, self-similarity
describes the relationship between a stream and its
side channels of lower order (i.e. those channels of
lower order which enter a stream from the side, not
those which enter at the upstream end). In a truly self-
similar network, the number of third-order streams,
which enter a fourth-order stream from the side, is
the same as the number of second-order streams
which enter a third-order stream from the side. This
relationship continues throughout the basin. In a self-
similar or scale invariant network, one cannot deci-
pher a second-order to third-order confluence from a
first-order to a second-order confluence. As a conse-
quence of self-similarity, if one prunes the exterior
links off of a fifth-order self-similar tree (SST), the
resulting tree is topologically identical to the fourth-
order sub-trees in the original network (Peckham,
1995). In other words, the pruned tree, which is now
fourth order, will have the same number of first-,
second-, and third-order side channels as the fourth-
order sub-tree in the unpruned network.
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According to Tokanaga and Peckham, a stream
network can be thought of as a collection of streams
in which every stream of orderv has two or more
upstream tributaries of order (v 2 1) and Tv ,k side
tributaries of orderk, wherev varies from 2 toV ,
andk varies from 1 to (v 2 1). The numbersTv ,k can
be arranged in a square, lower triangular ‘generator’
matrix as shown below.

T2;1 0 0 … 0

T3;1 T3;2 0 … 0

T4;1 T4;2 T4;3
… 0

..

. ..
. ..

.
] 0

TV;1 TV;2 TV;3
… TV;V21

266666666664

377777777775
�16�

The generator matrix partially specifies a tree of order
V . A SST is one in whichTv;v2k � Tk for all v . Tk is
a number which depends onk, not v , and gives the
number of side tributaries of orderv 2 k. If the
numbers on each diagonal of the generator matrix
are constant, then the network is a SST. Different
networks may have identical generator matrices
because the tributaries may enter the main stream
from either the right or the left and tributaries of
different orders may be interspersed differently.

For natural stream networks, theTv , k values in the
generator matrix are averages of theTv , k values for
each stream of orderv . The generator matrix provides
an immediate indication of basin self-similarity or
lack thereof. By simply noting if each diagonal is
constant or varied, one can tell if the network is, in
general, self-similar.

1.5. Self-affine nature of watersheds

Nikora and Sapozhnikov (1993) claimed that most
stream networks are self-affine fractals. In other
words, the scaling exponents in the longitudinal and
transverse directions are not equal. The term self-
affine implies that two parameters are required to
describe the fractal nature of the network. They
began with the following two relationships which
relate the characteristic longitudinal and transverse
sizes of the network,l and w, to the total stream
length,Z.

l / Zvl �17�

w/ Zvw �18�
In these equations, the exponentsvl and vw are the
scaling exponents in the longitudinal and transverse
directions, respectively. If the scaling exponents are
equal, then the network is self-similar, and the fractal
dimension of the network,D, is numerically equal to
the inverse of the value of either scaling exponent. If
the exponents are not equal, the network is self-affine,
and the lacunarity dimension,DG, is a substitute for
the fractal dimension. The lacunarity dimension is
computed according to the following equation.

DG � 2
vl 1 vw

�19�

Nikora and Sapozhnikov (1993) interpreted the ratio
of the exponents,vw/vl, as Hurst’s exponent,H, as
suggested by Mandelbrot (1986). Hurst’s exponent
characterizes the degree of self-affinity of the
network. The greater the departure ofH from 1.0,
the more self-affine the network. If the network is
self-similar, thenD is equal toDG. If Eqs. (17) and
(18) are combined, the following relationship results.

w/ lvw=vl �20�
If the catchment area is proportional tow multiplied
by l �A/ lw� then the following two relationships
result from Eq. (20).

l / Avl =�vl 1vw� �21�
and

w/ Avw=�vl1vw� �22�
Substituting Eq. (17) into Eq. (21) produces the
following relationship.

Z / A1=�vl 1vw� �23�
Nikora et al. (1993) investigated the self-affine rela-

tionship for individual streams represented by Eq.
(24) in which L is the mainstream length andv0l is
the scaling exponent of the channel pattern in the
longitudinal direction.

l / Lv0l �24�
Combining this relationship with Eq. (21) results in
Eq. (25).

