
Scaling of power spectrum of extinction events in the fossil
record

V.P. Dimri *, M. Ravi Prakash
National Geophysical Research Institute, Hyderabad 500 007, India

Received 22 September 2000; received in revised form 7 December 2000; accepted 10 January 2001

Abstract

The fast Fourier transform, maximum entropy method, Lomb's method of spectral analysis and rescaled range
analysis are applied to the study of extinction patterns. Using a database of marine families from mid-Permian to
Pleistocene, it is shown that a long-range correlation is present. Since the data record is non-stationary and unevenly
spaced, linear interpolation is carried out for obtaining evenly spaced data. The data are also de-trended from their
mean to obtain a stationary time series. Scaling behavior is observed in both interpolated and detrended unevenly
spaced data. Application of the randomization test on both interpolated and de-trended data revealed that the
interpolated data lost the randomness of the original record due to a smoothing effect, while the de-trended data
retained the randomness property and hence are reliable for drawing information. The most popular method, the fast
Fourier transform spectral method based on stationarity assumption, yields a contradictory result, and is independent
of the interpolation technique used to fill gaps in the discontinuous fossil record. ß 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

The topic of extinction (particularly of mass
extinction) has been an important issue in paleo-
biology. The non-linear dynamics underlying ex-
tinction and diversi¢cation might have played an
important role in the evolution of life [1,2]. The
possible role of self-organization and criticality in
the observed dynamics of extinction events of fos-
sil records is a controversial topic. Recent papers

[3^6] have explored the presence of trends in the
fossil record by using di¡erent methods and
reaching rather di¡erent results. Some analyses
suggest the presence of long-range trends with
fractal properties and others suggest random-like
£uctuations. Newman and Eble [1] observed two
di¡erent frequency regimes with di¡erent spectral
properties in their analysis, one shows scaling, the
other doesn't. In [3^5] the most common fast
Fourier transform method has been applied to
estimate power spectral density of the fossil rec-
ord. It should be noted that the fossil record
presents problems for spectral methods, which de-
mand evenly spaced data, and a statistically sta-
tionary process. Most fossil time series do not
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ful¢ll the above requirements [5]. In such situa-
tions, one way of getting evenly spaced data
from unevenly spaced data is by interpolating
the data at desired points of time. For unevenly
sampled data a completely di¡erent method of
spectral analysis called Lomb^Scargle method
with some desirable properties has been developed
by Lomb and Scargle [7^9]. This method is used
in the present study to examine long term corre-
lation in the fossil record of marine families.

2. Data

In the present study the primary database for
the analysis of fossil record is the record used by
Sepkoski and Raup [10] and is derived from the
compendium of fossil marine families [11]. Ap-
proximately 1800 marine animal families (exclud-

ing soft bodied taxa) have been described, of these
970 families are extinct. The data span 268 million
yr (My) and consist of 43 stages from the mid-
Permian (Leonardian) to Pleistocene providing an
average resolution of 6.23 My on familial extinc-
tion. Four basic metrics of the intensity of familial
extinction are considered. These are (a) simple
number of extinction, (b) percent extinction, that
is number of extinction relative to standing fam-
ilial diversity, (c) total rate of extinction, that is
the number of extinctions relative to stage dura-
tion, and (d) per family rate of extinction, that is
total rate relative to standing diversity. Here we
present only the results of the simple number of
extinction (Fig. 1a) for 268 My, since the accuracy
of ancient fossil record is questionable in the lit-
erature and the other metrics are derivatives of
simple number and would yield the same results.
The data points are unevenly spaced; the ¢rst and

Fig. 1. (a) Variation in the extinction of families by the simple number over the last 268 My. The dashed line indicates the gaps
in the data record. Power spectrum using (b) the FFT, (c) the MEM, and (d) the Lomb's method for de-trended data.
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second order statistics (i.e. mean, variance, auto-
correlation functions) are varying as a function of
time, hence the data are non-stationary in nature.
Using the available 43 unevenly spaced data
points of the record, 67 evenly spaced data points
are linearly interpolated.

3. Spectral methods

Spectrum estimation for evenly spaced data
based on the fast Fourier transform (FFT) su¡ers
from a major problem of resolution and is dis-
cussed by Dimri [12]. In this method an invalid
assumption, namely zero data outside the dura-
tion of observation, is made. In the FFT one
uses a window function and applies a ¢nite Four-
ier transformation. The estimated spectrum is a
convolution between the true spectrum and the
spectrum of window function. The estimated spec-
trum will be a smeared version of the true spec-
trum. In the process of smearing, closely spaced
spectral peaks get merged into a broader peak
and the spectral power from strong peak leaks
into its neighborhood, often leading to false esti-
mation of spectral power. To minimize this e¡ect,
a high-resolution method known as the maximum
entropy method (MEM) has been proposed by
Burg [13]. The MEM estimates the spectrum
that is most random or has the maximum entropy
of any power spectrum and is consistent with the
measured data. The MEM method does not make
any assumption about the data outside the dura-
tion of observations. It completely eliminates the
use of a window function for spectral estimation.
This is achieved by ¢tting an auto-regressive mod-
el to the data and extrapolating the available data
outside the duration of observations. Once the
model parameters are estimated the spectrum
may be derived from the model parameters them-
selves or from the extrapolated data. The MEM
gives excellent result (better resolution) for short
data length [14]. A high-resolution spectral meth-
od is de¢ned as its ability to resolve two close
frequency components. The advantage of the
MEM over the FFT method regarding the correct
frequency information and higher resolution has
been demonstrated by Fouguer [15]. For unevenly

