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Abstract

In this paper, we present a class of solvers developed for the parallel solution of Richards’ equation, a model used in variably
saturated flow simulations. These solvers take advantage of the fast, robust convergence of globalized Newton methods as well as
the parallel scalability of multigrid preconditioners. We compare two multigrid methods. The methods differ primarily in their
handling of discontinuous and anisotropic permeability fields, with one method invoking a simple pointwise smoothing technique
and the other a more expensive plane smoother. Computational results are presented to show the effectiveness of the entire nonlinear
solution procedure, to demonstrate the effect of discontinuities and anisotropies, and to explore parallel efficiencies. © 2001

Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years we have observed an increase in at-
tention to modeling the flow of water through variably
saturated porous media. This increase arises from
heightened interest in managing limited water resources,
in finding appropriate sites for waste facilities and in
evaluating the impact of current sites on local ground-
water systems. One way to gain an understanding of the
groundwater systems at these sites is through computer
simulations of subsurface flow. However, understanding
water movement in these sites usually requires full re-
gional models. These models are challenging to solve
numerically, as they have extremely large numbers of
spatial zones (usually in the millions), and they exhibit
nonlinearities and large variations in equation coef-
ficients.

The nonlinearities generally necessitate some sort of
iteration for solution of the discrete equations at each
time-step. These iterations require the solution of large,
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nonsymmetric linear systems. In addition, the variation
in equation coefficients makes these linear systems dif-
ficult for many traditional methods to solve. Typically,
the large variation in coefficients is due to the use of a
geostatistical model for permeability, allowing many
orders of magnitude change in the permeability from
one cell to the next (heterogeneity) as well as correla-
tions of values in each direction (statistical anisotropy).
High heterogeneity and anisotropy in the problem co-
efficients make the problem difficult to solve numeri-
cally.

In addition, the timely solution of high-resolution
discretizations of these region-scale problems requires
scalable algorithms. An algorithm is scalable if the
computational complexity is in the order of the number
of unknowns, O(N), and not some power of this num-
ber. For example, Gaussian elimination requires O(N?)
operations, so doubling the number of unknowns mul-
tiplies the computational work by eight. This algorithm
is not scalable because the computational work increases
exponentially with problem size. Some multigrid meth-
ods, however, have computational complexities of
O(N). So, doubling the number of unknowns only
doubles the computational work. If this algorithm is
implemented well on a parallel computer, we might ex-
pect that doubling the number of unknowns and the
number of processors leaves us with a fairly constant
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computation time. Thus, we pursue scalable algorithms
with the goal of effectively using parallel computation to
solve large-scale variably saturated flow problems.

Many authors have considered solution methods for
models of variably saturated flow [8,15,18,25,19,21,28].
In particular, Celia, Bouloutas and Zarba developed the
modified Picard method which solves the nonlinearities
in the problem while maintaining global conservation of
mass using a finite element method [8]. However, this
method does not exhibit local mass conservation. Tocci,
Kelly and Miller proposed solution of the Richards’
equation model using the method of lines approach for
time discretization, finite-differences for the spatial dis-
cretization and Newton’s method for solving the non-
linearities at each time-step [25]. They, together with
Williams, addressed some subtleties of using the New-
ton’s method approach with interpolated approxima-
tions to saturation and relative permeabilities in [19].
They did not, however, address the issues of highly re-
solved, large-scale domains. Ross and Bristow [21]
considered using the Kirchhoff transformation in order
to better approximate the solution in cases where the
absolute permeability is a discontinuous function of
space. In [28] Williams, Miller and Kelley extended this
work to a family of transformation methods.

With either a finite-difference or finite element dis-
cretization method, a discrete system of coupled, non-
linear equations must be solved at each time-step. The
solvers to be used must handle highly heterogeneous and
anisotropic media, as well as problems with large
number of unknowns. In this paper, we describe a
family of solution methods for the discrete equations
arising at each time-step in variably saturated flow
problems. These solvers use Newton’s method for the
solution of the implicit, nonlinear equations and a
Krylov iterative solver to solve the Jacobian systems.
The iterative, linear solver is preconditioned with a
semicoarsening multigrid algorithm. By combining the
nonlinear Newton iteration with a multigrid precon-
ditioner, we hope to take advantage of the fast, robust
nonlinear convergence of Newton’s method and the
scalability of the linear multigrid method.

Multigrid methods have been shown to be effective
solvers for the discrete equations arising from discret-
ized elliptic partial differential equations. Multigrid
solvers are iterative solvers, and their chief advantage is
that they are algorithmically scalable, i.e., the conver-
gence rate is independent of the size of the discretized
system. In groundwater applications, the multigrid sol-
ver must be able to deal with jumps in the permeability
coefficient and anisotropies induced either by the prob-
lem’s coeflicients or by the grid. Early work by Dendy
and colleagues [1,9] showed effective multigrid solvers
for such problems required modifying the interpolation
to respect jumps in the diffusion coefficient. This work
also demonstrated the ability of alternating line relax-

ation to deal with fairly general anisotropies. Later work
[11] showed the effectiveness of multigrid based on
semicoarsening and line relaxation. This work also
showed multigrid to be competitive with ILU solvers on
small 3D reservoir simulation problems.

