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Definition of Spatially Variable Spectral
Endmembers by Locally Calibrated
Multivariate Regression Analyses

Fabio Maselli*

Linear regression procedures can be applied to derive often used to allow a relatively simple treatment of the
spectral endmembers using satellite images and superim- data acquired (Settle and Drake, 1993; Oleson et al., 1995).
posed abundance estimates of known components. A com- The procedures that utilize this assumption rely on the
mon problem, however, is represented by the spatial vari- fundamental concept of spectral endmembers, which are
ability of the spectral endmembers to estimate, which may the signatures of the constituents that linearly compose
be caused by variations in several environmental factors the multispectral scene that is being considered (Smith et
(topography, water availability, soil type, etc.). This prob- al., 1990). Ideally, spectral endmembers should represent
lem is currently addressed by a modified multivariate re- the signatures of pure elements on the ground, but the
gression procedure that can define spatially variable spec- term can be applied more broadly to the signatures of
tral endmembers. The procedure is based on a local cover classes that are sufficiently homogeneous (Lacaze et
calibration of the regression statistics (mean vectors and al., 1996). Spectral endmembers are linked to the proper-
variance/covariance matrices), which is obtained by ties of the relevant fundamental components and therefore
weighting the values of the training pixels according to can provide information about these (Richards, 1993). Also,
their distance from each pixel examined. The locally found spectral endmembers are commonly used for decomposing
regression statistics are then used to extrapolate pure class the observed scenes by unmixing procedures, thus retriev-
spectral endmembers, which are therefore different for each ing the relevant abundance estimates (Smith et al., 1990;
image pixel. An experiment was carried out using multitem- Shimabukuru and Smith, 1991; Settle and Drake, 1993).
poral NOAA-AVHRR NDVI profiles and class abundance In a similar manner, multitemporal endmembers can be
estimates of Tuscany region in central Italy. The results defined by considering time series of a spectral index for
show that the spatially variable spectral endmembers are spatially stable cover classes. For example, multitemporal
far more accurate than conventional fixed endmembers to profiles of the Normalized Difference Vegetation Index
recompose the original NDVI imagery. Finally, it is dis- (NDVI) derived from National Oceanic and Atmospheric
cussed how these spatially variable pure class NDVI values Administration (NOAA) Advanced Very High Resolution
can serve for data integration and as input for agro-meteo- Radiometer (AVHRR) data can be analyzed for different
rological applications and ecosystem simulation modeling. cover classes to assess changes in vegetation phenology and
Elsevier Science Inc., 2001 conditions during a certain period (Los, 1998; Genovese et

al., 1999).
Several methods have been proposed for the identifi-

INTRODUCTION cation of spectral endmembers, but all present evident
The assumption of linearity in the composition of the multi- drawbacks when applied to the analysis of satellite imagery.
spectral signal coming from various scene constituents is The use of spectral libraries, for example, requires that

the remotely sensed scenes are transformed into actual
reflectance values by correcting for atmospheric and topo-
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easily applicable when pure pixels of all main constituents
can be found in the scenes. On the contrary, the identifica-
tion of spectral endmembers is problematic when pure
pixels are rare or completely absent in the scene considered
(Bateson and Curtiss, 1996; Tompkins et al., 1997; Van
Der Meer, 1999). These cases are very common when
using low spatial resolution data such as NOAA-AVHRR
imagery and are generally addressed by the use of compo-
nent estimates from external sources analyzed by uni- or
multivariate regression techniques (Puyou-Lascassies et al.,
1994; Kerdiles and Grondona, 1995; Maselli et al., 1998a).
In practice, the component fractions of the classes exam-
ined are derived from existing maps or the classification
of higher resolution images and are regressed against the
spectral values of the low resolution pixels. The spectral
signatures of the pure classes are then computed by linearly
extrapolating the fraction of each class to 1 (Kerdiles and
Grondona, 1995; Maselli et al., 1998a).