L / Avl =�vl1vw�v0l �25�
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Since Nikora et al. determined thatv0l is nearly 1.0,
this relationship can be viewed as a self-affine
interpretation of Hack’s law with:

b � vl

vl 1 vw
� 1

1 1 H
�26�

Additionally Eq. (23) can be interpreted as a total
length–area relationship with

Z / Ae � ADG=2 e � 1
vl 1 vw

� DG

2
�27�

From these relationships, it is clear thatvl andvw can
be determined by determining the slopes of the main-
stream length vs. area plot (b ) and the total stream
length vs. area plot (e) and then simultaneously
solving Eqs. (26) and (27).

For the 60 sub-basins of the Alto Lira basin
discussed in Rosso et al. (1991), Nikora and
Sapozhnikov determined the following values of the
two scaling parameters:vl � 0:61 andvw � 0:44: As
these values are unequal, they concluded that the
network is self-affine rather than self-similar. The
authors computed a lacunarity dimension equal to
1.90. Note that this is numerically equal to the
network fractal dimension computed by Rosso et al.
Nikora and Sapozhnikov found similar values of the
scaling exponents and the lacunarity dimension for
rivers in Moldova. They concluded that their scaling
exponent estimates indicate that rivers exhibit self-
affine fractal behavior.

1.7. Summary of fractal dimension computations

Tables 1 and 2 provide a summary of the equations
suggested by different authors for individual stream
and network fractal dimension computations.

1.8. Objectives of the present study

The focus of this study is to investigate the fractal
nature of Indiana stream networks. In doing so,
several questions are examined and discussed.
These investigations fall under the following three
categories.

1. Differences in the fractal characteristics computed
by using dense and sparse streams network data.

2. The variability of fractal dimension estimates in the
study watersheds.

3. The self-affine nature of the study watersheds.

Several aspects are investigated under the first cate-
gory. First of all, fractal characteristics of the indivi-
dual streams and stream networks are investigated.
The ranges of fractal dimensions obtained for the indi-
vidual streams and stream networks, and the agree-
ment of these ranges with those suggested in the
research literature are studied. The implications of
the values of the fractal dimensions about the streams
and stream networks are considered in the second
category. Another aspect of the study is whether
some techniques for fractal dimension computations
are better than others. For the third category, the focus
of the study is whether the selected networks are self-
similar or self-affine.
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Table 1
Equations used for individual stream fractal dimension computa-
tions

Estimate Authors Equation Equation
no.

d1 Mandelbrot (1983) L / Ad=2 6
d2 Takayasu (1990) L 0 / A1=2 5
d3 Feder (1988) d � 2

ln RL

ln RB

10

d4 Rosso et al. (1991)d � max 1;2
log RB

log RA

� �
14

Table 2
Equations used for network fractal dimension computations

Estimate Authors Equation Equation
no.

D1 Mandelbrot (1983) Z / AD=2 8
D2 Nikora et al. (1993) Z / ADG=2 23 and 27
D3 La Barbera and

Rosso (1987, 1989)
D � max

log RB

log RL
;1

� �
11

D4 Rosso et al. (1991)D � min 2;2
log RB

log RA

� �
15

D5 Tarboton et al.
(1990)

D � max d
log RB

log RL

� �
12

D6 La Barbera and
Rosso (1990)

D � 1
2 2 d

� �
log RB

log RL

13



The individual stream and network fractal
dimensions were computed by using the formulas
listed in Tables 1 and 2. It is noted that all of these
techniques, with the exception ofD2, assume self-
similarity of stream networks.

To investigate the self-affinity characteristics of
watersheds, the self-similarity and self-affinity
characteristics were analyzed as recommended by
Peckham (1995) and Nikora and Sapozhnikov

(1993), respectively. Generator matrices were devel-
oped for each watershed and the diagonals were
inspected to determine if the networks are self-similar.
To investigate self-affinity, the longitudinal and trans-
verse scaling exponents were computed for each
network.Hurst’sexponents weredetermined toquantify
the degree of self-affinity of the self-affine networks.