In this paper, we compare the effectiveness of two
multigrid methods (ParFlow multigrid solver (PFMQG)
[2] and semicoarsening solver (SMG) [23]) used as
preconditioners within a Newton—Krylov solver for
Richards’ equation. For large saturated groundwater
problems, the PFMG was shown to be several orders of
magnitude faster than the diagonally scaled conjugate
gradient solver [2]. In the context of radiation diffusion,
the SMG solver was shown to be significantly faster
than the diagonally scaled conjugate gradient solver
and generally faster than incomplete factorization
methods, particularly for large problems [3]. As we are
interested in large-scale simulations on parallel com-
puters, the algorithmic scalability of multigrid methods
and the existence of efficient parallel implementations
[2,6] makes them an attractive alternative to more
standard solvers. The focus of this paper is on how the
performance of these two multigrid methods depends
on the statistical characteristics of the permeability
field.

The rest of this paper is organized as follows. In
Section 2, we present the formulation of Richards’
equation that we use and the discretization method we
employ. In Section 3, we overview the nonlinear Newton
and linear Krylov iterative methods used for the solu-
tion of the implicit system at each time-step. Section 4
discusses the preconditioners we invoke to accelerate the
Krylov method. These preconditioners include two
semicoarsening multigrid schemes. We present numeri-
cal results with these two preconditioners in Section 5.
Lastly, Section 6 gives some conclusions.

2. Problem formulation and discretization

We consider the mixed form of Richards’ equation
[20] as our model for variably saturated flow,

A(s(p)pd) k(x)k:(p)p
o _v< Il (

Vp — ngZ)) =q, (1)

where s(p) is the water saturation at pressure p, p the
water density, ¢ the porosity of the medium, k(x) the
absolute permeability of the medium, k. (p) the relative
permeability of water to air, u the water viscosity, g the
gravity, ¢ represents any water source terms and z is the
elevation. The equation is completed by adding
boundary conditions and an initial condition as follows,
k(x)k.(p)p

p=pp on I'”, _<7M (Vp—ngz))n:gN

on I'™ (2)
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and
p=p" fort=0, 3)

where I'® and I'N comprise the boundary of the problem
domain, and n is an outward, unit, normal vector to I'™.

Note here that we use a scalar absolute permeability
model. Since we are interested in highly resolved models,
we are assuming that the permeability can be specified
on a fine scale. In addition, we use a geostatistical model
for the absolute permeability. This model allows speci-
fication of correlation lengths in each coordinate direc-
tion. As a result, we do not specify permeability as a
vector or tensor field. In discussions throughout the
paper, we refer to anisotropy in the problem. By this
term, we mean statistical anisotropy introduced by the
correlation lengths, and also physical anisotropy intro-
duced by having significant variation in permeability
value in a given direction, independent of other direc-
tions and not necessarily grid-aligned.

Discretization is done for time with an implicit
backward Euler differencing scheme. Our solvers are
valid for higher order time-stepping methods, but to
keep this exposition simpler, we present the discrete
systems arising from a first-order in time method. For
spatial discretization, we use a tensor product grid with
N, N, and N, cells in the x, y and z directions, re-
spectively. We then apply cell-centered finite-differences
over this mesh. We use harmonic averaging for interface
values of the absolute permeability and one-point up-
stream weighting for interface values of relative perme-
ability. These discretization methods result in a coupled
system of nonlinear equations that must be solved at
each time-step, where the equation at each cell is given
by,

Figs(p") = Az, o (o)) = 5()14)
— AtnAxlijAqulnlk — At"AxlijAZk

v Uiil/z,/:k - Uixfl/lj,k n U1:3'+1/2‘k - (]z'J,}j—]/Z,k
U?. - U?.
i,jk+1/2 ijk—1/2
=0 4
o ) NG
where

T (k(x)kr(p”)p) Plirje — Pijx (5)

PR u i+1/2,j,k7 Axi+1/2

is the i + 1/2,,k interface value of the flux x-compo-
nent. Other components are defined similarly.

We apply this spatial discretization method because it
is locally conservative, and, in the linear case, is equiv-
alent to the lowest order mixed finite element method
with certain quadrature [27]. Thus, this method can be
shown to be second-order in space if harmonic averag-
ing is used for k(x) and k. (p). Discretization errors for

Richards’ equation with a similar method have been
analyzed entensively in [29]. We use one-point upstream
weighting for £, (p) to best capture fronts in the solution
as indicated in [14].