Though simple and generally efficient, these methods
can not tackle the common cases of spatially variable spec- Figure 1. Example of monthly NOAA-AVHRR NDVI MVC

image (May 1993) showing the geographical location oftral components. As in fact the conditions of the ground
Tuscany.classes can change in space due to several environmental

factors (topography, water availability, soil type, etc.), the
corresponding spectral signatures can also become spatially

mental monitoring applications (Townshend, 1994; Los,variable. Actually, this variability is very common, especially
1998). In particular, NOAA-AVHRR NDVI images arewhen dealing with broadly defined ground classes. For
widely applied for vegetation monitoring, even if the rela-example, the spectral endmember of a forest class can
tively low spatial resolution (1.1 km) often complicatesvary depending on environmental factors such as elevation,
their interpretability in heterogeneous areas (Kerdiles andslope, aspect, and soil fertility, which affect phenology and
Grondona, 1995; Lacaze et al., 1996). This problem makesgrowth. In these cases the endmembers found in a rela-
the identification of pure class NDVI profiles a particularlytively large area are no more accurate, which can hamper
challenging task when mixed pixels are prevalent, as is thetheir utility for scene analysis (Lacaze et al., 1996). Actually,
case in the current investigation. Moreover, NDVI spatialthe spatial variability of the spectral endmembers, if not
variations can be easily related to environmental controllingproperly accounted for, can introduce errors in the pixel
factors (topography, climate, etc.), which facilitates theunmixing process and ultimately deteriorate the estimated
interpretation of the expected results (Maselli et al.,component fractions (Maselli, 1998; Van der Meer, 1999).
1998b). The results of the experiment were evaluated inAlso, as mean spectral endmembers are not representative
comparison to those of a conventional multivariate regres-for the different conditions of a region, their analysis can
sion procedure by reconstructing the NDVI images andbring erroneous conclusions on the biophysical properties
comparing them to the original data. The utility of the newof the relevant ground elements or classes.
methodology for operational applications is finally dis-In this work a new methodology is put forward to
cussed.account for the spatial variability of spectral endmembers.

The method is based on a multivariate regression proce-
dure, the statistics of which are defined locally by weighting STUDY AREA
the training points according to the fuzzy set theory (Zadeh,

Tuscany is situated in central Italy between 98 and 128 east1965; Wang, 1990a; Wang, 1990b). This procedure is de-
longitude and 428 and 448309 north latitude (Fig. 1). Fromscribed here and then applied in a case study to estimate
an environmental point of view, the region is peculiar forthe spatial variability of mean NOAA-AVHRR NDVI pro-
its extremely heterogeneous morphological and climaticfiles of the main cover classes in Tuscany (central Italy).
features. The topography ranges from flat areas near theThe choice of the case study was due to two main reasons.
coastline and along the principal river valleys to hilly andFirst, the region is extremely irregular for topography,
mountainous zones toward the Appennine chain. Approxi-climate, and land cover, so that the experiment can be
mately two thirds of the region is covered by hilly areas, oneconsidered representative for a situation where the spectral
fifth by mountains, and only one tenth by plains and valleys.responses of the land surfaces are very variable in space.

From a climatic viewpoint, Tuscany is influenced bySecond, NOAA-AVHRR NDVI data are linked to several
land biophysical properties and have numerous environ- its complex orographic structure and by the direction of
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Table 1. Cover classes redefined from the CORINEthe prevalent air flows (from west/northwest). As a result,
classification of Tuscany with percentage extensions derivedthe climate ranges from typically Mediterranean to temper-
from the relevant mapate warm or cool according to the altitudinal and latitudinal

Class Number Definition % Covergradients and the distance from the sea (Rapetti and Vitto-
rini, 1995). The land use is predominantly agricultural and 1 Forests 41.5

2 Grassland/shrubland 25.6urban where the land is flat and mixed agricultural and
3 Tree plantations 5.5forestry in the hilly and mountainous areas. The main ag-
4 Cereal crops 22.4ricultural types are cereal crops in the plains and olive groves
5 Urban and bare land 5.0and vineyards on the hills. The upper mountain zones are

almost completely covered by pastures and forests.

