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Abstract

With a plethora of watershed rainfall-runoff models available for flood forecasting and more than adequate computing power
to operate a number of such models simultaneously, we can now combine the simulation results from the different models to
produce the combination forecasts. In this paper, the first-order Takagi—Sugeno fuzzy system is introduced and explained as the
fourth combination method (besides other three combination methods tested earlier, i.e. the simple average method (SAM), the
weighted average method (WAM), and the neural network method (NNM)) to combine together the simulation results of five
different conceptual rainfall-runoff models in a flood forecasting study on eleven catchments. The comparison of the forecast
simulation efficiency of the first-order Takagi—Sugeno combination method with the other three combination methods demon-
strates that the first-order Takagi—Sugeno method is just as efficient as both the WAM and the NNM in enhancing the flood
forecasting accuracy. Considering its simplicity and efficiency, the first-order Takagi—Sugeno method is recommended for use

as the combination system for flood forecasting. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

To date, a wide variety of rainfall-runoff models
have been developed and applied for flood forecasting
(Franchini and Pacciani, 1991; Singh, 1995). These
rainfall-runoff models encompass a broad spectrum
of more or less plausible descriptions of rainfall-
runoff relations and processes, ranging from the
primitive empirical black-box models, such as the
unit-graph method (Sherman, 1932), to the lumped
conceptual models, such as the Xinanjiang model
(Zhao et al., 1980), to the semi-distributed models,
such as the TOPMODEL (Beven and Wood, 1983),
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to the very complicated physically based distributed
models, such as the SHE model (Abbott et al.,
1986a,b).

Regardless of complexity and sophistication,
however, no single model has been found to work
satisfactorily for simulating and forecasting all flood
events in all kinds of watersheds. The regular emer-
gence of new models, across the whole spectrum of
models, is testament to the fact that such a single
superior model does not yet exist, and indeed will
never be produced, despite continuing advances and
enhancing of our modeling techniques (Beven,
1996a,b). As noted ruefully by O’Connor (1995),
every model has its ‘plateau of maximum efficiency’,
which falls substantially short of perfection, and even
when we do get it right (i.e. achieve a good fit) it ‘can
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be right for the wrong reasons’. The only possible
reason for this situation is that the true runoff-rainfall
processes of a watershed are time varying and involve
a spectrum of different runoff generation mechanisms
and are never as unchanging as assumed by any single
preconceived rainfall-runoff model (Beven and
Binley, 1992). Assuming that each single model can
best describe only one or more particular stages,
phases, or mechanisms of the rainfall-runoff
processes, it is only to be expected that the discharge
estimates which are obtained by combining the results
from a number of different models together through
some appropriate weighting procedures are more
comprehensive and accurate in representing the
response of the catchment to rainfall than those from
any single model used in the combination. The above
concept provides the main justification and the initiative
for combining the flood forecasts from the different
rainfall-runoff models, as described in this paper, as it
was also in the paper of Shamseldin et al. (1997).

Mathematically, if we have p different rainfall-
runoff models, this combination process is generally
expressed as (Shamseldin et al., 1997)

Qc,i = F(Ql,ia QZ,ia EE) Qp,i), (D

where Ql’i, Qz,i, ey Qp,i are the forecasts of pAdifferent
models at the time step i, respectively, and Q,; is the
combination forecast at time i, F(-) being the combin-
ing function or method. A schematic diagram of the
process of combining different rainfall-runoff models
is shown in Fig. 1.

Model-1 forecasts with

2
efficiency R(l)

The work and research on the combination of fore-
casts from different models or methods was
pioneered mainly by Reid (1968) and by Bates and
Granger (1969), and other substantial works include
those of Dickson (1973, 1975), Newbold and Gran-
ger (1974), Thompson (1976), etc. Although Clemen
(1989) has cited many studies to show the advantages
of combining forecasts in fields as diverse as finan-
cial management, statistics, and weather forecasting,
it seems that Shamseldin et al. (1997) were the first
to introduce the concept of model combination for
flood forecasting in hydrology. More recent
published work on combination forecasting in
hydrology is that of See and Openshaw (2000),
who used four approaches (the average model, a
Bayesian approach, and two fuzzy models) to construct
the hybrid model for river level forecasting.

Shamseldin et al. (1997) have examined three
different combination methods in the context of
flood forecasting, namely, the simple average method
(SAM), the weighted average method (WAM), and
the neural network method (NNM). Five rainfall-
runoff models, also applied in the present study (see
Section 6), were selected for inclusion in the combi-
nation, namely, the naive simple linear model (SLM),
the linear perturbation model (LPM), the linearly
varying gain factor model (LVGFM), the constrained
linear systems with a single threshold (CLS-T), and
the soil moisture accounting and routing procedure
(SMAR) (see also Section 6). The simulation results
for the eleven watersheds have shown that in general
the flood estimates obtained from the above

Model-j forecasts with
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Combination foreacasts|
Foreca}st . with efficiency
Combination R2
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Model-p forecasts with
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Fig. 1. Schematic diagram for the procedure of combining forecasts of different rainfall-runoff models (R;. denotes the Nash—Sutcliffe
simulation efficiency of the Model-p, and R? denotes the Nash—Sutcliffe simulation efficiency of the combination method).
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combination methods are better than those of the best
of individual rainfall-runoff models.

In contrast to the three combination methods used
by Shamseldin et al. (1997) in the hydrological
context, Fiordaliso (1998) presented a quite different
method to build the combination framework in the
context of time series analysis, i.e. the first-order
Takagi—Sugeno fuzzy system (TS1). The TS1 method
was originally proposed by Takagi and Sugeno (1985)
as a special class of fuzzy systems, and it has been
widely used in fuzzy control systems (Driankove et
al., 1993; Kruse et al., 1994; Nakamori, 1994). In this
paper, the first-order Takagi—Sugeno fuzzy system is
introduced and applied as a new combination
framework for the forecasts of rainfall-runoff
models, as an extension of the study on the three
combination methods used by Shamseldin et al.
(1997) in flood forecasting.

The present paper is organized in the following
manner. Firstly, the basic concepts of the fuzzy theory
and of the first-order Takagi—Sugeno fuzzy system
are introduced. Secondly, the combination framework
suggested by Fiordaliso (1998) is explained and
analyzed in considerable detail. Thirdly, the forecasts
of the five rainfall-runoff models for the 11 catch-
ments, which were previously used by Shamseldin
et al. (1997), are incorporated into the first-order
Takagi—Sugeno fuzzy system to test its combination
forecasting efficiency. Finally, conclusions on the TS1
combination system as well as the SAM, WAM, and
NNM methods are presented on the basis of compar-
isons of the simulation results.

2. Review of the fuzzy theory and application

Since Zadeh (1965) published the fuzzy set theory
as an extension of the classical set theory, the fuzzy
set theory has been widely used in many fields of
application, such as pattern recognition, data analysis,
system control, etc. (Cannon et al., 1986; Driankove et
al., 1993; Kruse et al., 1994; Klir and Yuan, 1995;
Theodoridis and Koutroumbas, 1999). In hydrology
also, the concept of the fuzzy theory and its applica-
tions have found expression in many papers (Bardossy
et al., 1990; Beven and Binley, 1992; Franks and
Beven, 1997; Franks et al., 1998; Schulz and Huwe,
1997; Dou et al., 1999; Pongracz et al., 1999; Schulz

et al., 1999; See and Openshaw, 2000; Yu and Yang,
2000). The main advantages of the fuzzy applications
are that the fuzzy theory is more logical and scientific
in describing the properties of objects as well as
relationships that are not completely known to us.
Since hydrologists are still uncertain about so
many aspects of the physical processes in the
watershed, the fuzzy theory has proved to be a
very attractive tool enabling them to investigate
such problems.

The application of fuzzy theory normally includes
three procedures, i.e. fuzzification, logic decision,
and defuzzification (see Appendix A). Fuzzification
involves the identification of the input variables and
the control variable (i.e. the output), the division of
both the input and the control variable into different
domains; and choosing the membership function.
Logic decision involves the design of the IF-—
THEN inference rules, the calculation of the degree
of applicability of each IF-THEN rule, and the
determination of the output fuzzy set. Defuzzifica-
tion involves the determination of the crisp output
from the fuzzy outputs of the IF-THEN inference
system.