It should be noted that as long as we solve the dis-
crete nonlinear system to a tolerance below the error in
the discretization method, we will not change the accu-
racy of the solution. In the numerical studies that fol-
low, we choose a small enough tolerance that the
solution error is dominated by discretization error and is
thus unaffected by the choice of nonlinear solver.

3. Newton—Krylov methods

We employ a Newton—Krylov method to solve the
nonlinear discrete problem at each time-step. This sys-
tem requires the solution, p* of F(p) =0, where the
i, j, kth element of the vector F evaluated at p” is given as
in (4).

Newton-Krylov methods were first used in the con-
text of solving partial differential equations by Brown
and Saad [7]. In this method, the coupled nonlinear
system resulting from discretizing a partial differential
equation is solved by first applying a Newton linear-
ization, then using an iterative Krylov method to solve
the resulting Jacobian systems for each Newton itera-
tion. One big advantage to these methods is that the
Krylov linear solver requires only matrix-vector prod-
ucts, which, since the system matrix is the Jacobian of
the nonlinear function, can be approximated by taking
differences of the nonlinear function,

J(pk)lj ~ F(pk + 61)) — F(pk> , (6)

€

where pF is the current iterate at the kth Newton step.
The value of € is computed via the formula given in [7],

e = sign(p*v)Vuround max{|p*v|, ||v||,}/v"0, (7)

where uround is the machine unit round-off function.

Thus, only the implementation of the nonlinear
function is necessary, and matrix entries need never be
formed. A standard Newton method is locally quadratic
in convergence so that once the iterate, p¥, is close en-
ough to the solution we have [12],

I = prl < clpt - P (8)

Applying the finite-difference method in (6) gives rise to
a method that is quadratic as long as e is chosen small
enough [5].

An inexact Newton method results from a Newton
method where the linear systems are only approximately
solved at each step. We use a method proposed by Ei-
senstat and Walker to determine the linear system tol-
erances [13]. In particular, at the kth step, we iterate on
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the linear system, J(pf)s* = —F(p*), until the relative
residual is less than #* where

" =max{ii*,y(" ')’} and i = y(%) '
)

Here, F(pf) and F(p'~!) are the function evaluated at
the current and previous nonlinear solution iterates,
respectively, and 7 is 0.9. Our choice of #* reflects the
amount of decrease between the function evaluated at
the current nonlinear solution iterate and the function at
the previous iterate. Since the error in Newton’s method
decreases quickly once we are close to the solution, the
residual decreases rapidly close to the solution. Thus,
close to the solution, the tolerance is low, requiring
precise approximate solves of the Jacobian system.
Further away, the tolerance is high, preventing “over-
solves” of the linear system when a highly precise ap-
proximation to the Jacobian system solution will not
provide much more value than a coarse approximation
to the nonlinear system solution. Under suitable as-
sumptions, the local convergence of this method can be
shown to be g-quadratic [13].

To enhance the robustness of the Newton method, we
added the line-search backtracking procedure detailed
by Brown and Saad [7]. This procedure allows adjust-
ment of the Newton step to guarantee progress towards
the solution of the nonlinear problem at each iteration.
The step taken obeys the Goldstein—Armijo conditions
[12] ensuring that we have sufficient decrease in the
nonlinear function relative to the step length, that we
obey a minimum step length relative to the rate of de-
crease at the current iterate, and that we take the full
Newton step close to the solution. In [19], it is pointed
out that for certain regimes, the van Genuchten curves
have derivatives that are not Lipschitz continuous.
Under these conditions, standard Newton methods can
fail. The authors of [19] point out that using integrated
interface permeabilities with Hermite splines can allow
convergence in these regimes while maintaining ef-
ficiency. Transformation methods applied to Richards’
equation can also contribute to robustness for these
situations [28]. In preliminary experiments, we have
found that line-search may also allow convergence in
some of these difficult regimes, and this is the technique
we have used in this work.

Furthermore, the line-search procedure allows con-
vergence of the method even when the initial guess is not
local to the solution. The method, in a sense, can bring
the iterates into the radius of convergence for the
Newton method. In the case of Richards’ equation, we
take the approximate solution from the previous time-
step as the initial guess for the nonlinear solution at the
new time-step. When the time-step is large, this initial
guess may not be close to the solution for the new time.

However, line-searches allow larger steps than may be
possible with a local method.

As water resource problems can be very large, we
apply a preconditioned iterative process for the Jacobian
system solution. Furthermore, the Jacobian of a non-
linear elliptic operator is nonsymmetric, so we use the
Krylov method GMRES [22]. This method was devel-
oped for nonsymmetric linear systems and has the ad-
vantages that in exact arithmetic, the linear system
residual is a nonincreasing function of iteration, and
convergence is guaranteed after n iterations for a linear
system of size n X n.

