
Ž .Chemical Geology 174 2001 321–331
www.elsevier.comrlocaterchemgeo

Quantitative links between microscopic properties and viscosity
of liquids in the system SiO –Na O2 2

Michael J. Toplis)

CRPG-CNRS, BP20, F-54501 VandoeuÕre-les-Nancy, France`

Received 27 July 1999; received in revised form 1 January 2000; accepted 9 February 2000

Abstract

The Adam–Gibbs theory of structural relaxation is presented in terms of the microscopic parameters controlling viscous
flow; Dm, the energy barrier hindering rearrangement of a single silicate monomer, and z) the number of monomers that
must simultaneously overcome their barrier in order for a change in configuration to occur. Independent viscosity,
calorimetric and spectroscopic data for glasses and melts in the system SiO –Na O are used to show that z) at the glass2 2

transition has a value of approximately 10 for all of the compositions considered and that microscopic energy barriers are on
the order of several tens of kJ per mole of silicon. Furthermore, the variation of configurational entropy of glasses in the
system SiO –Na O has been determined from the viscosity and calorimetric data. It is concluded that a stable melt complex2 2

with a stoichiometry close to Na Si O exists and that medium range order plays an important role in determining the2 3 7

configurational entropies, although the details are unclear. Overall, a self-consistent picture of the quantitative links between
microscopic and macroscopic properties is determined for this simple system, providing an encouraging first step towards a
fully generalisable predictive model for silicate melt viscosity. q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The ability to predict the viscosity of silicate
melts as a function of composition and temperature
is essential for modelling magmatic processes such
as convection in crustal magma chambers or explo-
sive volcanism, as well as determining the viability
of an increasing number of industrial processes in-
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volving silicate melts. The importance of a predictive
model in the Earth sciences was recognised by Bot-

Ž . Ž .tinga and Weill 1972 and Shaw 1972 who pro-
posed empirical equations valid at temperatures well
above the glass transition. Although these equations
have proven to be extremely useful, they predict
Arrhenian behaviour of viscosity as a function of
temperature whereas it has become increasingly clear
that over large temperature ranges viscosity is gener-

Ž .ally non-Arrhenian see Richet and Bottinga, 1995 .
Understanding the microscopic origins of this be-
haviour is an important step towards a predictive
model for shear viscosity of molten silicates that
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requires integrating physical property measurements
and information available from spectroscopic and
calorimetric studies. Although most melts of geologi-
cal interest are chemically complex with at least 10
oxide components, one must initially consider simple
systems in order to understand the underlying struc-
ture–property relations. The system SiO –Na O is2 2

particularly suitable for this purpose as there are
Žnumerous viscosity data e.g. Knoche et al., 1994;

.Poole, 1948; Bockris et al., 1956 , calorimetric data
Ž .Richet et al., 1984 , spectroscopic studies of glasses
Že.g. Brawer and White, 1975; Brandriss and Steb-

.bins, 1988 and in-situ studies at high temperature
Ž .Stebbins et al., 1995; Mysen and Frantz, 1994 , as
well as computer simulations of melt structure and

Ž .dynamics Soules, 1979; Zotov and Keppler, 1998 .
Furthermore, compositions along this join cover the
range of polymerisation state observed in natural
silicate liquids.

2. The Adam–Gibbs relaxation theory

2.1. The link between Õiscosity and configurational
entropy

Ž . ŽThe Adam and Gibbs A–G theory Adam and
Gibbs, 1965; Richet, 1984; Bottinga and Richet,

.1996 relates viscosity to the configurational entropy
of the liquid through the equation:

lnhsA qB rTS 1Ž .e e cŽT .

where h is the viscosity, S is the configurationalcŽT .
entropy of the liquid at absolute temperature T , and
A and B are constants, independent of temperaturee e

Žbut dependent on composition note that the suffix e
is used to denote that calculated values of viscosity

. Ž .are on a ln scale rather than log . Eq. 1 is ofe 10

interest because if the ‘configurational’ contribution
Ž conf .to the liquid heat capacity C can be estimated,p

then the configurational entropy of the liquid can be
Ž .calculated at any temperature using Eq 2 :

C conf
T p

S sS q dT 2Ž .HcŽT . cŽT .g TTg

where S is the configurational entropy of thecŽT .g

melt at the glass transition temperature. In the case
of silicate melts it has been demonstrated by Richet