In the applications of the fuzzy system in control
and forecasting, there are mainly two approaches, the
first one being the Mamdani approach and the other
the Takagi—Sugeno approach (Kruse et al., 1994). For
the Mamdani approach, which has been used in some
hydrological applications (Schulz and Huwe, 1997;
Schulz et al., 1999), there are three clear procedures,
i.e. fuzzification, logic decision, and defuzzification,
as described in the previous paragraph. The
Takagi—Sugeno approach (Takagi and Sugeo,
1985), however, does not have an explicit defuzzi-
fication procedure, or rather, it amalgamates two
procedures, the logic decision and defuzzification
procedures, into one composite procedure. For the
Mamdani approach, the outcome of each IF-THEN
rule will be a fuzzy set for the control variable, so
that the step of deffuzification is indispensable in
order to get a crisp value for the control variable in
the final decision. However, in the Takagi—Sugeno
method, the conclusion of each IF-THEN inference
rule is a scalar rather than a fuzzy set for the
control variable.

As far as the present authors are concerned, it
would appear that the Takagi—Sugeno fuzzy system
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has not yet been applied in the hydrological field
for flood forecast combination. Indeed, this is one
of the main reasons for undertaking the present
investigation of the prospects of the Takagi—
Sugeno fuzzy system in this paper.

3. The first-order Takagi—Sugeno fuzzy system

The basic concepts about the fuzzy theory and its
applications, such as the fuzzy set, membership func-
tions, the domain partitions, and fuzzy IF-THEN
inference rules, which have been introduced in numer-
ous hydrological papers, are not reproduced in the
body of this paper. They are however included, for
the sake of completeness and for those hydrologists
unfamiliar with the topic, as an appendix to this paper.
A detailed explanation of the Takagi—Sugeno fuzzy
system, which is quite different from the widely used
Mamdani approach, begins with how to make
decisions on the control variable according to the
[F-THEN rules.

For the Takagi—Sugeno fuzzy system (Takagi and
Sugeno, 1985), the IF-THEN control rules are given
in the form of

R, : IF (x; is A, x, is A? B A AP

@)
THEN y, = f(x1, X2, ..., %),
where A@ is a fuzzy set corresponding to a partitioned
domain of the input variable x; in the rth IF-THEN
rule, p the number of the input variables, f,(-) a
function of the p input variables, and y, is the output
of the rth IF-THEN inference rule R,.

In the first-order Takagi—Sugeno fuzzy system (TS1),
the output function f,(-) is a first order polynomial of the
input variables x,...,x, and the corresponding output y,
is determined by

Yr :fr(xlvxb -~~vxp) = br(O) + br(l)xl +

2 3)
+ b, (p)x, = b,(0) + > b,()x;.
Jj=1

The final output (control variable) y of the Takagi—
Sugeno fuzzy system (TS) having k IF-THEN rules is

given by

k k
Z &y, Z arﬁ(xlsx29""xp)
y = r=1 — r=1 , (4)

k k
S S
r=1

r=1

where «, is the applicability degree of the IF-THEN
rule (see Appendix A). By Eq. (4), the degree of applic-
ability « in the Takagi—Sugeno approach is not only the
measure of fulfillment of the premise in the [IF-THEN
rules, but also the weighting factor assigned to the
corresponding scalar output on the control variable y.
Hence, the final result y of the control variable is
obtained as a weighted average of these scalar outputs
from each IF-THEN rule.

Following the example given in the Appendix A.3,
we add a decision equation of the control variable 9
into each IF-THEN rule, i.e. Eqs. (A13.1)-(A13.4),
respectively, giving

R, : IF (Q(l) is “low flow”, Q(z) is “low flow”)

THEN 0\” = 0.80" + 0.90@, (5.1

R, : IF (Q(l) is “low flow”, Q(Z)is “medium flow )

THEN 0% = 0.850" + 0.80", (5.2)

Ry : IF (Q(U is “medium flow”, Q(2) is “low flow”)

THEN 09 = 0.90" + 0.850", (5.3)

R, : IF (O is “medium flow”, 0® is “medium flow”)

THEN 0 = 0.70"" + 0.950?. (5.4)

For the prior information that 0" =110m>s™" and

Q(Z) = 490 m’ s_l, we have determined that o =
0.8775, a, =0.1225, a3 =0.1 and a4 =0.1 (see
Appendix A.3). By the [IF-THEN rules (5.1)—(5. 4) the
corresponding values of 09 are: Q(O) = 529 s,

O =4855m’s™!, QY =5155m* s, and Q<°> =
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542.5m’ s~ !. So, the final result for Q(O) is determined
according to Eq. (4), i.e.

4
> a0

be discussed later, it is better not to make the
partitions too fine, or it will finally introduce too

00 = =1

Sa

r=1

It is obvious that the final result Q¥ =
524.6m’s™! is closest to Q" =529 m’s™!, since
the value of «; for the IF-THEN rule R;, which is
0.8775, is far larger than the other three values of the
degree of applicability, i.e. those of a,, a3, and ay.

4. The first-order Takagi—Sugeno fuzzy
combination framework

In Section 3, we have demonstrated by a very
simple example how to implement the first-order
Takagi—Sugeno approach in fuzzy control. In the
same way, but in a more general context, the first-
order Takagi—Sugeno approach can be employed to
constitute a framework for the combination flood
forecast.

Assume that there are p rainfall-runoff models
simultaneously used for flood forecasting on a
watershed so that we then can get the p different esti-
mates of an unknown discharge. Denoting these p
different estimates at the time step i of a discrete
discharge series by QU, QZ,[’"'-’Q‘D,[’ we can then
construct a vector Q,- = [QL,», sz,-,...,Qp,,»]T, where
the superscript T denotes the transpose of the vector,
and the corresponding combination forecast is denoted
by Qc,i. In the terminology of the fuzzy control theory,
the VectorAQi = [Ql,i’ Qz,i, Qp,,-]T is the input vari-
able, and Q,.; is control variable, i.e. the output.

Four main topics on the TS1 combination frame-
work are now explained, i.e. the domain partition of
the input variables; the design of IF-THEN rules; the
determination of the degree of applicability, and the
nature of the TS1 combination method.

4.1. The domain partition of the discharge series

Firstly, we should divide the discharge series of the
watersheds into some different domains and, as will

_ 0.8775X 529 + 0.1225 X 485.5 + 0.1 X 515.5 + 0.1 X 542.5
B 0.8775 + 0.1225 + 0.1 + 0.1 = 524.6

=5246m’s . (6)

many parameters. In this paper, the methods of pattern
recognition are used to cluster the discharge series
into several different groups, each of which is consid-
ered to be the kind of flow domain that has the arith-
metic mean value of the group components as the
group representative (Theodoridis and Koutroumbas,
1999). To make these domains distinguishable, each
domain or group is labeled with a name or linguistic
term. For instance, when we classify the whole
discharge series into three different groups/domains,
then we can call these groups by the linguistic terms
low flow, medium flow, and flood, respectively.