This method builds up a Krylov basis with the matrix
and initial residual, adding one vector to this basis with
each iteration. These basis vectors are then needed in
future iterations to generate new iterates. As a result of
building this basis, the memory requirements for the
method increase with the number of iterations. One way
to reduce these requirements is to use the restarted
version of the method, which builds the Krylov basis up
to m vectors, then restarts the method using the mth
iterate as the initial guess. By restarting, the memory
requirements for GMRES are reduced significantly as
only m Krylov basis vectors need to be saved at any
time. The disadvantage of the restarted method is that
convergence is no longer guaranteed.

Although with GMRES, the linear residual decreases
with each iteration, the decrease can be quite small. To
make more progress in reducing the residual at each
iteration, the linear system can be preconditioned. This
amounts to solving the system, M~'Js=M'(-F),
where M is an approximation to the Jacobian, and
systems like Mr = b are easy to solve. In this case, pre-
conditioned GMRES iterations make more progress at
each step and thus will require fewer overall steps.

4. Preconditioners

In this work, we precondition the linear system with a
symmetric approximation to the Jacobian. We solve the
preconditioner systems, Mr = b, by applying one V-cycle
of a multigrid method.

4.1. Preconditioning with a symmetric approximate
Jacobian

To see how we form a symmetric approximation to
the Jacobian we consider two structurally symmetric
Jacobian matrix entries. For simplicity, we consider one-
dimension, a homogeneous medium and no gravity. The
component of the nonlinear function at the kth Newton
iteration for time-step n corresponding to the ith cell,
E”‘k , depends on the interface velocities v; ;1> and v;_ys,
each of which depends on the relative permeability
evaluated at its respective interface. These relative per-



J.E. Jones, C.S. Woodward | Advances in Water Resources 24 (2001) 763-774 767

meabilities are upstream weighted functions of pressure.
Taking derivatives, we see that

aEn,k akr(pn,k)i 2 ; )
:C< n,k+/ (piﬁk_piwlkl)_kl’(p,k)i-{-l/z

ap:’-;—kl opii
(10)
and
aEn’k akr(pﬂﬁk)f-#l/z n.k n.k 7
ap;k] = C( - T;qk (pi’ _pi+1) —k(p "k)i+1/2 ]
(11)

where C is a constant depending on the mesh spacings
and physical constants of the problem. Thus, the Jaco-
bian is nonsymmetric because of the sign on the relative
permeability derivative and also because the relative
permeability derivative is taken with respect to a dif-
ferent pressure in each of the above equations. In this
work, we form an approximation by simply dropping
the first right-hand side terms in (10) and (11). This
approximation degrades as an approximation to the true
Jacobian in areas where the relative permeability chan-
ges rapidly with pressure. For our current purposes, this
approximation provides an effective preconditioner.
Other approximations are possible. See [17] for further
discussion.

4.2. Multigrid preconditioners

Multigrid methods can be very efficient solvers for the
linear systems arising from discretized elliptic partial
differential equations. Multigrid’s chief advantage is that
it is a scalable algorithm: when properly designed, the
solver’s convergence rate is independent of the size of
the discretized system [4]. Standard multigrid methods
combine simple relaxation (which quickly reduces high-
frequency error components) with error correction from
a coarser grid (which can accurately represent low-
frequency error components). For our problem, the
multigrid solver must be able to efficiently deal with
anisotropies and widely variable coefficients. In the nu-
merical results that follow, we compare the performance
of two multigrid algorithms within the context of our
nonlinear solution procedure: the PFMG developed by
Ashby and Falgout [2], and the SMG developed by
Schaffer [23] (see also [10] and [24]).

Let AU = F be the given linear system to solve. The
unknown U and right-hand side F are vectors defined on
a logically rectangular grid. We will use an / superscript
to denote quantities defined on the given grid. The
matrix A4 is symmetric, positive definite, and connections
have the standard “nearest-neighbor” 7-point stencil
form. As the grid is logically rectangular, there is a
unique index (i, j, k) for each point on the grid. One can

produce a grid that is coarser in, say, the z-direction, by
considering only the points {(i,/, k), k odd}. We will
use a 2/ superscript to denote quantities defined on the
coarse grid. This procedure is called semicoarsening (as
opposed to full or standard coarsening) as the coarse
grid is only coarser in one of the dimensions. Coarsen-
ing only in the direction of strong coupling (as opposed
to all directions) results in a multigrid algorithm that
is effective for anisotropic problems. The multiple
grids are used in a multigrid V-cycle as outlined below
[4].
V (v, vs)-cycle

(1) Pre-relaxation on A"U" = F". Perform v, sweeps

of relaxation.

(2) Set F* = [2"(F" — 4"U™).

(3) “Solve” A*"U* = F? by recursion.