2. Data used in the study

All the computations and analyses in this study use
data from 12 rural Indiana (USA) watersheds. These
watersheds range in size from 7.78 to 150.4 km2 and
are located throughout the state. The stream network
data for this study were obtained from theAtlas of
County Drainage Maps— Indiana (Joint Highway
Research Project, 1959). The paper map data were
converted to a digital vector form through scanning
and digitizing procedures described in Schuller et al.
(1999).

These drainage network data were developed at
Purdue University by analyzing air photo maps.
Each map depicts a very fine drainage network as
well as other features. The level of stream network
detail on these maps is orders of magnitude higher
than that given by standard USGS quadrangle maps.

A disadvantage in these maps is the absence of
elevation data. Consequently the sub-watersheds
were delineated by using the drainage maps. The
sub-basin areas and mainstream lengths were de-
lineated by using these drainage network maps. An
example of the drainage network map is shown in
Fig. 1.

3. Individual stream fractal dimension results

Fractal dimensions for the individual streams were
computed by using several methods described earlier
and listed in Table 1. The results are tabulated in
Table 3. The values of the stream fractal dimensions
vary from 1.0 to 1.24. The validity of this range and the
various computational methods are discussed below.

The mainstream length and area relationships are
shown in Fig. 2. The length (L) vs. area (A) relation-
ships are represented asL � aAb

: The coefficients
derived for each of the 12 basins given in Table 3
ranged from 1.43 to 1.65 whereas the exponentsb
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Fig. 1. Stream Network Map for the Whitewater River near Hagers-
town.

Table 3
Individual stream fractal dimensions for the study watersheds

No. Watershed d1 d2 d3 d4

1 Plum Creek 1.18 1.05 1.15 1.08
2 Little Mississinewa River 1.18 1.04 1.22 1.00
3 Rimmell Branch 1.18 1.07 1.20 1.00
4 Galena River 1.18 1.06 1.24 1.04
5 Back Creek 1.18 1.04 1.05 1.01
6 Indian-Kentuck Creek 1.18 1.03 1.09 1.07
7 White Lick Creek 1.18 1.07 1.10 1.00
8 Pine Creek 1.18 1.07 1.13 1.00
9 Lost River 1.18 1.04 1.16 1.08
10 Iroquois River 1.18 1.06 1.23 1.00
11 Little Pine Creek 1.18 1.07 1.20 1.10
12 Whitewater River 1.18 1.05 1.14 1.07

Average 1.18 1.05 1.16 1.04
Standard deviation 0.00 0.014 0.058 0.038



varied very narrowly from 0.58 to 0.61. Consequently
these exponent values were averaged to 0.592 and the
lines were plotted as in Fig. 2. The scatter of the data
in Fig. 2 clearly allows this approximation.

For each study watershed, the fractal dimension
computed from the slope of the mainstream length
versus area plot (estimated1) was 1.18. This result
was expected since the same exponent (0.592) was
used in all cases to compute the sub-basin areas
from the sub-basin mainstream lengths. The resulting
fractal dimension is close to the fractal dimension of
1.14 suggested in the literature by several researchers.
The individual stream fractal dimensions were also
determined for each watershed as twice the slope of
the mainstream length versus Euclidean mainstream
length plot (estimated2). By theL versusL 0 computa-
tion, the resultingd2 values fall into a narrow band
ranging from 1.03 to 1.07, with an average value of
1.05. Two facts about these results are reassuring.
First, in this case, there exists variability in thed2
values from watershed to watershed. Although such
a variability exists ford1 also, it has been suppressed
in this case by selecting the same exponent value of

0.592. It is not expected that the individual stream
fractal dimension would be constant from watershed
to watershed, since some watersheds contain short
straight streams while others have long serpentine
streams. Second, this method is independent of under-
lying techniques which may introduce numerical
error. BothL and L 0 are measured directly from the
digitized data. There are 12 lines, one each per
watershed fitted to the data. The original data were
collected from first-order basins to the maximum
order of the basin.

Furthermore, this fractal value computation does
not depend on the Horton Ratios, which are derived
from regression lines through scattered data. Accord-
ingly, it is believed that estimating the fractal dimen-
sion in this manner has significant merit. Interestingly,
the fractal dimension values computed in this manner
are significantly lower than the value of 1.14
suggested in the literature.