To find the domain representative, denoted by m,,
for each of three domains, i.e. low flow, medium flow,
and flood, some unsupervised pattern recognition
methods can be used (Theodoridis and Koutroumbas,
1999). For example, either the C-means algorithm or
the K-means algorithm is chosen to find the arithmetic
mean value of the group as ., because of their compu-
tational simplicity (Lloyd, 1982; Bishop, 1995; Theo-
doridis and Koutroumbas, 1999). Likewise, the fuzzy
C-means algorithm can also be employed in determin-
ing the value of p, (Cannon et al., 1986; Theodoridis
and Koutroumbas, 1999). For the comparison of these
two clustering methods, the clustering results on the
five-year discharge series of the Halda catchment in
Bangladesh (from 1 April 1980, see Table 2) are listed
in Table 1. From Table 1, it is found that the two

Table 1

The fuzzy set center w of the discharges on the Halda catchment
(the fuzzifier in the fuzzy C-means method is 1.2; the unit of
discharge is m* s ")

I (the fuzzy set center) Small flow Medium flow Flood

The C-means method 16.94 136.21 384.17
The fuzzy C-means method 15.52 130.25 374.03
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Table 2

Summary description of the watersheds (Shamseldin et al., 1997) (these mean values are calculated by using the data of the calibration period)

Watershed Country Area Mean rainfall  Mean pan Mean Calibration  Verification  Starting date
(km?) (mm day ") evaporation  discharge period period
(mm day ' (mm dayfl) (year) (year)
Sunkosi-1 Nepal 18,000  4.65 3.30 3.63 6 2 1 January 1975
Yanbian China 2350  3.28 5.79 2.55 6 2 1 January 1978
Nan Thailand 4609  3.89 333 1.82 6 3 1 April 1978
Brosna Ireland 1207 2.20 1.31 0.98 8 2 1 January 1969
Sg. Bernam  Malaysia 1090  7.08 5.06 2.86 5 2 1 January 1977
Kelantan Malaysia 12,867  6.58 4.84 3.50 6 2 1 January 1975
Halda Bangladesh 779  6.75 2.77 4.84 5 2 1 April 1980
Shiquan-3 China 3092 230 2.41 0.98 6 2 1 January 1973
Baihe China 61,780  2.59 2.89 1.04 6 2 1 January 1972
Chu Vietnam 2370  3.78 2.54 1.64 8 2 1 January 1965
Bird Creek Australia 2344 2.66 3.58 0.61 6 2 1 October 1955

clustering methods will give nearly the same results
for w.

4.2. Design of IF-THEN rules

For three flow domains and p different input vari-
ables, theoretically we could design 3” different IF—
THEN rules, such as such as ‘IF (Qu is flood, Qz,,- is
low flow, “-’Qp,i is medium flow) THEN...".
However, we must always bear in mind that the
number of the IF-THEN rules should be determined
carefully in order to prevent the over-parameteriza-
tion of the TSI combination method. For each IF—
THEN rule, we have (p + 1) parameters, i.e. b(0),
b(1), ...,b(p), so if we have one more rule, we will
have (p + 1) more parameters. To achieve a balance
between the combination efficiency and the over-para-
meterization, the use of too many IF-THEN rules is
not encouraged as otherwise too many parameters will
probably depress the verification efficiency (Fiorda-
liso, 1998).

To eliminate most of the trivial and unnecessary
IF-THEN rules, we assume that the simulated
discharge series from each individual rainfall-runoff
model produces a similar trend of the observed
discharge. This means that, since each individual rain-
fall-runoff model has attempted to simulate the same
observed discharge Q; with maximum efficiency, then
it is reasonable, at least in theory, that its estimates
from different models, denoted by Ql,i, Qz,i, v Qp,i,

do not differ from each other too much in the order of
magnitude, although naturally they are not of the same
value. With this assumption, for the three discharge
domains, three [F-THEN rules (k = 3) are reasonably
sufficient to form the whole IF-THEN control system.
These are

R, : IF (Qj,,- is “low flow”, j=1,...,p)

. P A (7.1)
THEN Q,,; = b;(0) + > b,()-0;;.
j=1
R,: TF (Qj,,- is “medium flow”, j = 1,...,p)
X » X (7.2)
THEN Q..; = b,(0) + > by(j)-0;..
j=1
Ry : IF (0, is “flood”, j=1, ...,p)
(7.3)

P
THEN 0., = b3(0) + > b3()-0;,.

J=1

According to this logic, if we divide the observed
discharge series into two domains, then we will
need only two IF-THEN rules (k = 2), whereas if
we treat the whole discharge series as a group, then
we just need one IF-THEN rule (k = 1).
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4.3. Determination of the degree of applicability

At each time step, for each IF-THEN rule, we need
to determine the degree of applicability, denoted by
a,(0;), according to the input vector Q;. Firodaliso
(1998) defined the degree of applicability a,(Q,-) by
the radial basis function (RBF) of Gaussian form, i.e.

a,(0) = exp(= [0 — w, &), ®)
where w, is a p-dimensional vector that is the rth
domain representative as well as the center of the
fuzzy set defining that domain, and [Xlls is the
weighted norm of the p-dimensional vector X defined
by [X|§ = X"S’S,X, where S, is a pXp square
matrix. In this paper, S, is taken as the identity matrix,
so that || @]l just corresponds to the Euclidean norm
|®]l-

Just as the fuzzy sets for the linguistic terms can be
defined by different empirical functions, so the deter-
mination of the degree of applicability «, is rather
arbitrary, being dependent on some empirical knowl-
edge and prior information. Besides the definition of
Eq. (8), a linear form of RBF, the argument of which
is the Euclidean distance of the input vector X from a
center M, is also used in this paper to define the degree
of applicability a,(Q,-) for the IF-THEN rules, having
the form

@(0) =110, — w|s,- ©)
The TS1 fuzzy system using Eq. (9) for defining the
degree of applicability «, is denoted by TS1*. The
meaning of both definitions of Eqgs. (8) and (9) is
that, when the input vector (; is more closely
approaching the fuzzy set center and the domain
representative ., the degree of applicability a,(Qi)
will be closer to unity and the premises in the IF—
THEN rules are more closely fulfilled.

4.4. The nature of the TSI fuzzy combination
framework

In fact, the TS1 fuzzy combination method is one
realization of the linear mixture of the individual fore-
casts (Fiordaliso, 1998), which can be demonstrated
as follows.

Substituting the linear Eq. (3) into (4) and

rearranging it, yields

k R p .
> Qi) 1b,0) + > bG)10;]

N r=1 =1

Qc,i = k
> a0
r=1

k k
> a,0)b,0) > @, (0,)b,(1)
= r=1 2 + r=1 - Ql’i

> a(@), D> a(0)

r=1 r=1

k
> Q)b (p)

r=1 A
R — L (10.1)

> a(@)

r=1

=wo; Twi QT wy Oy + o w00, (10.2)

where
k A
> a(0,)-b,(0)
Wo,i = r:1k4» (11
> a0
r=1
k A
> a,(0,)-b,()
W=,  j=12,..p (12)
Z OI(Qi)
r=1
and where wy;, wy;,...,w,; are the combination

weights, which are varying at each time step i, i =
1,2,...,N, N being the length of the data used. From
Eq. (10.2), it can be seen that the TS1 fuzzy combina-
tion method is indeed one realization of the linear
weighting of the individual forecasts at each time
step. Note that the weights vary from one time step
to the next, depending on the magnitude of the
discharge.

From Eq. (10.2), it is also seen that both the SAM
and the WAM are special limiting cases of the TS1
combination method. For example, in Eq. (10.2), if
wo; =0andw;; = 1/p(j=1,2,....p) in the TSI,
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then it reduces to the SAM. Likewise, if wy; = 0 and
the w;; (j = 1,2, ..., p) are all constants, then the TS1
reduces to the WAM.

So, Egs. (7)—(12) define the construction of the TS1
framework to combine the forecasts from the different
rainfall-runoff models. To make this combination
method work, we need to know the coefficients
b.(j), j=0,1,...,p, for each rule. For the k rules,
we have the total (p + 1) X k unknown parameters to
be estimated. These (p + 1) X k parameters can be
found by minimizing the quadratic error function of
the form

E= Z(Q(, 0,)’, (13)

where Qw is just the control variable of the TS1
combination method, i.e. the combination forecast
of the observed discharges Q;.

5. Evaluation of performances of the single models
and the combination method

For rainfall-runoff models, the main criterion used
for assessing simulation efficiency is the Nash—
Sutcliffe efficiency index R* (Nash and Sutcliffe,
1970), defined as

Fy—F
Fy

R =

, (14)

where F is the sum of squares of differences between
estimated and observed discharges, and F|, is the sum
of squares of differences between the observed
discharges and the mean discharge during the calibra-
tion period.