(4) Correct U «— U" + 1}, U

(5) Post-relaxation on A"U" = F*". Perform v,

sweeps of relaxation.
A multigrid method is determined by several compo-
nents: the relaxation method (typically a simple iterative
method like Gauss—Seidel), the interpolation operator
I, used to transfer vectors from coarse to fine grids, the
restriction operator /%, used to transfer vectors from
fine to coarse grids (in the methods we consider, re-
striction is the transpose of interpolation), and the
coarse operator 4", Note the equation to be solved in
step 3 above typically has the same form as the original
grid /& problem. It is solved by applying the same al-
gorithm using a still coarser grid 44. Eventually, a
coarse enough grid is reached and the problem can be
solved directly.

In the PFMG algorithm, pointwise red/black Gauss—
Seidel relaxation is used. To achieve robustness for grid-
induced anisotropies, the grid is coarsened in the direc-
tion with the smallest grid spacing and thus the tightest
coupling. The interpolation is based pointwise on the
operator as in Dendy’s Black Box multigrid [9]. Assume
semicoarsening in the z-direction, and consider a point
(i,j,k) not on the coarse grid. Let

Agijk + Attt jx + At ik + Qi -1k

+ Atk Qe+ At = fii (12)
be the equation at the point. The superscripts ¢, w, e,
s, n, 1, and u stand for central, west, east, south, north,
lower, and upper, respectively. We split the operator
A" into an operator T in the coarsened direction (z)

and an operator B in the other two directions as fol-
lows,

A'v = T"u + Bu, (13)

h,, __ c W e S n
Iu = (aijk +a tag +ay + aijk) Uijk

1 u
t @t je1 + Qi g (14)
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h, W e S n W
B'u= — (azj/‘k tay +ag+ a,-jk) Uijj + Qi jik
€ S n
+ @it gk @1k T+ Al - (15)

The interpolation weights are given by a 1D operator-
based interpolation using 7, the operator in the coars-
ened direction. In particular, the point (i, j, k) interpo-
lates from the coarse grid points directly above and
below it (indices (i,j,k+ 1) and (i, j,k — 1) on the fine
grid) with weights,

W;‘k = _“;'k/@?jk + a;;k + afik + a?jk + af—}-k%
(16)

_ 1 c W e S n
Wik = _aijk/(aijk +a + gt + aijk)?

respectively. For fine grid points also on the coarse
grid, interpolation is the identity; the interpolated fine
grid value is equal to the coarse grid value. Unlike
linear interpolation, the interpolation weights given in
(16) are affected by variations in the operator 4" and
result in a method that is robust for widely variable
coefficients.

The coarse grid operator in the coarsened direction is
formed by the Galerkin conditions 7% = ["T"[}, . In the
other two directions, a weighted sum of coefficients is
used. In particular, consider a fine point (i, j, k) also on
the coarse grid. The south coefficient in the coarse grid
operator B* is given by

2hs __ _hs 1 hs h,s
i =5 T B (ai,j.,k+1 + ai,j,k—l)' (17)

Similar averages define the other off-diagonal elements
of B%. As on the fine grid, the diagonal element of B is
defined as minus the sum of the off-diagonals. The
coarse grid operator is then defined by 4% = T + B
resulting in a 7-point stencil for 4.

In the SMG algorithm, plane-wise red/black Gauss—
Seidel relaxation is used. The values of the current
approximation on the odd planes are updated simul-
taneously to satisfy the equations on these planes.
This is followed by a similar update on the even
planes. These plane solves are approximated by one
2D multigrid V-cycle. This relaxation provides ro-
bustness for anisotropic problems where the strong
coupling is within the planes. Semicoarsening provides
robustness for strong coupling orthogonal to the
planes.

An important, unique feature of the SMG algorithm
is the definition of the interpolation operator 75,. The
definition is motivated by the relationship between error
on odd and even planes after an even plane relaxation
sweep. To briefly motivate the approach, consider
solving the tridiagonal system Au = b.

a ap uy
a) dyp a3 U
Appn—1  Anpp uy
S
g
=1 . (18)
Ja

After relaxing the even numbered equations, the ap-
proximate solution u satisfies equations

k=2,4,6,...
(19)

Since the exact solution # satisfies the same equations,
the error e = u# — u satisfies the equations

k=2,4,6,...

Ap -1 Up—1 + Al + g g1t = Jis

Qrj—1€k—1 + A per + appr1€+1 = 0,
(20)

From this we can write the error at even points in terms
of the error at odd points

Cril, k:2,4,6,... (21)
Ay

We can use this relation to eliminate the even numbered
variables and solve the error equation Ae = f — Au only
for errors at odd points. Applying this method recur-
sively yields a cyclic reduction solver for the tridiagonal
system (18). The SMG interpolation is based on a gen-
eralization of this approach to block-tridiagonal sys-
tems.