Individual stream fractal dimensions were also
computed using estimatesd3 andd4. Both of these
estimates use equations based on the Horton Ratios.
The resulting d3 values display a great deal of

D.J. Schuller et al. / Journal of Hydrology 243 (2001) 1–1610

Fig. 2. Plot of Mainstream Length vs. Area Relationships. There are 12 lines, one each per watershed fitted to the data. The original data were
collected from first order to the maximum order of the basin.



variability from watershed to watershed. They vary
from 1.05 to 1.24, with an average of 1.16. Interest-
ingly, the average value falls very close to the
suggested value of 1.14 and to the value of 1.18
from the mainstream length–area relationships. The
averaged4 value is 1.04. Intrinsic to the underlying
equation is the lower boundd4 value of 1.0. This
lower bound limitation resulted in five of the twelve
watersheds having individual stream fractal dimen-
sion values of 1.0. In other words, the results indicate
that the individual streams in these cases are not frac-
tals. This conclusion is debatable, as all of the
other techniques produce fractal dimensions
which imply that the individual streams are indeed
fractals. Since the Horton Ratios are determined
by fitting a regression line through an imperfectly
aligned scatter of points, the accuracy of fractal
dimension estimates which use the Horton Ratios,
such asd3 and d4, is questionable.

4. Network fractal dimension results

Network fractal dimensions were determined by a
variety of methods described previously in this study
and listed inTable 2.The entire resultingnetwork fractal
dimension estimates are listed in Table 4. First,D values
were computed as twice the slope of the sub-basin total
stream length versus sub-basin area plots (estimateD1).
The fractal dimensions werecomputed fromplotswhich
did not include first-order streams. The first-order
streams were neglected because including them intro-
duced a downward bias in the resultingD1 values. The
downward bias occurs because first-order main-stream
lengths and total stream lengths are the same, and thus
the total stream length and watershed area for these sub-
basins are related through the exponent 0.592, as
discussed in Schuller and Rao (1999). The network frac-
tal dimension values computed according to estimate
D1 vary between 1.47 and 1.71 with a mean value of
1.54. With the exceptions of Back Creek, Indian-
Kentuck Creek, and the Whitewater River, most of the
D1 values are approximately 1.5. Interestingly, these
three watersheds have the highest drainage densities,
and thus are expected to have higher fractal dimensions
as they are more nearly ‘space-filling’. Neglecting these
three basins, there is little variability in theD1 values
from basin to basin. The scatter of the data in Fig. 2 and
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the fit of the regression lines in this work issimilar to that
observed in the work of Rosso et al. (1991).

The lacunarity dimension, likewise termedDG or
estimateD2, was also computed for the study water-
sheds. The lacunarity dimension is numerically equal
to the fractal dimension computed from theZ–A plot;
however, it carries a different name to emphasize the
fact that it is based on self-affinity rather than self-
similarity. The longitudinal and transverse scaling
exponents for the study watersheds are listed in
Table 5. As shown in this table, the two scaling expo-
nents are not equal in any of the cases. The average
value ofvl is 0.77, and the average value ofvw is 0.53.
Consequently, it can be concluded that the study
networks are self-affine rather than self-similar. This
result is discussed in greater detail later in this paper.

Fractal dimensions computed according to esti-
matesD3 andD4 also exhibit great variability from
basin to basin. TheD3 values fall between 1.63 and
1.91 with a mean value of 1.73. La Barbera and Rosso
(1989) suggested that theD estimates from this
method would fall between 1.5 and 2.0 with a mean
value between 1.6 and 1.7. In light of their predic-
tions, the mean value of 1.73 seems reasonable. The
resultingD4 values are between 1.51 and 1.96 with a
mean value of 1.76.