For a combination system or method (see Fig. 1),
the Nash—Sutcliffe efficiency R* is also used to judge
the accuracy of the combination forecasts against the
observed discharges. Since a combination system is
supposed to take advantage of the merits of each
component model, we should intuitively expect a
successful combination system to behave better than
any of individual models in flood forecasting. In terms
of the Nash—Sutcliffe efficiency index RZ this
expectancy for the combination method is expressed as

R? = max (R, (15)
j=1

where the R(;) is Nash— Sutcllffe efficiency value for
each single model and R? is Nash—Sutcliffe efficiency
value for the combination forecasts.

This inequality (15) in facts demands that the
combination system should have the ability to retain
the best simulation results from the several different
models. If the combination method produced combi-
nation forecasts worse than the forecasts of the best
one among the several combined models, then we
would not use that combination method at all and
would adopt the forecast of that best model.

In practice, to take account of the probability of a
combination system to satisfy Eq. (15), a new index is
introduced to assess the combination method, which is
called the combination capacity, denoted by ¢ and
defined as

P
MRS = miax (R3]
M 9

Y= (16)
where M represents the number of catchments to
which the combination method has been applied,
and ]_[[Rg = maxf:1 (R%j))] represents the number of
catchments where the inequality (15) holds. The
values of both R* and  will be less than or equal to
unity.

To assess the influence of each individual model on
the performance of the combination system, we use
the correlation coefficient between the R* values of the
individual models and the R* values of the combina-
tion system as an index. For the L catchments, the
correlation coefficient, denoted by, between the indi-
vidual model j and the combination system is defined
as

L A . R
S R () — RERXD) — R2)
§c(]) = =1 ) (17)

—_ L —_—
J [RG (D) — Réﬂz'JZ [Re() — R
l§

=1
where R(zi)(l) represents the Nash—Sutcliffe coefficient
of the single model j in simulating the floods of the
catchment /, Rg(l) represents the Nash—Sutcliffe coef-
ficient of the combination system in simulating the
floods of the catchment /, Rf) and R are the mean
R? values of the individual model and the combination
system, respectively, over the total of L catchments.

M=

1
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6. Applications of the combination method based
on the TS1 fuzzy system

As noted in Section 1, Shamseldin et al. (1997)
have combined the forecasts of five different models
by three different methods. These five rainfall-runoff
models are

1. The SLM (Nash and Foley, 1982; Kachroo and
Liang, 1992).

2. The LPM (Liang and Nash, 1988; Liang and Guo,
1994).

3. The LVGFM (Ashan and O’Connor, 1994).

4. The constrained linear system model (CLS)
(Todini and Wallis, 1977; Kachroo and Natale,
1992).

5. The SMAR model (Kachroo, 1992; Liang, 1992).

The fifth model is a conceptual model, the first four
being black-box models.

The three forecast combination methods are
(Shamseldin et al., 1997)

1. The SAM.
2. The WAM.
3. The NNM.

All these five models and the three combination
methods are not described in this paper since they
have been presented in some detail by Shamseldin
et al. (1997). Shamseldin et al. (1997) firstly applied
the five rainfall-runoff model to the daily rainfall and
runoff data of 11 selected catchments and then
combined the forecast results of the five models by
the three combination methods to obtain the required
combination forecasts, finally concluding that the
combination forecasts are better than those from
each individual model according to the values of the
Nash—Sutcliffe model efficiency index R.

The Takagi—Sugeno first-order combination
method (TS1) is now used as the fourth approach to
combine the forecasts from the five models, on eleven
catchment, and then the TS1 combination results are
compared with the corresponding combination results
of SAM, WAM, and NNM. A brief summary of those
11 watersheds is listed in Table 2, the data interval
being one day in every case.

In the TS1 combination method, is the total number

of parameters is (p + 1) X k, where p the number of
the models and k is the number of IF-THEN inference
rules. As we now have five models used for combina-
tion forecasts, i.e. p = 5, then any one additional rule
would introduce six more unknown parameters to be
optimized. So, it is sensible to keep the number of IF—
THEN inference rules in the TS1 fuzzy system as
small as possible without seriously compromising
the accuracy of the combination forecasts from the
TS1 method (Fiordaliso, 1998). The TS1 method is
run in three cases, i.e. for k=1, k=2, and k = 3,
with p = 5 in every case. For the case that k = 1, this
TS1 method just reduces to the standard linear regres-
sion method having six constant coefficients or
parameters, which may expressed as

5
Oci=by + ij'Qj,i~ (18)
j=1

For the cases that k = 2 and k = 3, those coefficients
wy; and w;; in Eq. (10.2) are not constant but keep
changing with each time step. These results for the
TS1 combination, as well as corresponding results
presented by Shamseldin et al. (1997), are listed
together in Table 3. The results of the TS1”* (k = 2)
fuzzy combination system are also listed in Table 3.
For comparisons between the TS1 method and the
other combination methods and the single models,
the TS1 results of k =2 are chosen. Four figures
(Figs. 2-5) are plotted to demonstrate the perfor-
mance of the TS1 (k = 2) in flood forecasting.

6.1. Calibration period

For the 11 catchments, the values of R? for the
NNM method always rank No.l (see Table 3),
which means that, in the calibration period, the
NNM combination system method can always make
the inequality (15) hold, that is, ¢y = 11/11. There is
no doubt that the NNM combination system has the
ability to retain the best simulation results from the
several different models for the calibration period.

In this period, the values of R* for the WAM are
very similar to those of R? for the TS1 (k=2)
combination system, although on the Halda catch-
ment, the value of R? for the TSI is ranked just No.
5. So, it is still true that both the WAM and TS1
combination systems can also render the inequality



Table 3

The R? (unit:%) efficiency results of the five models and the four combination methods

Model R? (rank)

Sunkosi-1 Yanbian Nan Brosna Sg.Bernam Kelantan Halda Shiquan-3  Baihe Chu Bird Creek
Calibration period
SLM 85.78 (9) 73.66 (9) 65.87(9) 40.12(9)  65.27 (9) 62.81(9) 8170 (9)  72.01(9) 7040 (9)  59.63 (9)  59.52(9)
LPM 91.96 (4) 83.00(6) 7581 (7) 70.28 (6)  74.87 (5) 76.71 (8)  84.58 (6)  76.85(7) 7426 (8) 63.10(8)  63.56 (8)
LVGFM 88.63 (8) 78.05(8) 7653 (6) 4137(8)  72.15(7) 7891 (7)  83.62(8)  87.63 (5) 87.16 (4) 83.18(4)  86.10(5)
CLS 90.52 (6) 81.59 (7) 7433 (8) 4695(7) 7248 (6) 79.49 (6)  83.99(7)  75.76 (8) 83.27(7) 7154 (6) 65.35(7)
SMAR 89.81 (7) 8587 (4) 8402(4) 85834 71.01(8) 89.24(4) 8552(3) 89.74 (4 8329 (6) 7590 (7)  88.69 (4)
SAM 91.25 (5) 83.69 (5)  80.97 (5) 71.00 (5)  75.59 (4) 84.44 (5) 8547 (4)  84.83(6) 84.65 (5) 77.65(5)  80.28 (6)
WAM 92.93 (3) 87.66 (2) 8569 (2) 89.03(3) 79.35(2) 91.34(2) 87.23(2) 91.78(2) 90.02 (2) 8586(2) 90.18 (2)
NNM 93.12 (1) 90.54 (1)  87.58(1) 92.62(1) 82.09 (1) 9147 (1) 8771 (1) 93.25(1) 90.96 (1)  89.95() 91.24 (1)
TS1 (k=2) 93.07 (2) 8743 (3) 8492(3) 89.10(2) 78.47 (3) 8983 (33) 8470(5) 91.38(3) 89.85(3) 84.92(3) 90.01 (3
TS1* (k=2) 93.09 87.55 84.97 89.13 79.88 89.89 84.73 91.26 89.80 84.95 90.05
TS1 (k=1) 92.47 86.44 84.87 88.76 76.62 89.74 84.59 91.21 89.13 84.65 89.97
TSI (k=13) 93.14 87.87 85.29 89.49 79.12 90.78 84.87 91.34 90.40 85.26 90.10
Verification period
SLM 83.37 (9) 75774 (9) 6048 (9) 4568 (9)  47.08 (2) 3749 (8)  7238(8)  54.04 (9) 70.52 (6)  69.69 (8) —53.21 9)
LPM 90.49 (1) 7921 (7) 7573 (7) 7753 (5) 4792 (1) 37.89(7)  77.18 (6)  56.16 (8) 73.17 (3)  70.28 (7) —38.99 (7)
LVGFM 83.59 (8) 7638 (8)  69.56 (8)  48.06 (8)  20.60 (8) 4384 (6) 7531 (7)  79.01 (1) 61.45(9) 7534 (3) 2490 (5)
CLS 84.62 (7) 81.10(6) 79.12(6) 60.25(7)  31.65(4) 3749 8) 6653 (9)  57.30 (7) 65.50 (8)  66.36 (9) —43.72 (8)
SMAR 85.19 (6) 8393 (4) 8370(2) 85394 —18.30 (9) 50.55(2) 8455(2) 68.16 (5) 7279 4)  71.82(6)  73.31(1)
SAM 86.70 (5) 83.02 (5) 79.29 (5) 71.58 (6)  37.63 (3) 47.82 (5)  78.55(5)  67.47 (6) 80.27 (1) 7798 (1)  23.81(6)
WAM 88.95 (2) 86.06 (2)  84.34(1) 88.17(2) 21.85(6) 4848 (3)  82.25(3) 77.08 (3) 66.48 (7) 73.99 (4) 71.53 (2)
NNM 88.05 (4) 86.49 (1) 81.66 (4) 91.54 (1) 20.68 (7) 48.10 (4)  85.50 (1) 78.09 (2) 74.15 (2) 71.93 (5) 70.02 (4)
TS1 (k=2) 88.70 (3) 8540 (3) 8352(33) 86.73(3) 29.64 (5 50.74 (1) 81.184)  76.18 (4) 7155 (5) 7630 (2) 70.87 (3)
TS1% (k=2) 88.56 85.82 83.29 86.74 20.25 50.74 81.48 75.71 67.48 76.33 71.11
TSI (k=1) 89.25 84.49 83.31 86.15 33.61 50.62 80.75 75.06 72.65 76.28 70.86
TS1 (k=3) 88.33 86.13 83.78 87.23 27.10 50.10 82.08 76.17 66.89 76.53 70.39