Our discrete Jacobian system has a block-tridiagonal
structure; grouping unknowns by z-planes, the structure
is like (18) except u; now represents all unknowns in the
Kth plane. To be precise, let

Agk-1Ug-1 + Ax kU + Ag g +1Ug 1 = Fx (22)

be the discrete equations for the Kth plane. Here Uy is a
vector composed of all unknowns with z index equal to
K ie., U¢= Uk, i=1,...,n,, j=1,...,n,), where
n, and n, are the grid sizes in the x and y directions. U,
is defined similarly. The matrix A5 x contains couplings
within the Kth plane; the matrix Ax x| couples the Kth
plane to the K — 1th plane; and Ak k. is defined simi-
larly. After relaxing the even planes, the error on even
planes can be written in terms of the error at odd planes
in a way completely analogous to (21)

EK - _A;(}](AK,K—IEK—I _A];}KAK,KJrlEKJrla K= 2a47 67 ..
(23)

Using the odd planes as the coarse grid and the above
relation to define an interpolation operator 75, makes the
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multigrid V-cycle a direct method. However, this is not a
practical approach in that using (23) leads to nonsparse
interpolation operators. In the SMG algorithm, sparse
approximations to these ideal interpolation operators
are used. The matrices —A4 ,}}KAK‘K,I and —4 E}KAK7K+1 are
approximated by diagonal matrices with the same action
on constant vectors. The computation of these inter-
polation operators involves a plane solve for each even
grid plane, which we approximate with one 2D multigrid
V-cycle. The coarse grid versions of A4 are defined by the
Galerkin condition, i.e., 4% = I?"4"I” . This results in a
slight growth in the size of the coarse grid stencils. The
fine grid stencil is 7-point and all coarser grid stencils are
15-point.

The PFMG method is cheaper per iteration than the
SMG method in both floating point operations and
storage. As we will see in the numerical results section,
when both methods work well, PFMG is faster. SMG is
generally more robust, however. In particular it can deal
with anisotropies that vary in direction throughout the
grid. This robustness is due to the use of semicoarsening
and plane relaxation. SMG, because it faithfully follows
the Galerkin condition, is provably convergent for
symmetric positive definite matrices. Also, the fill-in in
the coarse grid stencil allows SMG to more accurately
represent anisotropies that are not grid-aligned on
coarser grids.

5. Numerical results

We conducted a number of numerical tests to study
how these two multigrid preconditioners performed for
problems with varying amounts of heterogeneity and
anisotropy in the permeability field. Often, geostatistical
models are used to describe the subsurface permeability.
We use the turning bands algorithm [26] with the ex-
ponential covariance model. The algorithm implemen-
tation allows specification of the mean value, standard
deviation (S.D.) and directional correlation lengths. The
S.D. describes how much variation, or heterogeneity,
exists between uncorrelated cells. The difference in cor-
relation lengths describes the amount of variation, or
statistical anisotropy, there is from one direction to the
next. Note that, as mentioned earlier, problems can also
exhibit physical anisotropy that contributes to prefer-
ential flow through the domain and is modeled by either
a tensoral permeability or layers not aligned with the
grid. Many problems of interest are exhibiting hetero-
geneity and physical as well as statistical anisotropy.

We have compared the performance of the two
multigrid methods described above in the context of a
test case based loosely on the Lawrence Livermore
National Laboratory (LLNL) site. The problem domain
was 300 m x 1000 m x 120 m. The mean permeability
was 1 m/day with correlation lengths of 50 m in x, 100 m

in y and 5 m in z. Permeability values were cut-off below
10 and above 102. Porosity was 30%. Initial conditions
were taken in hydrostatic equilibrium with the pressure
head at the domain bottom set to 90 m. No flow
boundary conditions were imposed on the left, right and
bottom of the domain, with 0.1 ft/year inflow flux on the
top. Dirichlet conditions were imposed on the front and
back of the domain in such a way as to impose a 20 m
pressure head gradient from front to back. In all cases,
relative permeability and saturation curves were evalu-
ated with van Genuchten formulas [16]. Exact formulas
were used with no curve-fitting. The parameters o and n
were set to 0.1/m and 2, respectively. The residual sat-
uration was 20% and the domain was considered satu-
rated at 99%. We used an initial time-step of 0.1 day and
doubled the time-step size after every successful time-
step. We ran to a final time of 25 days. If a time-step
failed, we cut the step size by 1/2 and recomputed the
step, growing the step size again if the recomputation
was successful.

Stopping criteria for the nonlinear solver was as fol-
lows. The solver stopped if the nonlinear residual, ||F||,
from (4) was less than 107°. We choose this value to
assure that the iteration error would be smaller than the
discretization error, and thus, solutions with different
solvers would be the same.