on a Digital Microvax 3500 computer system. Commercial
REMOTE SENSING AND ANCILLARY DATA packages such as IDRISI and ENVI were also utilized,

running on personal computers equipped with PentiumReference Data
processors.The land cover classification produced by the European

Union (EU) Project CORINE (Annoni and Perdigao, 1997)
Data Preprocessingwas utilized as high resolution reference data. The COR-
The first step of the data processing was to group theINE land cover classification of Tuscany was carried out
CORINE land cover categories into a restricted numberin 1992–1993 by photointerpretation of several Landsat
of environmentally meaningful classes that could be consid-Thematic Mapper images complemented by panchromatic
ered to compute NDVI endmembers (profiles). This wasair photos, all taken during the 1988–1992 period. Informa-
done by taking into account the homogeneity of the ex-tion from existing ancillary data (topographic and thematic
pected NDVI profiles (i.e., grouping categories with ex-maps, statistics, etc.) was also considered, so that the COR-
pected similar profiles). The operation led to the identifica-INE classification was referred to a rather long period and
tion of five general classes, which are listed in Table 1.was intended to depict a mean land cover situation. The
The vector file containing the CORINE land cover classifi-CORINE nomenclature is hierarchical and comprises
cation of Tuscany was therefore reclassified into these fivethree levels common to all countries, with five categories
classes and rasterised in a geographic projection with afor the first level, 15 for the second, and 44 for the third
pixel size of 0.0018. Five Boolean masks were derived from(Annoni and Perdigao, 1997). The classification provided
this image, one for each class. These were degraded byby the Tuscany Regional Service for Cartography in the
pixel aggregation to produce five abundance images withform of a vector file with a nominal scale of 1:100,000 was
a pixel size of 0.018 superimposed on the AVHRR images.used in the current study.

As previously mentioned, the CORINE classification
was referred to a rather long time period, which was almostSatellite Data
coincident with the 8 years covered by the available NDVIAVHRR data transformed in NDVI form were extracted
data (1986–1993). For this reason, the use of mean monthlyfrom the archives of Nuova Telespazio (Rome, Italy) within
NDVI data was preferred to the choice of a single year,the framework of the EU Project Remote Sensing of Medi-
which would have been arbitrary anyway. Twelve imagesterranean Desertification and Environmental Stability
with mean monthly NDVI values therefore were computed(RESMEDES). The archive contains monthly NDVI Maxi-
by averaging all original MVC images of the 1986–1993mum Value Composite (MVC) images of 8 years (1986–
period.1993), mapped in a geographic (latitude/longitude) refer-

ence system with a 0.018 pixel size (Rossini et al., 1994).
Conventional Multivariate Regression AnalysisThe standard procedure for the production of these data
The identification of the NDVI endmembers of the fivecomprised the georeferencing of the original images by a
classes considered was first carried out by conventionalcubic convolution algorithm, the radiometric calibration of
linear multivariate regression analysis, which is more effi-the first two bands to derive apparent reflectances follow-
cient than univariate procedures for this objective (Puyou-ing Rao and Chen (1994), and the computation of NDVI
Lascassies et al., 1994; Maselli et al., 1998a). This analysisvalues to finally obtain the maximum value composites on
implies an assumption of linearity in the composition of thea monthly basis (Holben, 1986). The final products are
NDVI signal coming from the various scene components,therefore 12 monthly NDVI MVCs for each of the eight
which theoretically should be strictly valid only for thestudy years, which were used for the current analysis.
original band values. The linearity assumption, however,
was adopted on the basis of recent work, which demon-

METHODOLOGY strated that the use of NDVI data implies only negligible
inaccuracies (Kerdiles and Grondona, 1995). MultivariateThe data processing was mostly carried out using purpose-

written programs in Fortran 77 and C languages running linear regression models therefore were constructed using
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the abundance images of the five classes as independent
Covij*5