 Means that the membership function is a,(Q;) = 1]|0; — p,,”i.
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Fig. 2. Comparisons of simulated hydrographs on the Sunkosi-01 catchment (1 June—1 December 1975).

(15) valid, i.e. they can retain the best simulation
results from several different models.

For the SAM, the values of R? are larger than all
those of each individual model only in the case of two
catchments (Sg. Bernam and Halda), and ¢y = 2/11. If
the inequality (15) is used to select efficient combina-
tion methods, then clearly the SAM method should be
excluded.

For the TS1 combination method, it is
demonstrated that the TS1 (k = 3) method has the
best efficiency, the TS1 (k = 2) the second best, and
the TS1 (k = 1) the worst. The average value of R? of
the TS1 method, for k = 1,2 and 3 are 87.12, 87.61,
and 87.96%, respectively. Although the efficiency of

the TS1 increases slightly when the inference rules
and the number of parameters are increased, it
would seem that three rules are enough to make the
TS1 system work well, if we do not want too many
parameters to be optimized.

Generally, in the calibration period, the NNM, WAM,
and TS1 methods have performed better than any single
rainfall-runoff model in the combination, which is only
to be expected for successful combination systems.

6.2. Verification period

In the verification period, the R? values of the four
combination methods are not always better than the
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Fig. 3. Comparisons of simulated hydrographs on the Sunkosi-01 catchment (1 June—1 December 1982).
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Fig. 4. Comparisons of simulated hydrographs on the Kelantan catchment (1 June—1 September 1975).

maximum of the five single models (see Table 3). For
the SAM combination method, its combination capa-
city ¢y = 2/11, for the WAM, ¢y = 3/11, for the NNM,
¢ = 4/11, and for the TS1 (k = 2), = 4/11.

For the SAM method, only on two catchments out
of the 11 tested is the value of R larger than that from
any of the five single models, i.e. in verification, the
SAM combination method can improve the simula-
tion results only on the Baihe and Chu catchments.
For the WAM method, only in the case of three catch-
ments is the value of R? larger than that from any of
the five single models, these three catchments being
the Yanbian, Nan, and Brosna catchments. For the
NNM method, its combination forecasts are better,
in terms of R%, than the simulation results of each
single model on the Yanbian, Brosna, Halda, and

600

Baihe catchments. For the TS1 method, its combina-
tion forecasts are better than the simulation results of
each single model also on four catchments, i.e. the
Yanbian, Brosna, Kelantan, and Chu.

For the TS1 combination method, the average value
of R? of the TS1 method for k = 1,2, and 3 are 73.00,
72.80, and 72.25%, respectively, which are slightly
decreasing with an increase in the number of para-
meters. This trend indicates that, increasing the
number of parameters could depress the verification
efficiency because of the uncertainty introduced by
the extra parameters, although it would naturally
improve the calibration efficiency as shown above.
In this sense, the adoption of two rules are suggested
in this paper for the TS1 combination system, the
same as that recommended by Fiordaliso (1998), in
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Fig. 5. Comparisons of simulated hydrographs on the Kelantan catchment (11 March—6 May 1981).
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order to achieve the appropriate balance between the
calibration efficiency and the verification efficiency,
and between over-parameterization and the degree of
uncertainty in the optimization of the parameter set.

6.3. Results of the TSI (k = 2) combination

The average values of R? for the TS1 k=2)
system are 87.61 and 72.80%, for the calibration
and verification periods, respectively, while for the
TS1" (k =2) system, they are 87.75 and 71.59%.
The only obvious difference occurs in the case of
the verification period for the Sg. Bernam catchment,
the value of R? for the TSI (k =2) being 29.64%,
while R? =20.25% for the TS1* (k=2). On the
other watersheds, the values of R? are nearly the same,
although the values of the 12 parameters, b,.(j) (G =
0,1,....5), r=1,2), will be different when using the
different degree function of applicability.

6.4. Summary

In general, among the four combination methods
(SAM, WAM, NNM, and TS1), the WAM, NNM,
and TS1 combination systems have behaved simi-
larly, according to the combination capacity index
Y, although the NNM can obviously enhance the
simulation efficiency in the calibration period. It is
noteworthy that, although the WAM, NNM, and
TS1 methods all perform satisfactorily in the calibra-
tion period, they have not performed equally well in
the verification period.

7. Influence of the component models on the
combination efficiency

The results of the TS1 fuzzy combination presented
in this paper, as well as those results presented by
Shamseldin et al. (1997) demonstrate that the combi-
nation forecasts of the WAM, NNM, and TSI
methods are better than the corresponding forecasts
of each individual model, especially in the calibration
period, in terms of the value of R Here, we further
analyze those combination methods by examining the
contribution of each individual model to the combina-
tion forecasts. From the results presented in Table 3,
we calculate the correlation coefficients & between the
R? values of each of five the individual models j and

the R? values of each of the four combination methods
over the 11 tested catchments, these results being
presented in Table 4.

7.1. Calibration period

The SAM has demonstrated a fairly strong relation-
ship to each individual model, the smallest value of
& = 0.54, being obtained for the SMAR model, which
is consistent with the concept that the SAM method
has paid equal attention to the estimates of each single
model. The rejection of the SAM method as a good
combination system by the criterion ¢, the combina-
tion capacity, has been corroborated also by its
average R? value of 81.80%, which is even less than
that of the SMAR model, which is 84.45% and also
the maximum among those of the five single models.
As noted earlier, if a combination method cannot
work as well as the best one among those individual
models used for combination, then we would rather
choose that best model rather than waste time on that
unsuccessful combination method.

