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Abstract

A technique has been to developed to determine the complete gravity gradient tensor from pre-existing vertical gravity
Ž .data using the fast Fourier Transform FFT . Since direct measurement of the entire gravity gradient tensor is generally

unavailable, our technique provides an alternative determination of the gravity gradient tensor components. Traditionally,
Ž .derivatives of vertical gravity g , g , and g have been the only gravity gradient tensor components that have beenz,x z ,y z ,z

Ž .computed directly. Gravity gradient tensor components are computed for four different, three-dimensional 3-D , idealized
horst-and-graben models, with varying depths to the horst. Comparing the FFT results with calculated gradient components
from the 3-D models shows that the RMS error for each component, between the two results, is at most ;3.3 Eotvos Units.¨
In addition, measured gravity gradient components from an airborne survey over the Wichita Uplift and Anadarko Basin
region of southwest Oklahoma compare favorably with the FFT-derived results using available vertical gravity data. No error
analysis was attempted between the two results due to a low signal-to-noise ratio in the measured data. Our technique offers
a novel way to transform and visualize the available data, and it also offers an inexpensive and previously unavailable
subsurface mapping capability. q 2001 Published by Elsevier Science B.V.
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1. Introduction

Traditionally, the vertical component of the grav-
ity field has been the only component measured
because of the ease of obtaining these measurements
and interpreting the data. On the other hand, to
measure the gravity gradient tensor, a torsion balance
had to be utilized, which was difficult to use, while
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the resulting data were also more difficult for geosci-
Ž .entists to understand Bell, 1998 . However, the

importance and usefulness of the gravity gradient
Žtensor especially the vertical and horizontal gradi-

.ents of vertical gravity in locating subsurface ob-
Žjects have long been noted Evjen, 1936; Hammer

.and Anzoleaga, 1975; Butler, 1983 . Recent develop-
Žments in aerial gradiometry systems Jekely, 1988;

.Vasco, 1989; Bell et al., 1997 have resulted in a
renewed interest in gravity gradient measurements,

Žespecially in the delineation of salt intrusions Bell,
.1998 . However, these systems are not readily avail-

able and, for the most part, the data are proprietary,
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which have limited the application of gravity gra-
diometry.

Because derivatives of vertical gravity have
greater spatial resolution, delineate lateral boundaries
of bodies better, and can provide more depth infor-
mation than vertical gravity alone, numerous investi-

Žgators Evjen, 1936; Hammer and Anzoleaga, 1975;
Stanley and Green, 1976; Butler, 1983; Blakely and
Simpson, 1986; Grauch and Cordell, 1987; Butler,

.1995 have derived theoretical expressions for the
horizontal and vertical derivatives of the vertical
gravity field resulting from simple geometries
Žspheres, horizontal cylinders, plates, truncated

.plates . Nevertheless, there has not been a complete
analysis of all the components of the gravity gradient
tensor. The most complete gravity gradient tensor

Ž .analyses have been by Vasco 1989 and Vasco and
Ž .Taylor 1991 , who inverted gravity gradient tensor

data collected by the Gravity Gradient Survey Sys-
Ž .tem GGSS developed by the United States Air
Ž . Ž .Force Jekely, 1988 for a three-dimensional 3-D

subsurface density structure in southwestern Okla-
Ž .homa, and by Montana et al. 1992 who showed the

differences in anomaly patterns for each tensor com-
ponent due to a buried prism. Despite data quality
problems of the then newly developed GGSS, the

Ž .analysis by Vasco and Taylor 1991 showed that the
gravity gradient components provided better resolu-
tion of basin depths than vertical gravity. However,
no comparison between the individual gravity gradi-
ent components were given. Improvements in the
GGSS have allowed for continued development of

Žgravity gradiometry Bell et al., 1997; Bell, 1998;
.Pratson et al., 1998 and its potential use in hydro-

Ž .carbon exploration, where Pratson et al. 1998
showed how gravity gradient data provided an im-
proved delineation of buried salt structures in the
Gulf of Mexico.