RWx(Vxi2Meani*)(Vxj2Meanj*)
RWx

(2)variables and the mean monthly NDVI images as depen-
dent variables (Anderson, 1984). The development of the

where Covij* is the fuzzy variance/covariance of the inde-multivariate models was carried out by defining unique
pendent/dependent variables i and j.mean vectors and variance/covariance matrices over the

Regarding the weights that define the fuzzy behaviorwhole study region. The NDVI values corresponding to
of the model, it is proposed that they can be estimated foreach pure class then were found by extrapolating the rele-
each pixel examined with respect to all training pixels byvant model to 1 cover fraction for the class considered and
an exponential function of the relevant Euclidean distancesto 0 for all other four classes (Maselli et al., 1998a).
as [see Eq. (3)]:

Locally Calibrated Multivariate Regression Analysis Wx5exp2Dx/R (3)
This approach is a modification of classical multivariate

where Dx is the Euclidean distance of the training pixelregression procedures applied to the identification of end-
X from the pixel examined and R is the distance range.members. As previously mentioned, the rationale for the

In analogy with spatial analysis (Davis, 1973), the rangeapproach is that the endmember of a land cover class can
R is related to the expected spatial variability of the end-vary spatially depending on several environmental factors.
members to identify. In other words, areas where theseThese variations therefore must be accounted for when
endmembers are expected to be highly variable shouldidentifying endmembers by a multivariate regression pro-
have a low range, while areas where endmembers are prob-cedure. The current idea is that this can be obtained by
ably more homogeneous should have a larger range. Atraining and applying the regression models locally (i.e.,
logical consequence of this analogy is that a way to estimateby considering differently the independent and dependent
the range can be provided by semivariogram analysisvariables in relation to the distances of the training pixels

from each pixel examined). (Davis, 1973). In the current case the range had to model
The mathematical concept for the definition of spa- NDVI spatial variations not accounted for by land cover

tially variable regression statistics is provided by the theory differences, so that the areas that were dominated by a
of fuzzy sets. This theory was originally proposed by Zadeh single cover types were first selected as AVHRR pixels
(1965) in opposition to the classical theory of crisp sets with cover fraction of a CORINE redefined class higher
and considers that each element of a set can have multiple than 0.9. Out of these selected pixels, those with most
membership values. According to this, in image analysis spatially variable NDVI values in the mean annual image
fuzzy means and variance/covariance matrices can be com- were then isolated. Local variance in a 333 pixel moving
puted by giving different weights to each training pixel window as defined by Woodcock and Strahler (1987) was
vector (Wang, 1990a; Wang, 1990b). Since the spatial vari- used to identify these most spatially variable pixels. In
ability must be currently accounted for, fuzzy statistics can practice, pixels dominated by a single cover type were
be computed for each image pixel setting the weights as selected if their local variance was higher than 0.001
inversely proportional to the pixel distance from the train- NDVI2, with this threshold determined empirically. The
ing pixels. In this way, locally calibrated means and vari- NDVI values of these pixels were then used for semivari-
ance/covariances can be computed and then used in a ance analysis, which was carried out as described by Panna-
multivariate model to identify different endmember values tier (1994). The fitting of an exponential model to the
for each image pixel. experimental semivariogram allowed the estimation of a

Mathematically, a fuzzy multivariate regression model range that, being an expression of the maximum possible
can be constructed by considering different fuzzy statistics spatial NDVI variability, was used for the analysis of all
for each pixel instead of global means and variance/covari- monthly NDVI images.
ances (Wang, 1990a; Wang, 1990b). In particular, for each

The locally calibrated multivariate regression proce-pixel examined the fuzzy mean of the independent or de-
dure was applied to the five abundance images and the 12pendent variable i, Meani*, is computed as seen in Eq. (1):
mean monthly NDVI images by using Eqs. (1) through (3)
to define a fuzzy regression model for each pixel. TheMeani*5