For the WAM, NNM, and TS1 (k = 2) methods, it
is found that only the SMAR model has by far the
largest correlation coefficient values, i.e. &= 0.90,
0.80, and 0.87, respectively, reflecting its strongest
influence on the combination efficiency for all three
combination methods. The other four models (SLM,
LPM, LVFGM, and CLS) have just very small or even
negative correlation coefficients to the WAM, NNM,
and TS1 (k = 2) methods. For the WAM, NNM, and
TS1 methods, it is seen that the estimates of the
SMAR model have been assigned much larger coeffi-
cients or weights in the combination forecasts than the
estimates of the other four models. This finding
confirms that the WAM, NNM and TS1 methods are
flexible in identifying and assigning different weights
to different models, which are different from that of
the SAM method that assigns an equal coefficient to
each individual model.

7.2. Verification period

Once again, the average R” value of the SAM
method, 66.74%, is smaller than that of the SMAR
model, which is 67.37% and the best among those
of the five single models, while the average R? values
of the WAM, NNM, and TS1 (k = 2) methods, are 4
or 5% greater than that of the SMAR model.
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Table 4

The correlation coefficient between the R values of the component models and the R? values of the combination method (the bold values are the
mean R>values (%) of each single model and each combination method; TS1 @ indicates that the SMAR model is not used for this combination)

SAM WAM NNM TS1 (k=2) TS19 (k=2)
Calibration

81.80 88.28 90.05 87.61 84.59
SLM 66.98 0.89 0.17 —-0.05 0.11 0.71
LPM 75.91 0.71 0.24 0.06 0.20 0.42
LVGFM 78.48 0.78 0.25 0.06 0.20 0.82
CLS 75.57 0.86 0.15 - 0.04 0.09 0.76
SMAR 84.45 0.54 0.90 0.80 0.87 -
Verification

66.74 71.74 72.38 72.80 66.22
SLM 51.20 0.86 0.22 0.25 0.26 0.81
LPM 58.78 0.90 0.35 0.38 0.39 0.87
LVGFM 59.82 0.90 0.71 0.70 0.73 0.91
CLS 53.29 0.93 0.40 0.42 0.44 0.90
SMAR 67.37 0.60 0.95 0.96 0.95 -

From the results of the correlation coefficients of
each single model to the combination method (Table
4), it is found that the WAM, NNM, and TS1 (k = 2)
methods still have the strongest relationships to the
SMAR model, which is the best of the five models.

7.3. Combination results without the SMAR model

Since the conceptual SMAR model has been the
best of five single rainfall-runoff models, the strong
correlation coefficients of the WAM, NNM, and TS1
(k = 2) methods with only the SMAR model can be
explained by recalling that the function of the combi-
nation methods is to identify the best single model and
then improve its estimates by information of other
combined models. When this objective is realized,
then we can conclude that the efficiency of the combi-
nation methods is greatly influenced by the efficiency
of the best one of those single models used in the
combination. To further explore this association of
strong correlation coefficients of a successful combi-
nation method with the best individual models used in
the combination, we removed the SMAR model from
the combination and used only the other four models
in the Takagi—Sugeno fuzzy system, which is denoted
by TS1® (k = 2). The results of R?on the 11 catch-
ments by the TS1® (k = 2) combination method are
listed in the Table 5, and the correlation coefficients &
between the R? values of each of four the individual

models and the R? value of the TS1® (k = 2) method
are also listed in Table 4.

From the results listed in Table 5, we can quickly
identify that, in general, the TS1® (k = 2) combina-
tion method provides better forecast results than any
of the four models used in the combination, i.e. the
SLM, LPM, LVGFM, and CLS models. Among these
four models, the best one is the LVGFM, with
the average calibration efficiency of 78.48% and the
average verification efficiency of 59.85%. For the
TS1® (k =2) combination method, the average
values of R? for both calibration and verification are
84.59 and 66.22%, respectively, which are nearly 6%
greater than the corresponding values of the LVGFM.

As to the correlation coefficients ¢ between each
of the R? values of four of the individual models and
the R? value of the TS1? (k = 2) method, given in
the last column of Table 4, these show that the
LVGFM model has the largest value of & in both
the calibration and the verification period, these
values being 0.82 and 0.91, respectively. Once
again, we have the result that successful combination
methods involve strong correlation coefficients with
the best individual model, recalling that the objective
of the successful combination method is to identify
the best single model and then to improve its esti-
mates by absorbing some independent information
reflected in the forecasts of the other models used
in the combination.



Table 5

The R? (unit:%) efficiency results of the four models and the TS1 @ (k = 2) combination method (TS1® (k = 2)means that only four models, without the SMAR model, are included

in the combination system)

Model R? (rank)

Sunkosi-1 Yanbian Nan Brosna Sg.Bernam  Kelantan Halda Shiquan-3 Baihe Chu Bird Creek
Calibration period
SLM 85.78 (5) 73.66 (5) 65.87 (5) 40.12 (5)  65.27 (5) 62.81 (5) 81.70 (5)  72.01 (5) 70.40 (5) 59.63 (5)  59.52 (5)
LPM 91.96 (2) 83.00 (2) 75.81 (3) 7028 (2)  74.87 (2) 76.71 (4) 84.58 (1)  76.85 (3) 74.26 (4) 63.10 (4) 63.56 (4)
LVGFM 88.63 (4) 78.05 (4) 76.53 (2) 4137 (4)  72.154) 78.91 (3) 83.62 (4) 87.63 (2) 87.16 (2) 83.18 (2) 86.10 (1)
CLS 90.52 (3) 81.59 (3) 74.33 (4) 46.95(3) 7248 (3) 79.49 (2) 83.99 3) 75.76 (4) 8327 (3) 7754 (3) 65.35 (3)
TS1¥ (k=2) 92.89 (1) 85.71 (1) 81.00 (1) 75.80 (1)  77.96 (1) 85.52 (1) 84.06 (2)  88.08 (1) 89.14 (1) 84.27(1) 86.04 (2)
Verification period
SLM 83.37 (5) 75.74 (5) 60.48 (5) 45.68 (5)  47.08 (2) 37.49 (4) 7238 (4)  54.04 (5) 70.52 (2) 69.69 (4) — 5321 (5)
LPM 90.49 (1) 79.21 (3) 75.73 (3) 7753 (1) 4792 (1) 37.89 (3) 77.18 (2)  56.16 (4) 73.17 (1) 70.28 (3) —38.99 (3)
LVGFM 83.59 (4) 76.38 (4) 69.56 (4) 48.06 (4)  20.60 (5) 43.84 (2) 7531 (3)  79.01 (1) 61.45(5) 7534 (1) 24.90 (1)
CLS 84.62 (3) 81.10 (2) 79.12 (1) 60.25 (3)  31.65(4) 37.49 (4) 66.53 (5)  57.30 (3) 65.50 (3) 66.36 (5) —43.72 (4)
TS1¥ (k=2) 89.25 (2) 8393 (1) 78.46 (2) 77.06 2)  37.68 (3) 45.07 (1) 7744 (1) 78.73 (2) 63.06 (4) 7433 (2) 2347 (2)

01¢
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Table 6

The combination efficiency R? (%) of the TS1 (k = 2) on the Yanbian catchment with the increasing values of ] or w3

Scenario 1 R*(%) $=0 s=02 §=03 s=04 s=05
Calibration 87.43 87.44 87.43 87.42 87.37
Verification 85.40 85.44 85.47 85.48 85.45

Scenario 2 RX (%) =1 =12 =14 =16 =18
Calibration 87.43 87.65 87.79 87.87 87.90
Verification 85.40 85.68 85.90 86.06 86.20

8. Effect of the domain representative p on the
combination efficiency

In the above discussion, the domain representative
. is determined by using the clustering algorithms
(mainly the C-means algorithm). In this section, we
investigate how the change of the value of the flow
domain representative p will affect the combination
efficiency of the TS1 fuzzy system. For example, for
the TS1 (k = 2) system, which involves two domain
representatives, i.e. p; and p,, two simple scenarios
are considered. One scenario is to keep the value of .,
unchanged but to increase the value of w;, while the
other one is to keep the value of p; unchanged but to
increase the value of m,. Mathematically, the first
scenario for changing the values of the flow domain
representative is expressed as

mi=p sy — py), (19)

M = My,

where p] and p; represent the new values for the flow
domain representative, pu; and p, are the values of the
flow domain representative determined by the C-
means algorithm, and s is a coefficient whose value
is between 0 and 1. When the value of s approaches to
1, the value of p| will approach that of p;.The second
scenario for changing the values of the flow domain
representative is expressed as

=y (20)

W=,

where ¢ is another coefficient assumed to vary between
1.0 to 2.0. When the value of 7 increases, the value of
w1 will move away from that of ;.