In this study, we will first derive the gravity
gradient tensor components as functions of the verti-
cal component of gravity in the Fourier transform

Ž .domain. Gunn 1974 was the first to apply the fast
Ž .Fourier transform FFT to calculate certain gravity

gradient components, and showed how to determine
the vertical and horizontal gradients of vertical grav-

Ž .ity. In a related study, Lourenco and Morrison 1971
applied the FFT to calculate the individual magnetic
field components from total-field magnetic measure-

ments. However, the FFT has not been applied to the
complete gravity gradient tensor. The FFT-derived
gravity gradient tensor components are compared to
theoretical gravity gradient components computed
from a horst-and-graben model using a 3-D forward

Ž .modeling algorithm Montana et al., 1992 to illus-
trate the usefulness of our technique and to interpret
various gravity gradient tensor components. Finally,
FFT-derived gravity gradient components are com-
pared to measured gravity gradient components
Ž .Vasco, 1989; Vasco and Taylor, 1991 from the
Wichita Uplift and Anadarko Basin region of south-
western Oklahoma.

2. Theory

Consider the gravity vector in free space,
Ž . Ž Ž . Ž . Ž ..g x, y, z s g x, y, z , g x, y, z , g x, y, z , asx y z

three continuous and differentiable functions of three
real variables. Further, consider the vertical compo-

Ž .nent of g g measured on a horizontal surface inz
Ž . Ž .the x, y -plane at zsz , and given as g x, y, z .o z o

Ž .Since gsy=f, where fsf x, y, z is the gravita-
Ž .tional potential a scalar function , it follows that

=Pgs==gs0. In addition, since the potential f

is a harmonic function satisfying Laplace’s equation,
2 Ž 2 2 2 . Ž .= fs0, we have k qk qk F k s0, in thex y z

Fourier transform domain for Laplace’s equation,
Ž . Ž .where F k is the Fourier transform of f x, y, z , k

Ž .is the wavenumber vector k , k , k , and k , k ,x y z x y

k are the wavenumbers in the x-, y-, and z-direc-z

tions, respectively. The wavenumber k may bez

expressed in terms of the in-plane wavenumbers k ,x
Ž .k e.g., Blakely, 1996y

1r22 2< < < <yik s k , where k s k qk .Ž .z x y

From ==gs0, we obtain the following Fourier
transform pairs:

Eg Egz y
< <s m yik G s k GŽ .y z y

E y Ez

Eg Egx z
< <s m k G s yik G 1Ž . Ž .x x x

Ez Ex

Eg Egy x
s m yik G s yik GŽ . Ž .x y y x

Ex E y
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Fig. 1. Horst-and-graben models 1–4 used to calculate the vertical gravity values and gravity gradient tensor. The density contrast between
the graben fill and the surrounding material is y0.2 grcm3 for all models.

Ž .Fig. 2. Vertical gravity values for the models 1–4 shown in Fig. 1.
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where g , g , g are the orthogonal components ofx y z
Ž . Ž .g, and G sG k ,k , G sG k ,k , G sx x x y y y x y z

Ž . Ž .G k ,k are the two-dimensional 2-D Fourierz x y
Ž .transforms of g , g , g , respectively. From Eq. 1 ,x y z

we can obtain the Fourier transform of the gravity
vector as follows:

yikŽ .x
g mG s Gx x z< <k

yikŽ .y
g mG s G 2Ž .y y z< <k

g mG .z z

Ž .The gravity gradients are given as g x si, j
Ž . Ž .=g x , where xs x, y , g sEg rEx, g sx , x x x , y

Eg rE y, etc., which are the components of the grav-x

ity gradient tensor. A simple extension of the rela-

Ž .Fig. 3. a FFT-derived gravity gradient tensor components computed using the vertical gravity values determined from model 1 of Fig. 1.
Ž . Ž .b FFT-derived gravity gradient tensor components computed using the vertical gravity values determined from model 2 of Fig. 1. c

Ž .FFT-derived gravity gradient tensor components computed using the vertical gravity values determined from model 3 of Fig. 1. d
FFT-derived gravity gradient tensor components computed using the vertical gravity values determined from model 4 of Fig. 1.
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Ž .Fig. 3 continued .