Ž . confet al. 1986 that C is adequately approximatedp

by C liquidŽT .yCglassŽTg . even though this is demon-p p

strably not the case for certain organic glasses stud-
Ž .ied by Goldstein 1976 . Indeed, it should be noted

that the A–G theory cannot account for the tempera-
Žture dependence of viscosity of all liquids Gold-

.stein, 1969 . However, several convincing lines of
Ž .evidence suggest that Eq. 1 may be successfully
Žapplied to molten silicates see also Richet and Bot-

.tinga, 1995; Bottinga and Richet, 1996 . Firstly,
Ž .viscosity data may be successfully fitted to Eqs. 1

Ž .and 2 , if A , B , and S are treated as ad-e e cŽT .g

justable parameters. This is even the case for compo-
sitions such as titanosilicates that have ‘anomalous’
variations of C conf as a function of temperaturep
Ž .Bouhifd et al., 1999 . Secondly, absolute values of
S calculated from viscosity data are in excellentcŽT .g

agreement with values determined independently
from appropriate calorimetric cycles of isochemical

Ž .crystals, liquids and glasses Bottinga et al., 1995 .
Ž .Furthermore, Eq. 1 predicts that if configurational

Žentropy of a melt is constant i.e. fixed melt struc-
.ture then the temperature dependence of the ‘iso-

structural’ viscosity will be Arrhenian with a gradi-
ent B rS , where T is the fictive temperature ofe cŽT . ff

Žthe melt the temperature at which the isostructural
viscosity line intersects the equilibrium viscosity

.curve, Fig. 1 . This gradient will be different from
that of the equilibrium viscosity curve because the
temperature dependence of configurational entropy
no longer has to be taken into account. For the case
of window glass where ‘isostructural’ viscosities have

Ž .been measured Bottinga and Richet, 1996 , the mea-
sured gradient for melts of known fictive tempera-

Ž .ture is that predicted by Eq. 2 , providing strong
independent support for the validity of the A–G
theory. Although such ‘isostructural’ measurements
are not possible at viscosities lower than 1013 Pa s
because relaxation of the structure to equilibrium is
too rapid, the difference between the hypothetical
isostructural viscosity and the equilibrium viscosity
is therefore a qualitative measure of the
temperature-dependent structural changes in the melt,
as discussed below.
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Ž .Fig. 1. Equilibrium viscosity curve for Na Si O thick solid line and other parameters of interest that may be defined in terms of the2 2 5
Ž . Ž .Adam–Gibbs parameters see text for details . The equation shown for ‘fragility’ uses the definition of Angell 1991 and was derived by

Ž .Toplis et al. 1997 .

2.2. DeriÕation in terms of microscopic properties

Ž .In order to derive Eq. 1, Adam and Gibbs 1965
considered the microscopic parameters controlling
structural relaxation time. They thought of the melt
as composed of ‘subsystems’, which upon sufficient
fluctuation in enthalpy can rearrange into an alterna-
tive configuration independent of their environment.
Structural relaxation is proportional to the probabil-
ity of a subsystem being able to adopt a new config-
uration and is thus a thermally activated process. The

Ž .energy barrier of this process is defined by: 1 Dm,
the energy barrier hindering the rearrangement of a
single element, for example a monomer segment in a

Ž . )polymeric glass, and 2 z , the ‘size’ of the subsys-
tems, defined as the minimum number of monomer
segments that must simultaneously overcome their
individual energy barrier. The resulting expression

Žfor viscosity is Adam and Gibbs, 1965; Bottinga
.and Richet, 1996 :

lnhsA qz)

DmrkT 3Ž .e ŽT .

where h is the viscosity, T is absolute temperature,
A is a constant independent of temperature bute

dependent on composition, and k is Boltzmann’s
constant. In this expression the energy barrier per
monomer segment is considered to be independent of
temperature, whereas the minimum size of subsys-

Ž ) .tems permitting a change in configuration zŽT .
changes as a function of temperature. This derivation
in terms of microscopic parameters whose physical
reality is not proven is one of the weaknesses of the
theory as viscous flow in general may not always
occur through microscopic mechanisms with well-
defined energy barriers. This fact is most likely at
the origin of the failure of the A–G theory to
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account for the temperature dependence of the vis-
Ž .cosity of all classes of liquids Goldstein, 1969 .