When  and p; used as the domain representa-
tives, the Gaussian equation, i.e. Eq. (8), is still

employed to calculate the degree of applicability of
the IF-THEN rules in the TS1 (k = 2) system. For the
different values of i and w3, the results of the combi-
nation efficiency R? (%) of the TS1 (k =2) on the
Yanbian catchment are presented in Table 6. From
Table 6, it is found that, in the scenario 1, in which
the value of . is increasing while the value of p; is
kept the same, the values of R* have a negligible
variation in both the calibration period and the verifi-
cation period. For the scenario 2, in which the value of
ju1 is kept the same while the value of p; increases,
the values of R increase gradually in both the calibra-
tion period and the verification period. For the other
ten catchments, nearly the same conclusion about the
impact of changing the values of w] and p; on the
combination efficiency R* can be reached.

The reason why the value of R* is increased gradu-
ally with the increasing p; (while ] is constant) is
explained as follows. When Eq. (8) is employed to
calculate the degree of applicability «, for the second
IF-THEN rule (associated with large flow), the larger
the value of w3, the larger will be the value of the
degree of applicability «, for the big discharge inputs.
Since pj is kept constant, for the same discharge
inputs, the degree of applicability «; for the first
IF-THEN rule (associated with small flow) is
unchanged. So, in producing the output of the TSI
(k = 2) system with the large discharge inputs, the
weight assigned to the output from the second IF—
THEN rule will become larger and larger compared
to the weight assigned to the output from the first rule,
when 7 is increased in the scenario 2. In this way, the
whole TS1 fuzzy system will become more sensitive
and effective in simulating the large discharges than in
simulating the small discharges. When large floods
are simulated more effectively and accurately by the
TS1 fuzzy system, the values of the combination effi-
ciency R* will have a chance to be enhanced.
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In general, within the context of the TS1 (k = 2)
system, it is found that changing values of the flow
domain representative will indeed have some impact
on the combination efficiency value R*. In particular,
increasing the value of w; (while ] is held constant)
can lead to a slight increase in the value of the
combination efficiency R?. However, such an
improvement on the model efficiency is still not
that significant.

9. Conclusions and discussions

Proposed as the fourth combination method (in
addition to the SAM, WAM, and NNM methods)
for organizing the forecasts of different rainfall-runoff
models in a systematic way in order to obtain better
forecasts of catchment flows, the first-order Takagi—
Sugeno fuzzy system (TS1) is employed to incorpo-
rate the forecasts of five rainfall-runoff models, using
the data sets of eleven catchments. The comparison of
model efficiency R* values of the TSI combination
with the other three methods (SAM, WAM, and
NNM) has shown that the TS1 system has behaved
almost the same as the WAM and NNM methods.

Considering that the inputs to any combination
system are the simulation results from the individual
rainfall-runoff models, the performance of the combi-
nation method will naturally be influenced by the effi-
ciency of each single model. One of the conclusions of
this study is that, based on the correlation analysis, the
forecasting efficiency of those combination methods
such as the WAM, NNM, and TSI, is greatly influ-
enced by the corresponding efficiency of the best one
of those single models used in the combination. When
the forecast series of the individual models are largely
independent (i.e. considerably different) from each
other, we can expect that the combination system
will very easily identify and strongly reflect the fore-
cast of the best single model. Under the extreme case,
when individual models are very similar to each other
in their flood forecasting ability, the combination
system will produce forecasts only marginally better
than those of the individual models. Also, it is likely
that the combination of the different forecasts might
lead to bigger errors than the individual ones at some
particular time steps, because any single optimization
objective or criterion, such as R?, can only reflect a form

of efficiency trend of the data series rather than at each
single time step. A more detailed analysis of forecasting
efficiency at different discharge levels or parts of the
flood wave might facilitate the ranking of different
combination methods of near-equal R” values.

Two points about the TS1 fussy system should be
briefly discussed. One is why (or when) a combination
forecast might be needed and the other one concerns
the limitation of the TS1 system. There are probably
many reasons leading to the failure of a single model,
such as data distortion and model structure inade-
quacy. The scenario for the combination method to
work is that when the simple model structure, adopted
for the combination, while reasonably efficient, is still
not flexible enough to reflect the full spectrum of
hydrological processes, by combining such different
models the structural inadequacy of any single model
used in the combination might be least partially over-
come. If (and only if) a watershed could always be
perfectly simulated by one single model, would a
good combination method fail to produce some
improvement, however marginal. As to the weakness
of the TS1 system, it is clearly the danger of
overparameterization. With the danger of overpara-
meterization, the number of IF-THEN rules must be
decided very carefully, i.e. those should not be too
many. However, the choice of a small number of
IF-THEN rules will undoubtedly make the whole
TS1 fuzzy system less flexible.

There is no doubt that there are many methods that
may improve the accuracy of flood forecasting (See and
Openshaw, 2000). The first-order Takagi—Sugeno
(TS1) fuzzy system for combining the forecasts from
different individual models is just one such method. Itis
the contention of the present authors that the results
presented in this study confirm that the first-order
Takagi—Sugeno fuzzy system, in the context of forecast
combination, is a very simple yet very effective tool for
enhancing the accuracy of river flow forecasts.

Acknowledgements

The financial support provided by Department of
Engineering Hydrology, National University of
Ireland, Galway, for this study is greatly appreciated
by the authors. The authors are pleased to acknowl-
edge the very helpful comments made by two



L. Xiong et al. / Journal of Hydrology 245 (2001) 196-217 213

reviewers of this paper, which led to considerable
revision and improvement.

Appendix A. Basic concepts of fuzzy theory and its
applications

A.l. The fuzzy set and membership function

Zimmermann (1985) has given a comprehensive
exposition of the fuzzy set theory. The fuzzy set
theory is very flexible in describing the features of
objects, which are usually expressed by some linguis-
tic terms such as large, red, etc., compared to the
classic set theory. In the classic set theory, the
membership function, m(-), which represents the rela-
tionship between a component x from a subset X and a
reference set @, has just two crisp results: 1 or 0,
where 1 means that x is a member of the reference
set ¢, while 0 means not. This classic set theory is
mathematically defined as

my . o — {0,1},
1, ifx€Ep,

my(x) = . (Al)
0, otherwise.

In practice, this classic set theory is not very suitable
for indicating the subtle distinctions between fairly
similar objects. For example, to define the height of
a man, under the classic set theory, we can have only
two opposite conclusions, tall and short. If we think of
a man of height 1.80 m as being tall and a man of
height 1.60 m as being short, then how do we classify
a man of height 1.70 m? Following the classical set
theory, we must define such a man of height 1.70 m
being either tall or short, neither of which is appro-
priate in practice, because a man of height 1.70 m is
just of medium hight.

Overcoming the limitations of the classic set theory
as described above, the fuzzy set theory (Zadeh, 1965;
Zimmermann, 1985) allows the membership m(-) to
be any real value between 0 and 1 to represent the
relationship between a component x and a reference
set . Put simply, the membership function m(-) is just
a definition of the certainty with which we can use a
linguistic term to describe the features of an object,
with the value 1 indicating the complete certainty and
the value O indicating nearly zero certainty. For the

above example, we can now think of the man of height
1.70 m as being tall, but only with some degree of
certainty, or, we can think of that man as being
short, also with some degree of certainty. For the
linguistic term tall to describe the stature of a man,
an empirical membership can be reasonably defined
as follows:

my : P — [O’ 1]7
X 0<x<18,

my(x) =1 1.8 (A2)
10, 1.8=x<20,

where the value 1.8 is the selected threshold defining
the linguistic term tall. According to the Eq. (A2), we
can say without doubt that a man of height 1.90 m is
tall, for his membership value is 1.0, while we can
also say that a man of height 1.70 m is tall, but only
with some certainty, for his membership value is 0.94,
which is considerably less than 1.0. To take another
familiar example, the temperatures of both 35°C and
40°C can sensibly be regarded as being hot. However,
we would have more certainty and confidence in
saying that the temperature of 40°C is hot than in
saying that the temperature of 35°C is hot, according
to the membership function defining hot.