spaced data, Lomb and Scargle developed a meth-
od for computing the power spectrum, that gives
results superior to conventional methods [7^9].
The Lomb^Scargle method does not interpolate
data points to ¢ll the gaps and it weighs the
data on a `per point' basis instead of on a `per
time interval' basis, when uneven sampling can
render the later seriously in error [8].

4. Trend analysis

A stationary time series is homogeneous and
self-repeating in time. Its statistical properties,
viz. mean, variance, and all higher moments, re-
main invariant in time, whereas a non-stationary
time series is such that its statistical properties
change with time. A non-stationary time series is
often modeled as a sum of two components, viz.
drift and residual :

X�t� � D�t� � R�t� �1�

where D(t) is the drift and R(t) is the residual. The
drift consists of the average value of the variable
within a neighborhood, which varies slowly and
forms the non-stationary part and re£ects the
large-scale tendencies of the phenomenon. The
drift at a point `t' may be expressed as a polyno-
mial. The residual is the di¡erence between the
actual measurement and the drift. It is the ran-
dom aspect and accounts for short-scale varia-
tions. If the drift is removed from a non-station-
ary variable the residual becomes stationary. The
residuals are not errors but contain full £edge
features of the phenomenon. In the present study
trend analysis is performed to ensure stationarity,
a prerequisite for obtaining a reliable spectrum.
The trend in the data is computed by ¢tting a
third order orthogonal polynomial of the type:

D�t� � B0f 0�t� � B1f 1�t� � B2f 2�t� � B3f 3�t� �2�

where f0(t) = 1, f1(t) = t, f2(t) = 2t231 and
f3(t) = 4t333t are Chebyshev polynomials and
B0,T,B3 are coe¤cients of the polynomial. The
Chebyshev polynomials are orthogonal polyno-
mials and are more e¤cient in terms of computa-
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tional time and convergence rate. These are also
the minimax polynomials, which (among all poly-
nomials of the same degree) have the smallest
maximum deviation from the true function
[8,16]. The trend in mean is removed from both
evenly and unevenly spaced data. The residual,
which is stationary, is used for computing the
power spectrum. The principle of parsimony
(minimum model parameters) is adopted in select-
ing the order of the polynomial so that the prob-
lem of over-¢tting the data is avoided.

5. Randomization test

When a transformation such as interpolation or
the de-trending is applied to data and is subjected
for drawing some conclusion, then the conclusion
is valid only if the transformed data retain all
information and properties of the original record.
A run test for randomization is one such proce-
dure [17] that can tell us whether the transformed
data retain the randomness property of the orig-
inal data or not. It is based on the sequence in
which the observations are obtained. We closely
follow [17] to describe the randomization test. A
run is de¢ned as a successive of identical symbols,
which are followed and preceded by di¡erent sym-
bols. For example, suppose a series of plus and
minus scores occurring in the order +++ 33 ++
333. This sample of scores begins with a run of
three pluses. A run of two minuses follows, then
comes another run of two pluses followed by a
run of three minuses. In practice the median of
the data is computed, then all observation values
falling below median are designated as minus and
all above the median are designated as plus. The
null hypothesis H0 (the order of observations
above and below median in the sequence is ran-
dom) is tested against its alternative hypothesis
H1 (the order of observation above and below

median in the sequence is not random). Let n1

be the number of pluses, n2 be the number of
minuses, then n1+n2 will be the total number of
observations, and let r be the number of runs. For
large samples say either n1 or n2 is larger than 20,
a good approximation to the sampling distribu-
tion of `r' is the normal distribution with:

mean � W � �2n1n2�=�n1 � n2� � 1 �3�

standard deviation � c �

k3 ��2n1n2�2n1n23n13n2��=�n1 � n2�2�n1 � n2��
�4�

standard normal variate � Z � �r3W �=c �5�

The values of Z under H0 are approximately
normally distributed with zero mean and unit var-
iance. The signi¢cance of the Z value may be
determined by referring to the normal table. Ran-
domization test is carried out both for interpo-
lated and de-trended (residuals) data (Table 1).
The computed Z value for the interpolated data
is 36.81 and is greater than the table value of
Z = AbsM2.33M at 1% of level of signi¢cance
(l.o.s.), hence the null hypothesis H0 is rejected.
The computed Z value for the de-trended data is
32.00 and is less than the table value of Z at 1%
l.o.s., hence the alternative hypothesis H1 is re-
jected in this case. The test clearly con¢rms that
the interpolated data have lost the randomness of
the original data due to smoothing e¡ect, while
the de-trended data contain all the randomness of
the data and are reliable for drawing the informa-
tion of the original population.