However, current understanding of viscous flow in
Ž .silicate melts e.g. Stebbins, 1995 suggests that in

this case well-defined microscopic mechanisms do
exist, thus explaining the general success of the A–G
theory in accounting for the temperature dependence
of melt viscosity for this class of liquid.

If it is accepted that the notions of ‘energy bar-
rier’ and ‘size of subsystems’ have some physical
reality in the case of silicate melts, then the two
equivalent forms of the A–G theory, expressed by

Ž . Ž .Eqs. 1 and 3 , show that at a given temperature the
microscopic and macroscopic parameters are related
by the equation:

B rS sDm z) rk . 4Ž .e cŽT . ŽT .

Because the ratio B rS can be calculated frome cŽT .g

viscosity and calorimetric data as described above,
this information may be used to learn something
about the relative variations of Dm andror z) as a

Ž .function of composition e.g. Toplis, 1998 . It is the
aim of this contribution to extend this idea and
quantify absolute values of Dm or z) for composi-
tions along the join SiO –Na O.2 2

3. Variation of the ratio B rrrrrS in the systeme c(T )g

SIO –Na O2 2

Many viscosity measurements have been per-
formed in the system SiO –Na O, particularly at2 2

temperatures well above the glass transition. In the
present study we have chosen to use only the viscos-

Ž .ity data of Knoche et al. 1994 because the range of
silica content is one of the widest, and viscosity
measurements were performed over very large tem-
perature ranges on exactly the same compositions.
The high temperature values are in good agreement
with data from the literature, and the low tempera-
ture data are in excellent agreement with those of

Ž .Poole 1948 , with the exception of the most sodium
rich composition, for which the older measurements
of viscosity are considerably lower, potentially due
to the highly hygroscopic nature of these composi-

Ž .tions. The viscosity data of Knoche et al. 1994
Ž . Ž .were fitted to Eqs. 1 and 2 , with A , B ande e

S as adjustable parameters, using the calorimetriccŽT .g

Ž . confdata of Richet et al. 1984 for C . The glassp

transition temperature was defined as the 1012 Pa s
viscosity isokom, an assumption supported by calori-
metric measurements performed on silicate melts at

Ž .laboratory cooling rates Richet and Bottinga, 1995 .
The calculated ratio B rS is approximatelye cŽT .g

constant for SiO contents less than 67 mol%, but2

increases markedly with increasing silica content
Ž .Table 1, Fig. 2 . In order to attribute these varia-

) Ž .tions to changes in Dm andror z Eq. 4 , oneŽT .g

must consider how the energy barrier to viscous flow
may be expected to vary along the join SiO –Na O.2 2

Based upon computer simulations and spectro-
scopic evidence it has been proposed that in the

Ž .presence of non-bridging oxygens NBO viscous
flow in silicate melts occurs through the formation of

Žfive coordinated silicon Soules, 1979; Stebbins,
.1991 . For SiO contents F67 mol% each silicate2

tetrahedron has, by stoichiometry, an average of at
least 1 NBO, therefore the energy barrier to viscous
flow may be expected to be constant in this range.
For pure SiO the microscopic mechanism responsi-2

ble for viscous flow is poorly known. It must differ
from that in depolymerised melts because there are
few if any NBO, and its activation energy may be

Table 1
Summary of Adam–Gibbs parameters

a aA B , Jrgfw S , Jrgfw K B rSe e cŽT . e cŽT .g g

bSiO y3.34 230200 5.10 451402
cNa0.15 y5.87 315100 12.22 25775

dNa0.2 y4.29 235650 9.83 23970
cNa0.25 y4.08 172300 7.36 23395

cNa0.3 y4.04 164500 7.12 23105
dNa0.33 y3.99 179525 7.95 22572
cNa0.35 y4.39 183675 8.03 22865

cNa0.4 y5.37 200 250 8.72 22961
cNa0.45 y6.02 195150 8.47 23053

gfwsgram formula weight.
a Note that the suffix e is used to denote that calculated values

Žof viscosity are on a ln scale rather than log conversion factore 10
.2.303 .

b Parameters calculated using the viscosity data of Hethering-
Ž .ton et al. 1964 for temperatures below 1600 K, and the calori-