tions given above yields an expression for the com-
Ž .plete gravity gradient tensor G as follows:i j

y1G sFF K k G k 3� 4Ž . Ž . Ž .i j z

where
2yk yk kx x y

yik x< < < <k k
2yk k ykK k s 4Ž . Ž .x y y

yik y< < < <k k
< <yik yik kx y

< < y1with k /0, isx, y, z, jsx, y, z, and with FF

denoting the inverse Fourier transform operation.
Ž . Ž .It is clear from Eqs. 3 and 4 that the complete

gravity gradient tensor may be computed from
knowledge of only the vertical component of gravity.
Furthermore, the researcher has the option of using
either the free-air gravity anomaly or the Bouguer
gravity anomaly when computing the gravity gradi-
ent tensor G , and must have prior knowledge of thisi j

choice before meaningful interpretations of the data
may be made. If the free-air gravity anomaly is used,
the resulting G , of course, represents the integratedi j
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Ž .Fig. 3 continued .

gravitational effect of both the surface and subsur-
face density anomalies. If, on the other hand, the
Bouguer gravity anomaly is used, G representsi j

only the subsurface density anomalies, making the
interpretation process more direct.

3. Examples and discussion

3.1. Idealized horst-and-graben models

To illustrate the above technique, gravity gradient
tensor components produced by four different 3-D

Ž .horst-and-graben models Fig. 1 were constructed
Žusing a forward-modeling algorithm Montana et al.,

. Ž .1992 . Four models were used to both i illustrate
Ž .our technique, and ii show the sensitivity of the

different gravity gradient tensor components to small
variations in subsurface features. We first calculated
vertical gravity values for each of the four models
Ž .Fig. 2 . These values were then used to determine
the FFT-derived gravity gradient tensor components
Ž .Fig. 3a–d . The FFT-derived gradient components
were then compared with the theoretically derived

Ž .components Fig. 4a–d calculated from the 3-D
Ž .forward modeling algorithm Montana et al., 1992 .
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Ž .Fig. 3 continued .

It can be seen that the FFT-derived and theoreti-
cally derived gradient components are almost identi-
cal, with only slight differences in amplitude. These
differences are discussed in the next section.

3.2. Error analysis

The algorithm presented in this paper for comput-
ing the complete gravity gradient tensor involves the
use of the FFT. We have quantified the error associ-
ated with the application of this technique by using

the standard L -norm error estimate, or RMS error,2

e , as follows:i j

M N1
2FFT Mod< <e s g m ,n yg m ,nŽ . Ž .Ý Ýi j i , j i , j(MN ms1 ns1

5Ž .
FFTŽ .where g m,n is the FFT gravity gradient tensori, j

ModŽ .ijth-component, g m,n is the forward-modeli, j

gravity gradient tensor ijth-component, M, N are the
number of rows and columns, respectively, in the
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2-D data array, and isx, y, z, jsx, y, z. Table 1
shows the RMS error, e , for the four modelsi j

outlined above. The RMS errors obtained in this
study range from a minimum of 0.3 Eotvos Units¨
Ž .E.U. for the g components, to a maximum ofx , x

3.3 E.U. for the g components.z , y

In addition, in order to visualize the difference
between the model- and FFT-derived gravity gradi-
ent tensor components, we have calculated the devia-
tions, or differences, corresponding to each model.

Fig. 5a–b shows the deviations corresponding to
models 1 and 4, respectively. The histograms clearly
show a clustering of deviations close to zero, imply-
ing a good match between the model- and FFT-de-
rived gravity gradient tensor components.

By examining the gravity gradient tensor compo-
nents produced in all four models, it can be seen

Žthat, as the horst becomes shallower 1-km depth for
models 1 and 2, 0.5 km for model 3, and 0.25 km for

.model 4 , the various gradient components can be

Ž . Ž .Fig. 4. a Calculated gravity gradient tensor components determined using model 1 of Fig. 1. b Calculated gravity gradient tensor
Ž . Ž .components determined using model 2 of Fig. 1. c Calculated gravity gradient tensor components determined using model 3 of Fig. 1. d

Calculated gravity gradient tensor components determined using model 4 of Fig. 1.