In general, compared to the classic set theory, the
fuzzy set theory is more advantageous in expressing
vague, uncertain, and imprecise information, which is
certainly not uncommon in the scientific and engi-
neering fields (Zadeh, 1965; Zimmermann, 1985;
Kruse et al., 1994).

A.2. The domain partition

In Section A.1, we have given an example of the
fuzzy set defined for the linguistic term tall, i.e.
through the Eq. (A2). In practice, we will not just
use only the tall or short terms to express our percep-
tion of the height of a man. We will also use more
delicate linguistic terms, such as rather short, rather
tall, and very tall, which need be defined by some
fuzzy membership functions, or fuzzy sets. In the
context of flood forecasting, some linguistic terms,
such as drought, low flow, medium flow, and flood,
are also used to generalize the different characteristics
of the observed discharges that are time varying.
These different linguistic terms divide the whole
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Fig. 6. The fuzzy domain partitions of the discharge series on a watershed.

spectrum of flow conditions into different domains,
this division being called the domain partition. Note
that those domains are not mutually exclusive.
Assume, for example, that there is a watershed for
which the observed maximum discharge is
400 m3s_1, and that we define drought (D), low
flow (LF), medium flow (MF), and flood (F) by the
following fuzzy membership functions

0
1—-—, 0<0<100,
mo@ =1 100" 0 =° (A3)
0, 0 = 100,
%, 0< <100,
m(LF)(Q) = 0 (A4)
2——, 100 =0 <200
100’ 0 ’
WQO_L 100 = Q < 200,
m(MF)(Q) = 0 (A5)
- =, 200=0<
3 100° 00 = Q < 300,
£—2, 200 = Q < 300,
me(Q) = 1 100 (A6)

1.0, 300 = Q < 400,

where O represents the discharge values of the
watershed, and mp), mep, Mer), and mg, are the
fuzzy sets corresponding to the linguistic terms
drought, low flow, medium flow, and flood, respec-

tively. This fuzzy partition defined by Eqgs. (A3) and
(A4) is plotted in Fig. 6.

Under the fuzzy domain partition, we can find that
the same object can belong to more than one fuzzy set,
and yet have the different membership values. For
instance, for the discharge Q = 80 m’ sfl, it can be
regarded as being drought with the fuzzy membership
value mp)(x = 80) = 0.2, but it can also be regarded
as being medium flow with mgp(x = 80) = 0.8.
According to the membership values, we can deter-
mine that the discharge Q = 80 m® s~ more probably
belongs to medium flow rather than to drought.

A.3. The fuzzy inference rules

In classical control engineering, we specify an
accurate mathematical model to control the relevant
physical processes. However, under the fuzzy control
theory, it is the linguistic [IF-THEN rules that are used
to control the given process (Takagi and Sugeno,
1985; Kruse et al., 1994; Schulz et al., 1999; Dou et
al., 1999; Pongracz et al., 1999). These IF-THEN
inference rules are the logic decisions about how the
input variables, denoted by xy,...,x,, affect the control
variable, denoted by y, in the fuzzy control systems. In
the context of flood forecasting by means of the
rainfall-runoff models, the input variables are mainly
rainfall and evaporation, and the only control variable
(i.e. output) is the river discharge.

In the assessment of how different combinations of
the input variables affect the control variable, firstly it
is necessary to partition each input variable into
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different domains and then, for each input variable,
one of its domains is selected. Those selected
domains, each of which is corresponding to one differ-
ent input variable, consist of the so-called premise or
condition of the IF-THEN rules. With such a premise
known, the state of the control variable can be finally
determined according to the corresponding IF-THEN
rule. Generally, the fuzzy inference system includes a
set of linguistic [IF-THEN rules, and each single IF-
THEN rule has the following general form

R, : IF (x; is AW, x, is Aﬁz),...,xp is AV
(A7)
THEN y is...,

where R, means the rth rule of the fuzzy inference
system (r=1,2,...,k, where k is the number of
those IF-THEN control rules), x,...,x, are the input
variables, A(,l), ...,A(,p) are the linguistic terms
corresponding to the fuzzy sets mf.l), mﬁ”) which
are used to partition the input domain of each input
variable, respectively, and y is the output control
variable.

As to each IF-THEN rule, firstly the decision logic
determines the degree to which the measured inputs
X1,....X fulfil the premise of the rule. This is called the
degree of applicability and it is denoted by «. For
each rule R,, the corresponding degree of applicability
can be determined according to the t-norm (Zimmer-
mann, 1985; Kruse et al., 1994), i.e.

a, = min{m"(x), m (), ... P (x,). (A8)

Normally, different formulae are used to determine
the degree of applicability a for each IF-THEN
rule. To demonstrate how to determine the degree of
applicability «, a simple example is presented here.
Assume that there are two rivers, River 1 and River
2, contributing to the outlet discharge of a watershed
and that we want to establish the [IF-THEN rules for
flood forecasting at the outlet of the watershed
concerned, according to the discharges of the two
upstream rivers. The discharges in the two rivers,
denoted by 0" and 02, are considered to be the
input variables, and the discharge at the outlet of the
watershed, denoted by Q(O), is the control variable
(output). For simplicity, we partition both Q" and
Q(Z) into two domains, i.e. low flow (LF), and medium
flow (MF). So, altogether, there are four fuzzy sets

involved whose membership functions are defined as

= _ 0 < oW <100,

100°
mig Q") = " (A9)
2 — %, 100 = 0V < 200,
Q(l)
= _ —1, 100 = 0" <200,
mV (o) = 100
(ME) o
3 - 100 200 = 0V < 300,
(A10)
(2)
Q—, 0 < 0% < 400,
m®. (0 = 400
@r o
2 - 200" 400 < 0% < 800,
(A11)
Q(Z)
= _ —1, 400 = 02 <800,
m2. @) =1 40
(MF) o?
3 - 200 800 = 0 < 1600,

(A12)

where mElL)F)(Q(I))and mEll\,}F)(Q(l))represents the fuzzy
sets of the low flow and medium flow on the River 1,
respectively, and mgi)F)(Q(z)) and mglzv)IF)(Q(z)) repre-
sents the fuzzy sets of the low flow and medium
flow on the River 2, respectively.

Assume that there are four IF-THEN rules to deter-
mine the value of Q(O), of the form

R, : IF OV is “low flow”, 0® is “low flow”)

THEN Q0 is..., (A13.1)

R, : IF OV is “low flow”, 0® is “medium flow”)

THEN Q9 is..., (A13.2)

Ry : IF (0" is “medium flow, 0 is “low flow”)

THEN 09 is..., (A13.3)
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R, : IF 0" is “medium flow *,

Q(z) is “medium flow ") (A13.4)

THEN 0 is...

Given that 0"V’ = 110 m® s and 0® =490 m® s !,
then we can calculate that mEBF)(QU) =110)=0.9,
mie Q" = 110) = 0.1, mip (0 = 490) =
0.8775, and m{ye (Q® = 490) = 0.1225, according
to the corresponding membership functions (A9) to
(A12).

According to Eq. (A8), for the [IF-THEN rule R,
the degree of applicability is calculated as

a; = min{m{}, Q" = 110), m{},(Q® = 490))

= min{0.9, 0.8775} = 0.8775. (Al4)

For the other three rules,R,, R;, and R,, we determine
that a, = 0.1225, a3 = 0.1, and a4 = 0.1, respec-
tively. Among these four rules, the rule R, has the
largest degree of applicability, with «; = 0.8775,
which means that the given information of the input
variables has the largest possibility to fulfil the
premises of the rule R;.

The results for this simple example considered
above are considered in Section 3 of this paper, in
an elaboration of this example in the context of the
Takagi—Sugeno fuzzy system.
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