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Abstract

The problem of seepage from a stream into an adjacent uncon®ned aquifer of semi-in®nite extent, underlain by an imperme-

able sloping bed was considered in this study as a problem of one-dimensional unsteady-state groundwater ¯ow. It was assumed

that the water level in the stream gradually rises to a certain height, according to a known exponential function of time, while the

aquifer was assumed to be replenished at a constant rate from ground surface. Applying the Laplace transformation method

derived an analytical solution to an extended and linearized form of the nonhomogeneous Boussinesq equation used to describe

the phreatic surface in sloping aquifers. The comparison of the analytical solution with a numerical solution obtained by

applying the ®nite difference Mac Cormack explicit computational scheme to the nonlinear Boussinesq equation illustrates the

validity of the new analytical solution and the effectiveness of the linearization. Some nondimensional diagrams are also

presented to show the variation of the water table height and the seepage rate as well as their sensitivity to various sets of

parameter values. q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Groundwater ¯ow in an uncon®ned aquifer owing

to seepage from an unlined canal or from a natural

stream has attracted the attention of many investiga-

tors. This is because the volume of the seepage loss

from an unlined canal may be signi®cant and this

waste of water may cause the water table to rise within

the rootzone in the adjacent agricultural land, and as a

result reduce the yield. Additionally, in the case of a

natural stream, the recharge of the aquifer takes place

through the streambed. Any attempt to promote this

recharge must be based on the prediction of the

seepage rate towards the aquifer and possibly of the

rise of the water table, which, as in the previous case,

may affect the yield. Under certain hydrogeological

situations and boundary conditions, which make the

well-known Dupuit±Forchheimer (D±F) assumptions

for horizontal ¯ow valid, the unsteady state

uncon®ned groundwater ¯ow can be considered

approximately one-dimensional, as described by the

nonlinear Boussinesq equation.

Analytical solutions of the Boussinesq equation, as

well as numerical computational schemes, which can

be applied to agricultural land drainage problems and

to modeling the seepage towards uncon®ned

horizontal aquifers, have been presented in the past.

Analytical solutions for the seepage problem have

been derived by many researchers using various

approaches to overcome the nonlinearity of the

Boussinesq equation (Polubarinova-Kochina, 1962;
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Marino, 1973; Rai and Singh, 1979), though some

analytical solutions of the nonlinear Boussinesq

equation exist (Lockington, 1997). Upadhyaya and

Chauhan (1998) obtained a numerical solution of the

nonlinear Boussinesq equation to compare it with

some analytical solutions. They found that for practical

purposes, the analytical solutions, even those of linear-

ized forms of the Boussinesq equation, may be adopted

for predicting water table heights, provided the simpli-

fying assumptions for the linearization are satis®ed.

For ¯ow in sloping uncon®ned aquifers two main

approximations have been used in the past. In the ®rst

approximation the streamlines are assumed to be

horizontal and the hydraulic gradient equal to the

absolute slope of the water table. This means that

the D±F assumptions are applied without any

modi®cation (Polubarinova-Kochina, 1962), leading

to a form of the nonlinear Boussinesq equation, also

referred to as Boussinesq's second approximation

(Chapman, 1980). It is expressed in terms of

horizontal and vertical axes with a term, which

includes the slope of the impermeable base. By

considering the horizontal ¯ow, Polubarinova-

Kochina (1962) presented an analytical solution of

the linearized homogeneous Boussinesq equation for

the seepage towards a sloping uncon®ned aquifer of

semi-in®nite extent. For the same problem, Yussuff et

al. (1994) obtained a numerical ®nite difference solu-

tion to the nonlinear Boussinesq equation using the

unconditionally stable Du Fort-Frankel explicit

computational scheme. For the horizontal ¯ow

towards drains over a sloping impermeable bed,

Shukla et al. (1990) presented a numerical solution

of the nonlinear Boussinesq equation, which was

found to be reasonably valid for up to 30% slope.

Analytical solutions of the linearized homogeneous

and nonhomogeneous Boussinesq equation have

been also reported by Chauhan et al. (1968), Sewa

Ram and Chauhan (1987) and Singh et al. (1991).

According to the second approximation, it is

assumed that the streamlines are nearly parallel to the

sloping impermeable layer. This assumption was

adopted by Childs (1971), who also considered the

hydraulic gradient as a function of the slope of the

groundwater free surface. Experimental measurements

by Jaiswal and Chauhan (1975) veri®ed the validity of

Childs' (1971) approximation. Towner (1975) showed

that Childs' approximation is in much better agreement

with the experimental results than the earlier analysis

based on horizontal ¯ow. Chapman (1980) suggested a

simpli®ed modi®cation to Childs' (1971) analysis to

obtain an equation in terms of horizontal and vertical

axes, which we call as an extended form of the

nonlinear Boussinesq equation.