( )K.L. Mickus, J.H. HinojosarJournal of Applied Geophysics 46 2001 159–174 167

Ž .Fig. 4 continued .

used to identify the exact subsurface location and
Žhorizontal dimensions of the horst Figs. 3a–d and

. Ž .4a–d . By using only g data Fig. 2 , anomalies duez

to the horst are not identifiable for models 1 and 2,
while for models 3 and 4, there are noticeable
anomalies of up to ;3 mGal in amplitude, which
may be missed in actual data interpretation. How-
ever, each gradient component for models 3 and 4
reveals anomalies that allow the analyst to determine
the exact location of the horst. The g componentx , y

is especially useful since it locates the corners of a
subsurface mass anomaly. In these examples, the

Ž .spikes positive and negative of the g componentx , y
Žlocate the corners of the grabens and horst, for

Ž ..shallow bodies <0.5 km . For the deeper horst,
these anomalies disappear, but the corners of the
deeper grabens can still be determined. Also useful
are the g and g components, which can bex , x y , y

used to determine the location of the lateral bound-
aries of both the grabens and the horst. Anomalies
due to the horst can be seen for models in the g y, y

component, while only g anomalies can be seenx , x

for models 1 and 2. If the horst were aligned parallel
to the y-axis, the opposite would be true. Therefore,
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Ž .Fig. 4 continued .

by making use of the entire gravity gradient tensor,
the location of shallow subsurface structures is better
delineated.

3.3. Earth data: southwestern Oklahoma

The only publicly available gravity gradient data
set are the GGSS data collected in southwestern
Oklahoma in the region of the Southern Oklahoma

Ž .Aulacogen Keller and Baldridge, 1995 . This area

contains up to 12–14 km of Cambrian rhyolites,
granites, and gabbros that formed during early Paleo-
zoic rifting along the southern margin of North

Ž .America Gilbert, 1983; Keller and Baldridge, 1995
and comprise the Wichita Uplift. These relatively
dense igneous bodies are juxtaposed against the 9–
11-km-deep Paleozoic Anadarko Basin to the north,
and the 3–4-km-deep Hardeman Basin and an under-

Ž .lying unnamed Proterozoic basin 5–6-km thick
Ž . Ž .Keller and Baldridge, 1995 to the south Fig. 6 .
These tectonic features create one of the largest
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Ž .Fig. 4 continued .

positive-amplitude gravity anomalies in the United
States over the igneous intrusions, with gravity rela-

Table 1
RMS error between model and FFT gravity gradient tensor com-
ponents

Ž .Gravity gradient RMS error e E.U. for each modeli j

tensor component Model 1 Model 2 Model 3 Model 4

g 0.3 0.5 0.5 0.5x x

g 0.5 0.6 0.6 0.6x y

g 1.3 1.8 1.8 1.8y y

g 3.0 3.0 2.9 2.8z x

g 2.9 2.9 2.9 3.3z y

g 1.3 1.8 1.8 1.9z z

Ž .tive minima over the sedimentary basins Fig. 6 .
These large-amplitude anomalies, with large vertical
gravity gradients on relatively flat terrain, created an

Ž .ideal location to test GGSS Jekely, 1988 . The
relatively flat terrain lessened the effects of terrain-
influenced anomalies, which have higher amplitudes
in gravity gradient data as compared to vertical
gravity data.

The resultant GGSS data set consisted of 30
north–south and 24 east–west tracks. The data were
not of uniform quality, and the overall data quality

Žwas poor for many tracks Vasco, 1989; Vasco and
.Taylor, 1991 . Because of the poor data quality, we

decided not to construct contour maps, and concen-
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Ž .Fig. 5. a Histograms showing the deviations between the FFT-derived and model-calculated gravity gradient components from model 1.
Ž .b Histograms showing the deviations between the FFT-derived and model-calculated gravity gradient components from model 4.

trated on a north–south track southwest of the ex-
posed granites and rhyolites across the Wichita Up-

Ž .lift Fig. 6 . Additionally, the data set that we re-
ceived did not contain the g component, so thisx , x
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Fig. 6. Complete Bouguer gravity anomaly map of the Wichita Uplift and Anadarko Basin region. Shaded areas represent the exposed
granites and gabbros of the Wichita Uplift. Thin lines represent major surface faults. The north–south thick line is the location of gravity
gradient tensor values taken from a GGSS survey, which was compared with FFT-derived gravity gradient tensor components. The contour
interval is 5 mGal and hachured contour lines represent gravity relative minima.

measured component was excluded from our analy-
sis.