RWxVxi

RWx
(1)

extrapolation of the model to 1 cover fraction for each
pixel led to the identification of five endmember imageswhere the summations are over all training pixels, Vxi is
corresponding to the expected pure profiles of the fivethe value of the independent/dependent variable i at train-
classes considered.ing pixel X, and Wx is the weight given to the same training

pixel, computed on the basis of its distance from the pixel
Computation of Reconstructed NDVI Imagesexamined (see below).
The evaluation of the accuracy of the conventional andSimilarly, each element of the fuzzy variance/covari-
locally calibrated endmembers was performed by usingance matrices can be found for each pixel examined as

(Wang, 1990a; Wang, 1990b) [see Eq. (2)]: them and the available class abundance estimates to con-
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struct synthetic NDVI images, which were then compared
to the original mean NDVI MVC images.

Having the cover class fraction images, a linear compo-
sition of the endmember values was computed for each
pixel as [see Eq. (4)]:

S_NDVI5o
Nc

l51

FrlEMl (4)

where S_NDVI5simulated NDVI value of the pixel,
Nc5number of cover classes, Frl5fraction of cover class l
derived from the abundance images, and EMl5NDVI
value of endmember l.

This operation was repeated for all 12 mean NDVI
MVC images using both the conventional and locally cali-
brated endmembers. In the latter case, different NDVI
values were obviously considered for each pixel, derived
from the endmember images previously produced. The
resulting synthetic images were then compared to the origi-
nal NDVI MVCs, and their correspondence was expressed
by means of correlation coefficient (r) and root mean
square error (RMSE) statistics.

RESULTS

Evaluation of Input Data Figure 2. Abundance images derived from the CORINE land
cover map of Tuscany reclassified into the five classes listed inThe quantitative examination of the CORINE map (Table
Table 1.1) confirmed that forests, grassland/shrubland, and cereal

crops are by far dominant in Tuscany, covering about 41%,
26%, and 22% of the land surface, respectively. The other

preted keeping in mind the eco-climatic conditions of thetwo classes (tree plantations and urban/bare land) each
main regional environments (Maselli et al., 1998b). Thecover about 5% of the surface and are concentrated in
temperate-cool climate of the mountain zones favors therestricted areas. The five abundance images obtained by
photosynthetic activity of forests in summer, when temper-degrading the CORINE reclassified map are shown in ature is high and rainfall is not limiting. The Mediterranean

Fig. 2. As can be seen, forests are prevalent in the inner climatic features are instead more accentuated on the hills,
mountain zones, grassland/shrubland and tree plantations the valleys, and the plains, where summer aridity increas-
are mainly present on the hills, and cereal crops and urban ingly limits vegetation photosynthesis of grassland/shrub-
areas are concentrated in the plains. land, tree plantations and cereal crops. The NDVI profile

A visual examination of the 12 NDVI images produced of urban areas is obviously the lowest for most of the
by averaging the original monthly values indicated their year, with a small peak in summer due to the presence of
good quality. As was expected, the averaging operation irrigated vegetation.
reduced possible residual defects of the single images due A more in-depth analysis revealed that these NDVI
to radiometric and geometric distortions, so that the final profiles were not completely representative for all pixels
products were more reliable than the original data for in the same cover classes. For example, the NDVI profiles
subsequent analysis. of pure forest pixels located in northern mountain zones

were very different from those of pure forest pixels located
Endmembers Identified by Conventional in southern hills. As previously mentioned, this intraclass
Multivariate Regression Analysis NDVI variability can be attributed to two main causes.
The NDVI endmembers identified by the conventional First, different vegetation types were present within each
multivariate regression procedures are shown in Fig. 3. As class (for example, different forest and crop species), each
can be seen, only the first cover class (forests) has a distinct showing slightly different NDVI profiles. Second, there
NDVI profile, while the other three vegetation classes was a certain NDVI variability within each vegetation type
(grassland/shrubland, tree plantations, and cereal crops) caused by several environmental factors (mainly climatic
have similar profiles. The NDVI profile of urban land is and edaphic), which are known to affect vegetation pheno-
distinct in the first 6 months, but overlaps with the previous logical development and conditions and, consequently,

NDVI profiles (Gaston et al., 1994; Maselli et al., 1998b).three during summer and fall. These profiles can be inter-
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Figure 3. NDVI endmembers of the five cover classes
found by the conventional regression procedure.