Ž .metric data of Richet et al. 1982 .
c Parameters calculated using the viscosity data of Knoche et
Ž . Ž .al. 1994 and the model of Richet et al. 1984 for values of

conf Ž . Ž .C . Na x corresponds to xNa O: 1y x SiO molar .p 2 2
d Ž .Data taken from Richet 1984 .
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Fig. 2. Variation of the ratio B rS along the join SiO –Na O, calculated using values shown in Table 1. Error bar represents "1%.e cŽT . 2 2g

expected to be greater. Above 67 mol% SiO an2

increasing proportion of viscous flow events may
occur through this alternative mechanism as pure
SiO is approached and the average height of the2

energy barrier to viscous flow should therefore in-
crease. The fact that B rS shows the same varia-e cŽT .g

tion as that expected for Dm as a function of silica
content would imply that z) shows little or noŽT .g

variation as a function of composition. Data from a
number of other simple silicate systems have also
been used to infer that z) is approximately inde-ŽT .g

Ž .pendent of composition Toplis, 1998 and it was
proposed that z) might be the limiting factor deter-
mining the glass transition at fixed cooling rate.

4. Absolute values of Dm and z)

(T )g

Different methods may be used to estimate abso-
lute values for z) or Dm as described below. ItŽT .g

should be noted that values for z) and Dm are notŽT .g

Ž .independent but are linked through Eq. 4 for a
known value of B rS . Furthermore, it should bee cŽT .g

kept in mind that z) may be independent ofŽT .g

composition.

4.1. A lower limit for z)

(T )g

The fact that the A–G equation can account for
the temperature dependence of silicate melt viscosi-

0 12 Žties in the range 10 –10 Pa s Bottinga et al.,
. )1995 implies that z )1 over this range, a value

less than one having no physical meaning. Rearrang-
Ž . w ) xing Eq. 4 implies that the product S =z iscŽT . ŽT .

independent of temperature. Therefore, comparing
the temperatures of the 1012 and the 100 Pa s

Ž .isokoms T and T , respectively, see Fig. 1 it may12 0

be shown that:

z) rz) sS rS . 5Ž .ŽT . ŽT . cŽT . cŽT .12 0 0 12

For sodium disilicate the viscosity is 100 Pa s at
1926 K. At this temperature the configurational en-
tropy of the liquid is 23.4 Jrmol, compared to 7.95
Jrmol when the viscosity is 1012 Pa s. Using these

Ž . ) )values and Eq. 5 , a ratio z rz of approxi-ŽT . ŽT .12 0

mately 3 is calculated. Assuming that z) has aŽT .0

lower limit of 1 therefore implies that z) has anŽT .12

absolute lower limit of 3, in turn implying an abso-
Ž Ž ..lute upper limit for Dm of 60 kJrmol Eq. 4 . It is
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also of note that z) is not markedly temperature
dependent showing a variation of only a factor of
three from the glass transition to almost 2000 K.

4.2. Using spectroscopically determined enthalpies
of formation

If the intermediate species responsible for viscous
flow can be identified, then spectroscopic techniques
may be used to constrain their enthalpies of forma-
tion. For example, below 67 mol% SiO it may be2

assumed that formation of five coordinated silicon
SiV represents the energy barrier to viscous flow, as
discussed above. Using NMR spectroscopy to deter-
mine the concentration of SiV in glasses quenched at
different rates, and thus of different fictive tempera-

Ž .ture, Stebbins 1991 estimated the enthalpy of for-
mation of five coordinated silicon to be 20"10
kJrmol. Assuming a value for Dm of 20 000 and

Ž .applying Eq. 4 to data for sodium silicates with less
Žthan 67 mol% SiO noting that per mole, Boltz-2

Ž .mann’s constant in Eq. 4 becomes R, the gas
. )constant a value for z of 9.5 is calculated. TheŽT .g

) Ž .lower limit for z is 6 for Dms30 kJrmol andŽT .g

Ž .the upper limit 19 for Dms10 kJrmol .
Another constraint on the magnitude of z) isŽT .g

given by Raman spectra of a series of pure SiO2

glasses of different fictive temperatures which show
Ž . y1 Ža prominent ‘defect’ band D2 at 606 cm Geiss-
.berger and Galeener, 1983 . The structural origin of

this band has been the subject of controversy, but
several lines of evidence suggest that it is due to a

Žbreathing mode of three-membered silicate rings e.g.
.Kubicki and Sykes, 1993 . In turn, the

formationrdestruction of such structures as a func-
tion of temperature may be responsible for viscous
flow. The fictive temperature dependence of the
intensity of the D2 defect band is described by an

Žactivation energy of 38.6 kJrmol Geissberger and
.Galeener, 1983 that if combined with the value of

Ž .B rS for SiO of 45 140 Table 1 gives ae cŽT . 2g

calculated value for z) of 9.5"0.5, in excellentŽT .g

agreement with the estimate for depolymerised com-
positions.