It should be emphasized that in all previous work

the seepage was assumed to start after an abrupt rise or

decline of the water level in the stream. Therefore in

this paper to advance this work the in¯uence of a

gradually varying ¯ow depth in a stream on the

seepage towards an uncon®ned sloping aquifer of

semi-in®nite extent is studied by adopting the modi-

®cation suggested by Chapman (1980). The in¯uence

of a constant replenishment over a limited distance

from the stream, which is caused by the vertical

downward recharge from irrigation or rainfall, is

also studied. Applying the Laplace transformation
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Fig. 1. Seepage towards a sloping uncon®ned aquifer.



method an analytical solution to a quasi-linear form of

the extended Boussinesq equation was derived. A

numerical solution of the nonlinear Boussinesq equa-

tion was also obtained by applying the explicit and

conditionally stable Mac Cormack ®nite difference

computational scheme. The new analytical solution

was found to be in good agreement with the numerical

solution provided the assumption for the linearization

is satis®ed. The results we present show the effect of

the rate of the water level rising in the stream, the

localized recharge rate and the slope of the aquifer

on the water table height, and the seepage rate.

2. Mathematical formulation of the seepage problem

The seepage or recharge problem over a sloping

impermeable layer is depicted in Fig. 1. The uncon-

®ned sloping aquifer is assumed to be homogeneous,

isotropic and semi-in®nite. The stream penetrates the

aquifer depth fully and the stream banks are nearly

vertical, having the same hydraulic properties as the

aquifer, which are constant. The assumption that the

streamlines are nearly parallel to the sloping bed,

implying an extended D±F assumption, has been the

basis for an extended form of the Boussinesq equation

(Chapman 1980), which is a nonlinear, nonhomoge-

neous partial differential equation, used to describe

the one-dimensional unsteady-state groundwater

¯ow. It is written as
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where h(x, t) is the water table height at a distance x

from the stream and time t, R the rate of recharge, q
the angle of the sloping bed with horizontal, K hydrau-

lic conductivity and S is the speci®c yield of the aqui-

fer, which are considered to be constant.

Eq. (1) is linearized in terms of h2 by introducing a

weighted mean of the water table height, �h (Marino,

1973, 1974; Rai and Singh 1979).

Then Eq. (1) is written as
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In Eq. (2) the only simplifying assumption is that �h is

considered constant. This assumption is valid when the

change in the water table height, h is small compared

with the average height. However, Eq. (2) gives more

accurate results when �h is obtained by successive

approximations (Marino, 1973, 1974). In that case �h is

obtained by �h � �ha 1 ht�=2;where ha is the initial water

table height and ht is the height at time t at the end of

which h is to be approximated. It is also considered that

the water level in the stream gradually rises to a certain

height, according to a known exponential function of

time. Moreover, it is considered that the aquifer receives

a constant vertical downward recharge from an over-

lying strip area along the stream having a ®nite width,

Lo. Therefore the two distinguished regions of the aqui-

fer, shown in Fig. 1, are the region of recharge repre-

sented by zone I, and the rest of the aquifer represented

by zone II. The rate of recharge is assumed to be small

compared with the aquifer hydraulic conductivity and

therefore the vertically added water is almost refracted

in the direction of the slope of the water table.

In the two-zone ¯ow system shown in Fig. 1, we

consider Eq.(2) to govern the groundwater ¯ow in the

zone of recharge where the water table height is repre-

sented by h1(x, t), while the homogeneous form of Eq.

(2) governs the ¯ow in the rest of the aquifer where

the water table height is represented by h2(x, t).
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The corresponding initial and boundary conditions

are:

h2
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where ha is the initial height of the water level in the

stream and, according to the assumption that ¯ow is

parallel to the sloping bed, is also the initial height of
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the phreatic surface that is parallel to the sloping bed,

ho is the maximum water level height in the stream,

and l o is a positive constant that expresses the rate of

the water level rising in the stream.

Using the nondimensional variables
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Eqs. (3) and (4) can be written in the following non-

dimensional forms
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The auxiliary conditions are written as follows:

H1�j; 0� � 0; 0 , j , L; t � 0 �10a�
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3. Analytical solution

Applying the Laplace transformation method to

Eqs. (7), (8) and to the initial and boundary conditions

(10a)±(10e), we obtain the solution of the problem as
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where

V �
L 2 j 1 2

a

d
t

2
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is the unit step function of Heaviside.