Figs. 7 and 8 show the measured and FFT-derived
gravity gradient tensor components. Due to the low
signal-to-noise ratio in the measured data, we did not
perform an error analysis comparing the two data
sets. Even with the high noise levels, the average
trends of both data sets roughly agree. The profile

Ž .crosses the Wichita Uplift Fig. 6 , which is associ-
ated with a ;35-mGal-gravity anomaly. Seismic

Žrefraction and gravity models Keller and Baldridge,
.1995 show that this anomaly is caused by a rectan-

gular prism that extends to approximately 12–14 km
in depth. Since this intrusion extends over 100 km to
the northwest and at least 50 km to the southeast, the
source body can be considered 2-D at the location of
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Ž . Ž .Fig. 7. Profiles comparing measured dashed and FFT-derived solid g , g and g values.x , y z , x y , y

our profile. Gravity gradient signatures for such a
Ž .body rectangular prism include g and g max-x , x z , x

imum at the boundaries, with a g minimum in thex , x

body’s center, g and g minima and a gy, y x , y z , z
Žmaximum over the body’s center Montana et al.,

.1992 . This is seen for both the measured and de-
Ž .rived gradient components Figs. 7 and 8 . Since the

profile crosses far from the northwest and southeast
edges of the body, the large amplitude anomalies
associated with the g -components along the body’sx , y

boundaries are not seen along the profile. However,

there are small amplitude g , g , and gx , x z , x x , y

anomalies at approximately 40 and 80–100 km,
which result from the body being at an angle to the

Ž .x-axis east–west .
The gravity maximum due to the Wichita Uplift

Ž .Fig. 6 , located at ;60 km along the profile, is best
seen on the g component as an Aeven-typeB pro-z , z

file, i.e., symmetrical about a vertical axis crossing
the center of the anomaly, with the north and south
lateral boundaries of the Wichita Uplift being located
at ;85–95 km and ;35–50 km, respectively. The



( )K.L. Mickus, J.H. HinojosarJournal of Applied Geophysics 46 2001 159–174 173

Ž . Ž .Fig. 8. Profiles comparing measured dashed and FFT-derived solid g and g values. The FFT-derived g component is alsoz , y z , z x , x

shown for the sake of completeness. Note that the measured g was not available to the authors.x , x

g profile also delineates the north and south lat-y , y

eral boundaries of the Wichita Uplift. Note also that
the g and g profiles are Aodd-typeB profiles,z , x z , y

and locate the Wichita Uplift maximum at the Ain-
flection pointB of the profiles, i.e., at ;60 km along
the profile.

4. Conclusions

A Fourier transform technique has been devel-
oped to calculate the complete gravity gradient ten-

sor using vertical gravity data. Comparisons between
FFT-derived gravity gradient tensor components and
calculated values from a 3-D forward modeling pro-
gram using a horst-and-graben model show that the
RMS error between the two solutions is -3.5 E.U.
for all components, and variations in the forward
model. Different forward models, with varying depth
to the top of the horst, indicate that using the entire
gravity gradient tensor, especially the g , g andx , x y , y

g components, will greatly increase the determina-x , y

tion of the lateral boundaries of the horst-and-graben
for top-of-horst depths of less than ;0.5 km. Using
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vertical gravity data from the Wichita Uplift and
Anadarko Basin region of southwestern Oklahoma,
gravity gradient profiles were computed and com-
pared with measured components from an airborne
survey. The two data sets agree in the general trends,
but a low signal-to-noise ratio in the measured data
prohibited an analysis of the error. Since the com-
plete gravity gradient tensor is usually difficult to
determine, and thus not readily available, the FFT-
derived gravity gradient tensor components offer a
novel way to visualize potential field data, and will
increase the resolution for determining the location
of subsurface structures. Our technique, however,
does not replace the actual measurement of the grav-
ity gradient tensor, but the low RMS errors achieved
using this technique indicate that the FFT-derived
gradients closely approximate the true gradients.
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