If subsystems consist of approximately 10
‘activated’ tetrahedra, and enthalpy barriers per sili-
con are on the order of several tens of kJ per mole
Žas also suggested by measured enthalpies of Q-

species exchange in alkali silicate melts: Brandriss
.and Stebbins, 1988; Mysen and Frantz, 1994 , Eq.

Ž .3 therefore provides a simple explanation for the
apparent paradox between the low values of enthalpy
proposed for the microscopic changes of melt struc-
ture and the ‘macroscopic’ activation energies of

Ž .viscous flow the tangent to a plot of lnh vs. 1rT
that are typically several hundred kJrmol.

4.3. Using the spread in relaxation time

An entirely independent estimate of z) may beŽT .g

made based upon the consideration of relaxation
time in the glass transition range. If structural relax-
ation is controlled by a single process with fixed
relaxation time, t , then following a perturbation of

Ž .the liquid, the value of property P e.g. volume as a
Ž .function of time, t, should vary according to Eq. 6a

Žas the system returns to equilibrium e.g. Scherer,
.1990 :

P yP r P yP sexp ytrt 6aŽ . Ž . Ž . Ž .t ` 0 `

Ž .where P is the initial value at times0 , P is the0 `

Ž .equilibrium value at infinite time and P is thet

value at time t. However, real data do not generally
Ž .follow Eq. 6a , which is interpreted to suggest that

Žthere exists a range of relaxation times Scherer,
.1990 . One way of describing relaxation data is to fit

them to the Kohlrausch–Williams–Watt stretched
exponential equation:

bP yP r P yP sexp ytrt . 6bŽ . Ž . Ž . Ž .t ` 0 `

The constant b tends towards zero as the range of
relaxation time increases. Within the framework of
A–G theory this spread may be related to the distri-
bution of subsystem ‘sizes’. As the average subsys-
tem size gets larger the range in size may also be
expected to increase, thus z) and b may beŽT .g

Ž .related. Indeed, Hodge 1997 has shown that for a
wide range of glass-forming polymers there exists a
correlation between z) and b that may be de-ŽT .g

scribed by the equation

bs1y0.3 log z) . 7Ž .10 ŽT .g

Values of b derived for silicate systems include 0.75
for SiO and 0.67 for a depolymerised potassium2
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Ž .silicate Richet and Bottinga, 1984 , thus values for
) Ž .z predicted by Eq. 7 are in the range 7 to 13,ŽT .g

consistent with estimates described above.

4.4. Physical size of heterogeneities

Several lines of evidence, such as light and neu-
Žtron scattering experiments Moynihan and
.Schroeder, 1993; Duval et al., 1990 or the tempera-

ture interval of the glass transition as defined from
Ž .heat capacity measurements Donth, 1982 , imply

the existence of heterogeneities in simple glasses.
The existence of such heterogeneities is consistent

Ž .with the postulate of Adam and Gibbs 1965 that
liquids contain discrete subsystems, and their physi-
cal size should therefore be proportional to z) . InŽT .g

cases where the size of such ‘cooperatively rearrang-
ing regions’ has been determined, a surprisingly

Ž .constant linear dimension or ‘correlation length’ of
1–2 nm is obtained for a number of inorganic glasses
Ž .e.g. Moynihan and Schroeder, 1993; Donth, 1982 .
In the case of the silicate ‘crown glass’ considered

Ž .by Donth 1982 the cooperatively rearranging re-
gions were calculated to contain 35 tetrahedra. For

Ž .the case of pure SiO Duval et al., 1990 a sphere of2

diameter 2 nm will contain approximately 90 SiO2

tetrahedra, a similar number to that calculated for
more depolymerised crown glass. These values are
somewhat higher than those of z) inferred above,ŽT .g

but this is to be expected given that scattering is
caused by regions whose average density varies from

Žthe mean. The ‘activated’ tetrahedra e.g. five coor-
.dinated silicon in the case of depolymerised melt

will form the core of a locally dense region, but the
overall extent of the density anomaly may be ex-
pected to be greater. Taking this fact into account, it
may be concluded that the physical sizes of hetero-
geneities determined from scattering experiments are
perfectly consistent with 10 or so activated tetrahe-
dra in silicate glasses. It is also of note that the
analysis presented in Section 4.1 predicts that the

Žvolume of the rearranging regions proportional to
) .z only varies by a factor of 3 over temperatureŽT .

intervals in excess of 1000 K. Therefore, the linear
dimension of such regions only varies by a factor if
1.4, suggesting that it will be very difficult to mea-
sure differences in z) directly using scattering data.