Endmembers Identified by Locally Calibrated very rare or absent. Some examples of these endmember
Multivariate Regression Analyses images for two representative cover classes (forests and

cereal crops) in winter, spring, and summer months areThe experimental semivariogram found using the most
displayed in Fig. 5. A marked intraimage NDVI variabilityspatially variable NDVI values of homogeneous areas is
can be clearly appreciated, which is mostly attributable toshown in Fig. 4, together with the fitted exponential model.
the previously mentioned geographical variability in vege-As can be seen, a range of about three pixels was identified,
tation types and environmental factors influencing thewhich was deemed reasonable to allow a certain spatial
NDVI profile of each cover class. In effect, it can be notedvariability in the definition of the fuzzy multivariate regres-
that the main NDVI variations within each class are associ-sion model by Eq. (3) without introducing too much noise
ated with variations in topography, latitude, and distancedue to NDVI anomalies. In fact, it must be kept in mind
from the sea, which are known to be major factors affectingthat a very small range (less than two to three AVHRR
vegetation conditions and development in the region (Ma-pixels) should have resulted in an extremely localized esti-
selli et al., 1998b). Wide differences also exist in the end-mation of regression parameters, with a consequent in-
member images of the classes for the same months, espe-crease of the importance given to possible anomalous single
cially in August. This indicates the efficiency of thepixel NDVI values. Also, a smaller range would have led
methodology in separating the NDVI values of the vari-to a very low consideration of the training pixels far from
ous classes.each pixel examined, with a consequent instability of the

estimation process in areas where some classes are rare.
Evaluation of Reconstructed NDVI ImagesAccording to what was explained in the methodology

section, every endmember image produced by the locally Examples of the original and synthetic NDVI images ob-
tained by recombining the conventional and locally cali-calibrated regression analysis can be interpreted as the

NDVI values that the corresponding class would have if brated spectral endmembers are shown in Fig. 6 for the
three representative months (February, May, and August),it covered completely the region, which is obviously an

abstraction for pixels located in areas where the class is together with the original NDVI images. A first visual

Figure 4. Experimental (points) and fitted (line) semivario-
grams obtained using the most spatially variable NDVI values
of homogeneous areas.
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conventional procedure, since, as can be seen in Fig. 3,
forests had on average markedly higher NDVI values than
the other vegetation classes in summer. These large sum-
mer ranges led to high r values by both methodologies and
reduced the possible improvements obtainable by the new
procedure in terms of this statistic. On the contrary, in
winter, when all five conventionally found NDVI endmem-
bers were similar, most NDVI variability was within cover
classes, which was well accounted for only by the new
method. The greater NDVI variability in summer is also
reflected in the higher RMSE values obtained for this
period by both procedures (Fig. 7B). In any case, the locally
calibrated method always produced acceptable r (higher
than 0.80) and RMSE (lower than 0.05 NDVI) values.

DISCUSSION AND CONCLUSIONS

The concept of spectral classes that are internally homoge-
neous and distinct from the others is one of the fundaments
of conventional image processing techniques (Richards,
1993). Recent investigations, however, have demonstrated
that this concept is questionable in most real cases, since
cover types are generally variable in structure and composi-
tion depending on a number of factors, while their bound-
aries are often graduating into those of the adjacent surfaces
(Foody, 1992; Maselli et al., 1996). These considerations
have led to the formulation of new approaches, such asFigure 5. NDVI endmember images of two cover classes (for-
fuzzy classification techniques, which take into accountests and cereal crops) for three months (February, May, and

August) found by the locally calibrated regression procedure. both intraclass spectral heterogeneity and interclass mix-
tures in relation to the spatial resolution of the data consid-
ered (Wang, 1990a; Wang, 1990b; Foody, 1992; Maselli et

analysis of the synthetic images indicated a higher spatial al., 1996).
information content produced by the locally calibrated pro- Less work has been done regarding linear spectral
cedure. This was obviously expected, since the new proce- mixing and unmixing theory and application. Linear unmix-
dure accounted for at least a part of the spatial variability ing methods have been shown to provide operational ad-
contained in pure class NDVI data. vantages over statistical classification procedures, since, on