For each watershed, three network fractal dimen-
sion values were computed according to estimateD5.
These three values were determined by using three
different estimates of the individual stream fractal

dimension:d3, d4, and 1.14. Usingd3 as thed esti-
mate,D5 values of 2.0 resulted for all watersheds due
to algebraic cancellations. Next,d was estimated by
d4, and a range ofD5 values varying from 1.63 to 1.96
with a mean of 1.80 resulted. Finally, thed value of
1.14, as suggested in previous literature, was used in
the D5 equation. This combination resulted inD5
values ranging from 1.83 to 2.00 with a mean of
1.94. Withd equal to 1.14, the network fractal dimen-
sion often took a value of 2.0 as set by the upper
bound limitation. The network fractal dimensions
computed usingd4 as the estimate of the individual
stream fractal dimension exhibit the highest variabil-
ity from watershed to watershed.

For each watershed, the equation forD6 was used
to determine three values of the network fractal
dimension corresponding to three different estimates
of d: d3, d4, and 1.14. First,d was approximated by
d3, which resulted inD6 values limited by the upper
bound of 2.0 for all twelve watersheds. Second,d was
computed according to estimated4, and a range ofD6
values varying from 1.63 to 1.97 with a mean of 1.80
resulted. Finally, thed value of 1.14 from previous
literature was used in theD6 computation. This
combination resulted inD6 values ranging from
1.87 to 2.00 with a mean of 1.96. Withd equal to
1.14, theD6 value was limited by the upper bound
of 2.0 for several of the study watersheds. The
network fractal dimension values computed using
thed value estimated byd4 exhibit the highest varia-
bility from watershed to watershed.

It should be emphasized thatD5 andD6 are nearly
identical for a given watershed when the same indivi-
dual stream fractal dimension estimate was used. This
is not surprising when the individual terms in the two
underlying equations are examined while considering
that thed values are near unity. Significantly more
important in determining the resultingD value was
the selected method of estimating thed value. When
d4 values were used, the resulting network fractal
dimensions are on the order of 1.80. If one of the
other two means of estimating thed values was
employed, then the resulting network fractal dimen-
sions are on the order of 1.95–2.00. Sinced4 appears
to be a low estimate of the individual stream fractal
dimension, its use inD5 and D6 consequently
produces lower estimates of the network fractal
dimension.
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Table 5
Longitudinal and transverse scaling exponents, Lacunarity dimen-
sions, and Hurst’s exponents for the study watersheds

Watershed n l vw D2�DG H

Plum Creek 0.76 0.52 1.56 0.684
Little Mississinewa River 0.79 0.54 1.50 0.684
Rimmell Branch 0.80 0.55 1.47 0.688
Galena River 0.79 0.54 1.50 0.684
Back Creek 0.71 0.49 1.67 0.690
Indian-Kentuck Creek 0.69 0.48 1.71 0.696
White Lick Creek 0.77 0.53 1.54 0.688
Pine Creek 0.79 0.55 1.49 0.696
Lost River 0.79 0.55 1.49 0.696
Iroquois River 0.78 0.54 1.52 0.692
Little Pine Creek 0.79 0.55 1.49 0.696
Whitewater River 0.75 0.52 1.57 0.693
Average 0.77 0.53 1.54 0.691
Standard deviation 0.033 0.023 0.072 0.005



Finally, the network fractal dimension for Plum
Creek was computed using the box counting techni-
que. The selected grid spacings and the number of
boxes intersected are listed in Table 6. When these
points were plotted on a log–log plot, the best fit
regression line had a slope of21.28, thus indicating
a network fractal dimension of 1.28. The data points
plotted nearly on a straight line; however, the low
valued fractal dimension is surprising. The next
lowestD value determined for this watershed is 1.55
and was found via the total length–area relationship.
The other methods yielded significantly higher values.

5. Self-similarity and self-affinity characteristics

Peckham (1995) proposed that the generator matrix
for a stream network is an indicator of the network’s
self-similarity or lack thereof. If each diagonal of the
generator matrix contains constant values, then the
network is self-similar. Eqs. (30)–(34) are the genera-
tor matrices for 5 of the 12 study watersheds. After
examination of the values in the generator matrices, it
is evident that the values along each diagonal are quite
variable, therefore indicating a lack of self-similarity
among the twelve study watersheds. The following
paragraphs describe a few of the resulting matrices
in greater detail.