The first experiment showed the effect of changing the
S.D. while maintaining the rest of the problem par-
ameters. Table 1 shows the results of changing the
variance (or square of the S.D.) from 0 to 25 for this
problem. We have included this large span of variances
to account for the need of modelers to study effects of
uncertainties in their models. The higher variances are
not expected to occur often in practice, but a useful code
should have a robust solver at least as an option so that
modelers can run with these extreme values if they need
to understand some effect.

We see that as the variance increases, the number of
nonlinear and linear iterations required to solve to the
final time of 25 days increases. After a variance of 10,
PFMG fails to solve three consecutively decreased time-
steps, and SMG starts to show significant increases in
iteration counts. However, SMG is robust enough to
withstand the extreme heterogeneity posed by these
problems and allow the nonlinear solver to make pro-
gress. Compute times show that PFMG gives rise to a
faster solution when it is successful, but the range of
heterogeneity in which it is successful is quite small.

In this data, we see that changing the preconditioner
leads to changes in the nonlinear solver iteration counts.
These changes are due to one of two reasons. The first
reason is that an inferior preconditioner may fail to
solve the linear problem to the specified tolerance. In
that case, we may have a very poor Newton update and
thus the nonlinear iteration may take longer to con-
verge. The other possibility for the differing numbers of
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Table 1

Total nonlinear (NL) and linear iteration counts for solving the variably saturated flow test case with 40 x 40 x 55 = 88,000 unknowns to 25 days

with increasing variances

Preconditioner Variance NL iterations Linear iterations Compute time (s)
PFMG 0 41 148 946
SMG 0 39 137 1085
PFMG 5 68 232 1509
SMG 5 61 215 1672
PFMG 10 121 434 2848
SMG 10 83 291 2260
SMG 15 74 337 2384
SMG 20 88 406 2888
SMG 25 110 531 3729

nonlinear iterations is that if the linear system tolerance
is on the borderline of what is required to get the most
effective Newton update, a superior preconditioner may
solve the linear system more precisely in the final itera-
tion than an inferior preconditioner would allow. With
both preconditioners, the linear system will be solved to
the required tolerance, but one will lead to a better
Newton update than the other. Once this happens for a
single linear solve, the two solves will be on differing
paths to the solution. Note that the solutions will agree
to as many digits as are requested in the nonlinear sys-
tem tolerance for both solves.

The next test was to ascertain solver robustness for
varying correlation lengths. Table 2 shows results from
running the test case to five days with a factor of eight
increase in correlation lengths and a variance of 10. See
Fig. 1 for plots of the permeability fields. As the per-
meability data becomes more correlated, we see that the
problem becomes easier to solve. Thus, with a variance
for which PFMG struggles for short correlation lengths,
we can see PFMG succeed for the longer correlation
lengths. In summary, we see that for highly correlated
fields, the solvers perform similarly to how they per-
formed for low variances. This is not a surprise. It
should be noted, however, that when choosing a solver
for a given problem, the variance and correlations
should both be considered. Using one independent of
the other to choose a solver may lead to choosing a

Table 2

solver that takes too much time and memory to solve the
problem or, still worse, fails to converge at all.

The third test was to look at run times specifically for
a case exhibiting physical anisotropy. For this case, we
considered a problem with an inclined plane running
through it. The problem domain was 30 m x 30 m x
30 m. Porosity was 30%. Initial conditions were taken as
a constant pressure head set to —10 m. Boundary con-
ditions were specified to be Dirichlet values in hydro-
static equilibrium with interpolated values on a line
going from the front left corner of the domain bottom to
the back right corner of the domain bottom. The
pressure head value at the two corners were —100 m at
the front left and 100 m at the back right. In all cases,
relative permeability and saturation curves were evalu-
ated with van Genuchten formulas [16]. Exact formulas
were used with no curve-fitting. The parameters « and n
were set to 0.1/m and 2, respectively. The residual sat-
uration was 20% and the domain was considered satu-
rated at 99%. We used a single time-step of lday.
Nonlinear iteration stopping criteria were the same as in
the first test case.

We imposed a permeability of kp = 1 m per day at
points not on the inclined plane and changed the per-
meability value, kp, for points on the plane from 1 to
10°. Fig. 2 shows a schematic of the permeability field,
and Fig. 3 shows the run times for the two precon-
ditioners. We see that as kp gets larger, PFMG struggles

Total nonlinear (NL) and linear iteration counts for solving the variably saturated flow test case with 40 x 40 x 55 = 88,000 unknowns to five days

with increasing correlation lengths and a variance of 10

Preconditioner Correlation lengths NL iterations Linear iterations Compute time (s)
PFMG 25, 50, 2.5 89 314 2246
SMG 25, 50, 2.5 81 189 1841
PFMG 50, 100, 5 105 334 2500
SMG 50, 100, 5 61 214 1760
PFMG 100, 200, 10 101 342 2683
SMG 100, 200, 10 62 169 1535
PFMG 200, 400, 20 38 136 936
SMG 200, 400, 20 38 137 1127
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Fig. 1. Increasing correlation lengths (4, 4,, 4.): (25 m, 50 m, 2.5 m) upper left, (50 m, 100 m, 5 m) upper right, (100 m, 200 m, 10 m) lower left,

(200 m, 400 m, 20 m) lower right.