The second and third term of the right-hand side of

Eq. (12) include the effect of the gradually rising

water level in the stream, which is expressed by the

parameter l . These two terms are eliminated for l!
1; which indicates an abrupt rise in the water level on

the stream. The three last terms in Eq. (12) include the

effect of the recharge rate, expressed by the parameter

R/K, and they are eliminated in the case where the

aquifer is not recharged �R=K � 0 or L � 0�:
Based on the D±F assumptions and the assumption

that the streamlines are nearly parallel to the sloping

bed, the ¯ow rate per unit width, qo, was obtained by

Chapman (1980) as
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2x
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The nondimensional seepage or recharge rate,

Q�0; t�; at the stream boundary is obtained from

Eqs. (12)±(13b) as
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4. Numerical solution

Due to the absence of experimental data a numer-

ical solution was implemented to compare with the

analytical solution. The Mac Cormack ®nite differ-

ence computational scheme was used for the numer-

ical solution of Eq. (1) (Mac Cormack, 1969). It is a

two-step (predictor±corrector) scheme, explicit, of

second-order accuracy, conditionally stable and

convergent. It can be used for linear as well as for

nonlinear equations. While the analytical and numer-

ical solutions of the linearized equation (2) could be

used to validate each other, the numerical solution of

the nonlinear equation (1) can be used to show the

effectiveness of the applied linearization.

In deriving the ®nite difference scheme for the

nonlinear problem, Eq. (1) is rewritten in the form
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D � S

K cos2 q
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Q � R

K cos2 q
�18c�

and h � h1 or h � h2 and Q � 0:

Forward difference approximations are used to
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replace the partial derivatives of Eq. (17) in the ®rst

step, where predicted values of the unknown function,

h, are to be obtained. At this step the approximate

form of Eq. (17) may be written as follows

hp
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For the second step (corrector) the partial deriva-

tives with respect to x are replaced by backward

difference approximations, while the partial deriva-

tive with respect to t is replaced by a forward differ-

ence approximation.

Then Eq. (17) may be written as
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Finally the corrected value of hk;n11 is obtained as

the arithmetic mean of hp
k;n11 and hpp

k;n11 which is
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Eqs. (19) and (21) constitute the Mac Cormack

computational scheme for the nonlinear Eq. (1),

which by mathematical experimentation was found

to be stable if

A

D
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Dx
# 0:9; �22a�

�hnDt

D�Dx�2 # 0:5 �22b�

and

ADx
�hn

# 1:8 �22c�

where �hn is an average of h along x at time step n.

5. Results

In the absence of experimental data, the analytical

solutions for the water table height given by Eq. (12),

as well as the seepage rate given by Eq. (15), were

compared with the numerical solutions of the

nonlinear extended Boussinesq equation with the

corresponding initial and boundary conditions.

To show the behavior of the analytical solution in

response to the gradually rising water level in the

stream and to a constant replenishment from above,

we consider numerical applications for the various

values of replenishment R and the parameter l that

express the rate of the water level rising in the stream.

It should be noted that the larger the values of l , the

more abrupt is the rise of the water level at the stream.

Fig. 2a and b shows the results for the dimension-

less water table height at j � 5 calculated by the

analytical solution for R=K � 0; �h � �ho 1 ha�=2 and

for slopes 10 �tan q � 0:1� and 30% �tan q � 0:3�;
that correspond to angles of the sloping bed with

horizontal, 5.7 and 16.78, respectively. The results

of the numerical solutions for the same sets of para-

meters are also presented. It is obvious that the results

from the analytical and the numerical solutions are

almost identical. It is also shown that, despite the

different rates of the water level rising in the stream,

the water table height gradually converges to 1. This

means that the water table near the stream tends to be

parallel to the sloping bed, at a height of H1 � 1 or

h1 � ho as it is expected since our solution is based on

the assumption that ¯ow is parallel to the sloping

impermeable layer. As H1 converges to 1 near the

stream the front of the rising water table is moving

downslope.

Fig. 3a and b illustrates the variation of the dimen-

sionless seepage rate from the stream vs. time t ,

calculated by the analytical solution for R=K � 0; �h �
�ho 1 ha�=2 and various values of the parameter l .