As previously explained, the accuracy of the recon- the basis of simple basic assumptions, they can efficiently
structed NDVI images was statistically evaluated by com- produce information on a subpixel level (Settle and Drake,
paring them to the original monthly NDVI images. The r 1993). Moreover, these methods give a useful framework
and RMSE values found for the two image series obtained for the integration of data with different spectral, spatial,
by the conventional and locally calibrated multivariate re- and temporal resolutions (Maselli et al., 1998a). Both linear
gressions are reported in the histograms of Figs. 7A and mixing theory and unmixing procedures are based on the
7B. It can be clearly noted that the new method produced identification of the spectral signatures of pure materials
correlation coefficients far higher that the conventional or classes (spectral endmembers). For simplicity, spectral
one, especially for winter months, where improvements in endmembers are generally considered unique and constant
r higher than 0.5 were found. These improvements re- over the study images, neglecting the above-mentioned
mained in terms of RMSE, but the seasonal differences problems due to intraclass spectral variations (Settle and
were much less apparent, since all RMSEs decreased of Drake, 1993). Only recently some research efforts have
0.2 to 0.3 NDVI by using the new method. been directed to the consideration of variable spectral end-

These error patterns can be explained by considering members (Lacaze et al., 1996; Maselli, 1998), but without
that the NDVI ranges of the original images were much dealing with the problems related to their continuous spa-
higher in the arid period than in the other seasons, due to tial variability, which, as previously seen, may arise from
the strong contrast between areas with low NDVI in the several factors.
plains (where vegetation is limited by water availability) To address this important issue, an approach has been
and with high NDVI on the mountains (Maselli et al., currently proposed that identifies spatially variable spectral

endmembers. The approach is based on a modification1998b). This was partly taken into account also by the
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Figure 6. Original and synthetic NDVI images obtained by the two methods for the three exemplary months (February, May, and
August).

of common multivariate regression procedures that are From a practical viewpoint, the method could be used
for numerous applications. For example, the locally cali-applied to identify spectral endmembers using abundance

estimates (Kerdiles and Grondona, 1995; Maselli et al., brated endmembers could serve for a more efficient inte-
gration of data with different spatial and temporal features.1998a). In practice, linear regression procedures are locally

calibrated by computing on a per-pixel basis spatially vari- In the case study currently examined, an NDVI data set
with the spatial resolution of the CORINE land coverable regression statistics (mean vectors and variance/covari-

ance matrices of both independent and dependent vari- map (100 m) and monthly temporal frequency could be
produced by applying a formula similar to Eq. (4) to theables). The spectral endmembers found in this way express

the pure signatures of each cover class for each study point. pure class NDVI estimates and the high resolution digital
map (Maselli et al., 1998a). The advantage offered by theAs was demonstrated in a case study, the method is efficient

for providing local estimates of multitemporal endmem- current method is that different NDVI values can be attrib-
uted to each cover class for different AVHRR pixels.bers that may vary in space due to the above-mentioned

environmental factors. Similar results can be expected Such an integrated data set could directly serve for
monitoring purposes (Sellers et al., 1995; Bolle, 1996), butwhen applying the procedure to identify multispectral end-

members of materials or classes that are spatially hetero- could find its maximum utility as input for environmental
modeling approaches. Multitemporal NDVI profiles of ag-geneous.
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Figure 7. (A and B) Accuracy statistics (r and RMSE)
found by comparing the original and synthetic NDVI images
obtained by the two methods.