Fig. 2. Domain with inclined plane.

more and eventually fails to solve the problem for the
10° case. For low values, however, the PFMG precon-
ditioner gives a faster solution.

Last, we investigated the parallel scalability of the
nonlinear solution process. In the results we report the
parallel scaled efficiencies defined as follows. Consider a

g

$

8

Run Time (sec.)
T
N "

log(K)

Fig. 3. Run times for varying permeability kp on an inclined plane.

global problem of size N distributed across P processors
and let T(N,P) be the run time for the code (or com-
ponent of the code). The scaled efficiency is defined by
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E(n,p) =T(n,1)/T(pn,p). A scaled efficiency of one
indicates perfect machine utilization, i.e., one can double
the problem size without increasing the run time pro-
vided that one should also double the number of pro-
cessors used in solving the problem.

Taking the LLNL-based test case, using a variance
of 0, eight constant time steps of 0.0125 day, and all
other problem data the same as in the first set of ex-
periments, we performed a scaled speedup study with
the two preconditioners. Results from this study are
shown in Figs. 4 and 5. We added more unknowns by
refining the domain in all three directions. Scaled
efficiencies here are poor. Looking closely, we see that
the poor performance is due to lack of scaling of the
nonlinear function evaluation. As we decompose the
domain in the z direction, we generate groupings of cell
on the upper processors that contain more cells in the
unsaturated zone than in processors with cells in the
lower portion of the domain. As a result, the compu-
tation of the relative permeability and saturation in
these upper domain cells is more expensive, and the
nonlinear function is not well load-balanced. Decom-
posing the domain in only the x and y directions
removes this imbalance, and we see that the scaled
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Fig. 4. Parallel scaled efficiencies for the full nonlinear solve using
SMG and PFMG for decomposing in x, y, and z.
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Fig. 5. Parallel scaled efficiencies for SMG, PFMG and the nonlinear
function evaluation for decomposing in x, y, and z.

efficiencies are much improved in Figs. 6 and 7. This
parallel study shows that modelers need to understand
how best to utilize more resources in a given parallel
machine, and be able to adjust the use of the machine
to the physics of the problem being studied.

6. Conclusions

The results in this paper show that the Newton—
Krylov-multigrid method can be an efficient and robust
solver for large-scale, highly heterogeneous, variably
saturated flow problems. The comparisons between the
two multigrid solvers (SMG and PFMG) illustrate the
balancing of efficiency and robustness. The PFMG sol-
ver is cheaper per linear iteration and, largely for this
reason, faster than SMG when both methods work.
However, for some difficult problems, SMG is more
effective. The difficulty of the problem is influenced by
the degree of heterogeneity, the correlation lengths, and
the strength of anisotropies.

These results are important to consider when choos-
ing the appropriate solver for a given physical problem.
If the main axes of the permeability field do not align
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Fig. 6. Parallel scaled efficiencies for the full nonlinear solve using
SMG and PFMG for decomposing in x and y.

with the numerical grid, then a complex solver such as
SMG will be required. If the permeability is highly
correlated, then a simpler solver such as PFMG should
be effective even for higher variances.

Parallel load balancing of the problem physics must
also be considered. A solution method can be compu-
tationally scalable for some parallel discretizations but
seem not to be scalable for others if the wrong decom-
position is used. In particular, the above results show
that decomposing in the direction of water table fluc-
tuations can lead to inefficiencies, and a better use of a
parallel machine is to decompose the domain in direc-
tions orthogonal to these changes.

The results given here address solvers for the discrete,
nonlinear systems of equations arising from the appli-
cation of cell-centered discretization techniques to the
mixed form of Richards’ equation. Further work in this
area would include investigation of Newton—Krylov-
multigrid solvers for discrete systems arising from the
discretization of transformed formulations of Richards’
equation. Ref. [28] indicates these techniques can reduce
nonlinear iteration counts over standard solvers. How-
ever, the performance of multigrid preconditioners for
the resulting linear systems is unknown.
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Fig. 7. Parallel scaled efficiencies for SMG, PFMG and the nonlinear
function evaluation for decomposing in x and y.

Results in this paper have shown solver responses to
varying degrees of problem heterogeneity and anisot-
ropy. We have not, however, addressed the case of
spatially varying relative permeability and saturation
curves. In some sense, this variation just adds another
component to the heterogeneity of the problem. As a
result, we expect the solvers’ performances to compare
similarly to what we have seen. Understanding the im-
pact of this physical characteristic is another area of
future work.
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