Many interesting network qualities can be observed
by carefully examining the generator matrices. For
instance, in the Plum Creek generator matrix, the
second diagonal has values of 2.5 and 19.0. This
fact indicates that the network is definitely not self-
similar. Examining the structure of the network sheds
additional light on these numerical results. There are
only two short third-order streams at the upstream end
of the network. As such, very few lower order streams
flow into these third-order streams from the sides. On
the other hand, these two streams drain into an excep-
tionally long fourth-order stream which receives

numerous first- and second-order side tributaries.
The fact that the Plum Creek network is not
“balanced” serves as a strong suggestion of its lack
of self-similarity.

Often the generator matrices indicate an inordinate
number of lower order streams feeding into the high-
est order stream. One example is the Pine Creek
watershed. In the Pine Creek matrix, the numbers in
the bottom row are considerably higher than other
numbers on their respective diagonals. Again this
indicates that the highest order stream is relatively
long, and thus has more tributaries, on average, than
the lower order streams in the network.

Plum Creek Generator�
1:3 0 0

2:5 1:0 0

27:0 19:0 0

2664
3775 �28�

Back Creek Generator

�

1:2 0 0 0 0

4:0 1:2 0 0 0

8:4 3:8 1:0 0 0

3:3 2:7 0:6 0:1 0

33:0 30:0 9:0 8:0 5:0

26666666664

37777777775
�29�

Indian-Kentuck Creek Generator

�

1:5 0 0 0 0

3:4 1:3 0 0 0

7:9 3:3 0:9 0 0

16:8 6:3 3:0 0:8 0

68:0 42:0 17:0 4:0 2:0

26666666664

37777777775
�30�

Pine Creek Generator

�

1:1 0 0 0 0

2:5 1:0 0 0 0

5:8 2:0 0:6 0 0

5:3 1:3 1:0 0 0

42:0 16:0 8:0 11:0 1:0

26666666664

37777777775
�31�
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Table 6
Box counting data for the Plum Creek network

Grid spacing Number of boxes intersected

0.065 1211
0.165 390
0.412 114



Iroquois River Generator

�

0:8 0 0 0 0

1:1 0:5 0 0 0

2:0 1:3 0:7 0 0

4:5 4:5 2:0 1:0 0

1:0 0 0 0 0

26666666664

37777777775
�32�

Interestingly, the generator matrix for the Iroquois
River indicates that only one stream flows into the
sixth-order stream from the side. Accordingly, one
can identify this sixth-order stream as an exception-
ally short stream immediately upstream of the outlet
into which one first-order side tributary flows. The
sixth-order stream for this network is presumably
very short because the watershed outlet is determined
by the gage location. Had the gage been farther down-
stream, the sixth-order stream may be longer than the
average length of the fifth-order streams as would be
expected. The generator simply reemphasizes the
shortness of the sixth-order stream by indicating
that, due to its length, only one tributary flows into it.

Nikora and Sapozhnikov (1993) proposed that
networks be tested for self-similarity by comparing
the resulting scaling exponents in the longitudinal
and transverse directions. If these two scaling
exponents prove to be equal, then the network is
self-similar. If they are not equal, then the network
is self-affine. The scaling exponents,vl andvw, for the
twelve study watersheds are listed in Table 5. As
shown in the table, the scaling exponents are not
equal in any of the cases. The average value ofvl is
0.77, and the average value ofvw is 0.53. These results
indicate that the study networks are self-affine rather
than self-similar. The Hurst’s exponents vary from
0.684 to 0.696 with an average value of 0.691.
Since the values are substantially different than 1.0,
the Hurst’s exponent indicates that the degree of self-
affinity in the study networks is significant. Nikora
and Sapozhnikov (1993) found values of the longitu-
dinal and transverse scaling exponents to be on the
order of 0.62 and 0.45 and Hurst’s exponent values
varying from 0.69 to 0.76. Their study watersheds,
however, were substantially larger and less detailed
than those of this study.

In a recent study Veneziano and Nieman (2000a,b)

have found that several existing geomorphological
relationships should be modified because they were
obtained by using quantities involved or inappropriate
techniques. These methods proposed by Veneziano
and Nieman (2000a,b) may resolve some of the dispa-
rities observed in the present study.