5. Configurational entropies of glasses

Ž .At the present time Eq. 3 cannot be used as the
basis for a predictive model of melt viscosity be-
cause it is impossible to measure the temperature
dependence of z) above T . On the other hand, Eq.g
Ž .1 has the great practical advantage that the temper-
ature dependence of configurational entropy is re-
lated to heat capacity, a macroscopic property that
may be readily measured and for which predictive

Žmodels already exist for simple silicates Richet and
.Bottinga, 1985 . Therefore, if values for S can becŽT .g

predicted as a function of composition, then configu-
rational entropies can be calculated at all tempera-

Ž Ž ..tures Eq. 2 . Furthermore, if values for S arecŽT .g

known, and B rS may be predicted from valuese cŽT .g

of z) and Dm, then the absolute value of B mayŽT . eg

be calculated. Configurational entropy also affects
Ž .the ‘fragility’ see Angell, 1991 of silicate melts

Ž .Fig. 1 , and is an important parameter controlling
phase equilibria, thus relating configurational en-
tropy to melt structure is of considerable practical
importance. However, there is a general lack of data
for S , because of the difficulties and limitationscŽT .g

of obtaining S by purely calorimetric techniquescŽT .g

Ž .Bottinga et al., 1995 . The use of viscosity data and
the A–G theory is a relatively simple alternative
method of estimating configurational entropies of
silicate glasses that may be applied to all composi-
tions and not only those for which a stable mineral

Ž .exists Richet and Bottinga, 1995 .
When expressed in terms of gram formula weight

Ž . Ž .gfw of melt Table 1 , calculated values of ScŽT .g

show a well-defined variation as a function of com-
position along the join SiO –Na O, with a maxi-2 2

mum value between 85 and 100 mol% SiO , and a2
Žlocal minimum between 70 and 75 mol% SiO Fig.2

.3a . The fact that calculated configurational entropies
pass through a maximum in the range 75–100%
SiO is significant because liquid compositions in2

this region are in a field of metastable liquid–liquid
Ž .immiscibility Haller et al., 1974 . This result would

therefore imply that the origin of immiscibility can-
not be attributed to entropic forces, but must be due
to strong non-idealities in the enthalpy of mixing,
possibly due to strong coulombic forces between

Ž .sodium atoms e.g. McGahay and Tomozawa, 1989 .
It is also of note that calculated values of entropy are
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Ž . Ž .Fig. 3. a Configurational entropies per gfw of glasses on the join SiO –Na O calculated using the A–G theory filled circles compared to2 2
Ž . Ž .values calculated using Eq. 8 for mixing of bridging and non-bridging oxygens dashed line noted BOrNBO and mixing of Q-species

Ž . Ž . Ž .data from Mysen, 1990; Mysen and Frantz, 1994 . Error bar represents "8%. b Configurational entropies of glasses as in a , but
Ž .corrected for a contribution from ‘odd lines’ see text for details .

greatest close to SiO rather than for more depoly-2

merised compositions where we may intuitively ex-
pect there to be greater configurational disorder.

However, this feature of Fig. 3a may be, in part, an
artefact of the units chosen to represent entropy. For

Žexample, if considered per mole of silicon tetra-
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.hedra rather than per gfw, then calculated entropies
would be greatest at the lowest silica content.

A first approach to rationalising the variation of
configurational entropy as a function of composition
is to consider that its source is mixing of discrete
structural units. In this case, S may be calculatedc

using the equation:

S sRÝX ln X 8Ž .c i i

where X is the mole fraction of structural unit i andi

R is the gas constant. Suitable candidates for such
Žstructural units are distinct types of oxygen e.g.