The results of the numerical solution of the nonlinear

equation (1) are also presented. The agreement
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Fig. 2. Analytical and numerical solutions for the water table height at j � 5 for: (a) q � 5:78 and (b) q � 16:78:
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Fig. 3. Analytical and numerical solutions for the seepage rate at j � 0 for: (a) q � 5:78 and (b) q � 16:78:
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Fig. 4. Analytical and numerical solutions for the water table height at j � 5 in response to various values of the replenishment rate for: (a)

q � 5:78 and (b) q � 16:78:
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Fig. 5. Analytical and numerical solutions for the seepage rate at j � 0 in response to various values of the replenishment rate for: (a) q � 5:78

and (b) q � 16:78:



between the analytical and numerical solutions is

excellent for both slopes of the impermeable bed.

The seepage rate has an initial value that corresponds

to the initial condition of the problem and gradually

increases with time, converging to the values of

0.197657 (Fig. 3a) and 0.550481 (Fig. 3b), which

correspond to hydraulic gradients that are equal to

the two slopes of the impermeable layer, respectively.

Fig. 4a and b shows the variation of the dimension-

less water table height vs. time t at j � 5 for various

values of the parameter R/K. The replenishment is

assumed to occur from a strip along the stream having

the dimensionless width L � Lo=ho � 30: In this case,

where R=K . 0, a constant value of �h � �ho 1 ha�=2 is

not suf®cient for an accurate calculation of the water

table height by the analytical solution. Instead, �h is

obtained by successive approximations in an iterative

procedure as �h � �ha 1 ht�=2; where ht is the height at

time t at the end of which h is to be approximated. It is

observed that the agreement between the analytical

and numerical solution is better for smaller values

of the ratio R/K. However, for larger values of the

ratio R/K the water table height increases with time

more rapidly, converging to higher values and the

assumption for the linearization is not satis®ed. It is

also observed that the effect of the ratio R/K on the

water table height is more signi®cant in the case of

small slope �q � 5:78� than in the case of the larger

slope �q � 16:78� of the impermeable bed. In any case

the water table height increases with time and ®nally

converges to higher values as the ratio R/K becomes

larger. This is because the phreatic surface near the

stream reaches an equilibrium ¯ow condition as the

water table at a distance larger than L tends to be

parallel to the sloping bed and the water table rising

is moving downslope. This equilibrium ¯ow condition

is reached more rapidly in the case of the larger slope.

Fig. 5a and b shows the variation of the dimension-

less seepage rate vs. time t for various values of the

replenishment rate. In the case of the small slope �q �
5:78� shown in Fig. 5a the seepage rate starts to

decrease with time from its initial value. This decrease

is more signi®cant for larger values of the ratio R/K.

For the larger values of R/K it is observed that an

inverse ¯ow takes place from the aquifer towards

the stream. This is because the water table rising

within the recharging zone, owing to the recharge

rate R, is more rapid than the rising of the water

level in the stream and reaches to higher values.

Finally the seepage rate converges to lower values

as the ratio R/K becomes larger. In Fig. 5b we can

see that, similarly to the case of the water table height

(Fig. 4a and b), the effect of the ratio R/K in the

variation of the seepage rate is more signi®cant for

the small slope �q � 5:78� than for the larger slope

�q � 16:78�:
Nondimensional diagrams such as those presented in

Figs. 2±5, and especially those for the seepage rate, can

also be used for easy calculations in solving practical

problems. However, it is realized that practically such

diagrams can only be made for limited sets of parameter

values. Alternatively, the complicated mathematical

functions included in the analytical solutions can

easily be computed using commercially available

mathematical software, which allows automation of

the calculations for any set of parameter values.

6. Conclusions

In this study a new analytical solution is presented

for the problem of seepage from a stream towards an

adjacent sloping uncon®ned aquifer of semi-in®nite

extent, due to an exponentially rising with time

water level at the stream and to a constant downward

replenishment from a ®nite strip along the stream. For

R=K � 0 an excellent agreement was found between

the analytical solution of an extended and linearized

form of the nonhomogeneous Boussinesq equation

and the numerical solution of the nonlinear form of

the extended Boussinesq equation for both the water

table height near the stream and the seepage rate. For

R=K . 0 the agreement between the analytical and the

numerical solution was found to be still satisfactory

when the water table rising was small compared with

the average height and therefore the assumption for

the linearization was satis®ed. The variation of the

water table height and of the seepage rate vs. time is

illustrated in nondimensional diagrams. From these

diagrams the effect of the parameter l and the ratio

R/K on the water table height and on the seepage rate

can be observed. Nondimensional diagrams, or even

better, mathematical software can be used to solve

practical problems such as the calculation of the

recharge of the aquifer or the seepage loss from an

unlined canal.
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