6. Conclusions

To summarize the results of the individual stream
fractal dimension computations is difficult due to the
range of the results. It is reasonable to conclude that
the individual streams are indeed fractal in nature due
to their sinuosity. Only one of the computational
procedures (estimated4) gave evidence to the
contrary. Deciding whether the fractal dimension is
on the order of 1.05 or 1.15 is impossible. The compu-
tation based on the length–Euclidean length relation-
ship (d2) indicated that the fractal dimension is on the
order of 1.05. The length–area relationship (d1) and
the results of estimated3 suggested fractal dimensions
on the order of 1.15. The shortcoming of the length–
area based fractal dimension is the fact that the
controlling exponent was determined from a limited
set of measured length and approximated area data
which was then applied to determine the sub-basin
areas. The length–Euclidean length relationship is
independent of such a derived relationship. All of
the selected methods assume self-similarity of the
individual streams. Although this has not been
addressed in detail, the limited scatter of the data in
theL–L 0 plots serves as evidence of individual stream
self-similarity. Additionally, estimated3 assumes that
drainage density is constant with area. As discussed
below, this assumption is invalid. Once again, it
should be emphasized that all of these results are
merely estimates of the actual fractal dimensions of
individual streams.

In summary, theZ–A relationships (D1) provided
network fractal dimensions on the order of 1.54, esti-
matesD3 andD4 provided fractal dimensions on the
order of 1.75, and estimatesD5 andD6 resulted in
fractal dimensions on the order of 1.8 or 1.95–2.00,
depending on the individual stream fractal dimension
estimates used in the computations. The box counting
method resulted in a network fractal dimension of
1.28 for the Plum Creek watershed. It should be
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emphasized that both the length–area relationships
and the Horton Ratio based computations presume
that the stream networks are self-similar. Interest-
ingly, the Indiana stream networks proved to be
self-affine rather than self-similar, and thus
perhaps representing the fractal nature with two
scaling exponents is a better characterization of
the fractal structure than a single network fractal
dimension.

If networks can be described by a fractal dimension
or a lacunarity dimension, should researchers expect
this dimension to be 2.0? A network fractal dimension
of 2.0 implies topological randomness. One would
expect that the effects of geological, topological,
and hydrological restraints reduce the ability of the
stream network to develop as a purely branching
process, and thus lower the network fractal dimension
to something less than 2.0 (LaBarbera and Rosso,
1989). The following argument can be used to support
this hypothesis. As mentioned earlier, Mandelbrot
(1983) has suggested that the total length of a river
system should increase like the power ofD/2 of its
drainage area. In other words,b is equal toD/2. This
relationship was stated as Eq. (10), and is restated
below as Eq. (33).

Z / AD=2 �33�
If drainage density is defined as the ratio of total
stream length to drainage area, the following relation-
ship can be obtained by dividing both sides of the
above relationship by the basin area,

DD / AD=221 �34�
where ‘DD’ is drainage density and is different from
D p D. SinceD/2 2 1 is negative, the drainage density
decreases like the power of 12 D/2 of the drainage
area. From inspection of the above relationship,D
equal to 2.0 implies that the drainage density is inde-
pendent of basin area (La Barbera and Rosso, 1989).
For the study watersheds, it was found that drainage
density decreases with increasing area (for smaller
basins within the overall basin); it is not constant.
The fact that drainage density is not independent of
basin area for the study watersheds indicates that the
network fractal dimensions of these watersheds
should not be equal to 2.0.

The following conclusions are presented based on

the research discussed in this paper:

1. Different methods for determining individual
stream and network fractal dimensions result in
wide ranges of fractal dimension values. As the
‘correct’ values for the individual stream and
network fractal dimensions are unknown, it is not
possible to determine which of the proposed meth-
ods provide the best results.

2. The proposed methods for determining network
fractal dimensions are founded on the assumption
that the stream networks are self-similar fractal
objects. The present research indicates that the
study networks are self-affine rather than self-simi-
lar. As such, the self-similarity assumption used in
developing the computational methods is highly
questionable, and thus the results based on this
assumption are also suspect.

3. As the networks are self-affine, the two parameter
fractal characterization suggested by Nikora and
Sapozhnikov (1993) is a better representation of
the fractal structure of watersheds.
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