.bridging and non-bridging oxygens or distinct tetra-
Ž .hedral sites e.g. Q-species . However, for composi-

Žtions in the system SiO –NaAlSiO Toplis et al.,2 4
.1997 , the variation of S was inferred to be thecŽT .g

Ž .sum of a ‘chemical’ contribution given by Eq. 8 ,
and a ‘topological’ contribution of uncertain origin.
This latter contribution may be most clearly appreci-
ated in the case of pure SiO glass that has a2

measured configurational entropy of 5.1"0.5 Jrmol
Ž . Ž .K Richet et al., 1982 , whereas Eq. 8 will predict a

value of zero for any definition of different oxygen
or tetrahedral sites used. That SiO glass has some2

configurational entropy is not surprising given that it
is more disordered than its crystalline counterparts.
One possible way to view this disorder is in terms of
‘odd lines’, closed lines threading through rings of
bridging bonds containing an odd number of tetrahe-
dra, a configuration not present in ordered crystalline

Ž .phases Rivier, 1979; Rivier and Duffy, 1982 . For a
covalent glass containing one mole of tetrahedrally

Ž .coordinated network forming atoms e.g. Si , and an
average of x bridging bonds per network former,

Ž .Rivier and Duffy 1982 calculated the configura-
tional entropy due to odd lines to be:

S sR 0.5 xy1 ln2. 9Ž . Ž .c odd lines

For the case of pure SiO with no dangling bonds2

xs4, and the calculated configurational entropy is
5.8 Jrmol K, very close to the measured value
Ž .Richet et al., 1982 . The addition of network modi-
fying cations such as Na will reduce the average

Ž .number of bridging bonds per Si, thus Eq. 9 pre-
dicts that the contribution to S from odd lines willc

decrease to 0 when the silica content reaches 50
Ž .mol% xs2 , thus accounting in part for the high

values of configurational entropy near SiO .2

Bearing in mind a potential contribution from
‘odd lines,’ an attempt may be made to rationalise
the compositional dependence of configurational en-

Ž .tropy in terms of Eq. 8 . In the case of SiO –2

NaAlSiO glasses the variation of S was found4 cŽT .g

to be consistent with mixing of aluminate and sili-
cate tetrahedra rather than different oxygen sites
Ž .Toplis et al., 1997 . However, in the present case,
comparison of the configurational entropies derived

Ž .either directly from viscosity measurements Fig. 3a
Žor corrected for a contribution from odd lines Fig.

. Ž . Ž3b with values estimated using Eq. 8 for mixing
.of different oxygens or Q-species does not show

good agreement. In particular, neither of these mix-
ing units reproduces the minimum in configurational
entropy close to 75 mol% SiO . This minimum in2

entropy is significant, as it implies ordering of melts
Žof that stoichiometry i.e. possible formation of a

.stable melt species . Indeed, independent evidence
for a stable melt complex in this composition range
is given by the fact that the silica poor limb of
metastable liquid–liquid immiscibility in the system
Na O–SiO asymptotically approaches the composi-2 2

Ž .tion Na Si O Haller et al., 1974 . The presence of2 3 7

a stable melt species that does not correspond in
stoichiometry to a simple Q-species suggests that
order on length scales greater than a single silicate
tetrahedron may be important. This is consistent with
the results of computer simulations that suggest that
the connectivities of Q-species are not random in

Ž .sodium silicates Zotov and Keppler, 1998 , but
further quantitative interpretation of Fig. 3 is not
possible at the present time.

6. Conclusions

The data presented above suggest that viscosity in
the system SiO –Na O may be understood in terms2 2

of the microscopic view of viscous flow embodied in
the A–G theory. This theory proposes that structural
relaxation time is a function of the energy barrier for
rearrangement of a single silicate monomer, and the
number of monomers that must simultaneously over-
come their barrier in order for a change in configura-
tion to occur. Various independent lines of evidence
suggest that at the glass transition of all composi-
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tions on the join SiO –Na O, the subsystems consist2 2

of approximately 10 ‘activated’ tetrahedra, and that
individual enthalpy barriers are on the order of sev-
eral tens of kJ per mole of silicon. However, further
spectroscopic studies or numerical simulations are
needed to determine the microscopic enthalpy barri-
ers to viscous flow in more complex melts of interest
to the Earth sciences. The compositional variation of
configurational entropy of glasses is not found to be
simply related to mixing of different oxygen or
tetrahedral sites, and it is inferred that medium range
order of glass structure may be important. A recent
study has demonstrated the potential for using NMR
spectroscopy to quantify the medium range order of

Ž .silicate glasses Glock et al., 1998 , and further
studies of this type may ultimately lead to a better
understanding of the quantitative link between glass
structure and configurational entropy.
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