6. Spectral analysis

Power spectrum is computed (Figs. 1b,c, 2a,b)

Table 1
Randomization test for interpolated and de-trended data

Data n1 n2 R Median W c Z value

Interpolated 33 31 6 20.34 32.97 3.96 36.81
De-trended 22 21 16 34.50 22.49 3.28 32.00

Z value from normal table at 1% l.o.s. is AbsM2.33M.
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using the FFT and the MEM [13,14] both for
interpolated data and their residuals (evenly
spaced). The Lomb^Scargle method [7^9] is
adopted for the actual data (unevenly spaced)
and their residuals (Figs. 2c, 1d). Since the inter-
polated data are no longer random, we discuss the
power spectra of the de-trended and the actual
data only. The power spectra of de-trended data
have better resolution and are more reliable as
they are based on stationary data compared to
the actual data. A comparison is made between
the power spectra obtained for residuals by di¡er-
ent methods. The spectrum obtained by the FFT
(Fig. 1b) has a peak at a frequency of 0.0313
corresponding to a periodicity (1/f) of 32 My.
For the spectrum obtained by the MEM (Fig.
1c) the peak is at 0.03375 corresponding to a pe-
riodicity of 29 My. The spectrum obtained by
Lomb's method (Fig. 1d) has two peaks which
have nearly equal power and appear at frequen-
cies of 0.03285 and 0.03848 respectively, suggest-
ing an intermediate frequency equal to 0.03566
which corresponds to a period around 28 My.
Plots of the logarithm of power spectrum and
logarithm of frequency (Figs. 3b,c, 4a^c) reveal
a power law relationship between power spectrum
P(f), and frequency f, of the form P(f)Of3L ,
where L is scaling exponent. Scaling exponents
obtained from the slopes of the linear least
squares ¢ts of the power spectra based only on
de-trended data are analyzed. A non-signi¢cant
scaling exponent value of 0.06 is obtained for
the power spectrum by the FFT method (Fig.
3a). This result con¢rms the earlier ¢nding [5]
and also holds for the higher frequencies [3].
The other two spectra obtained by the MEM
(Fig. 3b) and the Lomb^Scargle method (Fig.
3c) gave similar results yielding signi¢cant scaling
exponent values of 30.80 þ 0.12 and 31.09 þ 0.12
respectively. The MEM and Lomb's method are
more appropriate and are more reliable for evenly
and unevenly spaced data respectively as they give
better resolution. However, the scaling exponents
for interpolated data using di¡erent spectral
methods are shown in Fig. 4a^c.

Fig. 2. Power spectrum using (a) the FFT, (b) the MEM for
interpolated data, and (c) the Lomb's method for actual
data.
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7. Rescaled range analysis

Finally, the rescaled range (R/S) analysis has
also been carried out both for the actual and in-
terpolated data. A plot between the range/stan-
dard deviation (R/S) and logarithm of number
of data points N (Figs. 3d, 4d) reveals a scaling
law of the form (R/S)ONH , where H is the Hurst
coe¤cient which is obtained from the slope of the
linear least squares ¢t of the above plot. The val-
ue of H determines the scaling behavior of a pro-
cess and if Hs 0.5, the process exhibits persis-
tence [18] or long term correlation [19]. For
drawing inference we consider the Hurst coe¤-
cient value computed only from the de-trended
data. A signi¢cant value of Hurst coe¤cient

(H = 0.66 þ 0.02) further supports that the fossil
data exhibit long term correlation. The typical
value of H = 0.7 suggests that the time series (fos-
sil record) is non-stationary but consistent with
long term correlation [20], which agrees to our
assumptions of fossil record.

8. Conclusions

1. The fractal pattern in the fossil record is thus
properly exposed by our method, which con-
sists of de-trending the data. The de-trended
data retain the randomness of the original
data and hence are reliable for drawing infor-
mation.

Fig. 3. Graphs on log^log scale for the P(f) versus f, for estimating scaling exponent using the least squares ¢t for the power
spectrum obtained by (a) the FFT, (b) the MEM, (c) the Lomb's method, and (d) the rescaled range analysis for estimating
Hurst coe¤cient for the de-trended data.
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2. The study supports the theory, but more such
studies have to be carried out to provide an
insight into the mechanism for the non-linear
dynamics of extinction events.

3. The Lomb^Scargle method is essentially devel-
oped for the uneven astronomical time series
data [7,8] and is also applied to climate data
[9]. Our results focus the attention of a large
number of scientists engaged in periodicity
problems such as the problem of mass extinc-
tion, to the application of the Lomb^Scargle
method to naturally occurring uneven geolog-
ical data.
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