Annoni, A., and Perdigao, V. (1997), Technical and Methodologi-ricultural cover classes are in fact operationally utilized
cal Guide for Updating CORINE Land Cover Data Base,within agro-meteorological models for yield forecasting in
European Commission, EUR 17288EN, Space ApplicationNorth America (Doraiswamy et al., 1999) and Europe
Institute of Joint Research Centre, Ispra, Italy.(Genovese et al., 1999). Most ecosystem simulation models,

Bateson, A., and Curtiss, B. (1996), A method for manual end-such as the well-known Forest BGC (Running and Cough-
member selection and spectral unmixing. Remote Sens. Envi-lan, 1988; Kimball et al., 1997) also require as fundamental
ron. 55:229–243.

input variables Leaf Area Index estimates, which can be Bolle, H. J. (1996), The role of remote sensing in understanding
derived from NDVI data (Lacaze et al., 1996). In all these and controlling land degradation and desertification processes:
cases more accurate, locally defined NDVI estimates of The EFEDA research strategy. In The Use of Remote Sensing
pure classes could be of utmost importance. Research for Land Degradation and Desertification Monitoring in the
therefore is directed toward these applications, which Mediterranean Basin. State of the Art and Future Research

(J. Hill and D. Peter, Eds.), Directorate-General Science,should favor the operational utilization of the information
Research and Development, European Commission, pp.coming from current and future satellite systems.
45–77.

Davis, J. C. (1973), Statistics and Data Analysis in Geology. Wiley,
The research was partly funded by the Italian Space Agency

New York.(ASI) and by the EU project RESMEDES (Remote Sensing of
Doraiswamy, P. C., Zara, P. M., and Stern, J. (1999), ApplicationMediterranean Desertification and Environmental Stability). In

of a crop simulation model for assessment of regional cropparticular, the author wishes to thank Nuova Telespazio S.p.A.,
production. In Proceedings of the International SymposiumRome, for providing, within the framework of RESMEDES, the
“Modelling Cropping Systems,” Lleida (Spain), 21–23 JuneNOAA-AVHRR NDVI images used in the research. Thanks are

also due to two anonymous RSE referees for their helpful com- 1999, pp. 167–168.
ments on the first draft of the paper. Foody, G. M. (1992), A fuzzy sets approach to the representation

of vegetation continua from remotely sensed data: an example
from Lowland Heath. Photogramm. Eng. Remote Sens.

REFERENCES 58:221–225.
Gaston, G. G., Jackson, P. L., Vinson, T. S., Kolchugina, T. P.,

Botch, M., and Kobak, K. (1994), Identification of carbonAnderson, T. W. (1984), An Introduction to Multivariate Statisti-
cal Analysis, 2d ed. John Wiley and Sons, New York. quantifiable regions in the former Soviet Union using unsuper-



38 Maselli

vised classification of AVHRR global vegetation index images. Puyou-Lascassies, P., Flouzat, G., Gay, M., and Vignolles, C.
(1994), Validation of the use of multiple linear regression asInt. J. Remote Sens. 15:3199–3221.
a tool for unmixing coarse spatial resolution images. RemoteGenovese, G., Vignolles, C., Nègre, T., and Passera, G. (1999),
Sens. Environ. 49:155–166.The use of CORINE land cover to improve vegetation moni-

Rao, C. R. N., and Chen, J. (1994), Post-launch calibration oftoring through NOAA-AVHRR/NDVI profiles. In Proceedings
the visible and near infrared channels of the Advanced Veryof the International Symposium “Modelling Cropping Sys-
High Resolution Radiometer on NOAA-7, -9, and -11 space-tems,” Lleida (Spain), 21–23 June 199, pp. 83–84.
craft, NOAA Technical Report NESDIS 78, U.S. DepartmentGilabert, M. A., Conese, C., and Maselli, F. (1994), An atmo-
of Commerce, Washington, D.C., August 1994.spheric correction method for the automatic retrieval of sur-

Rapetti, F., and Vittorini, S. (1995), Carta Climatica Della Tos-face reflectances from TM images. Int. J. Remote Sens. 15:
cana Centro-Meridionale e Insulare. Pacini Editore, Pisa, Italy.2065–2086.

Richards, J. A. (1993), Remote Sensing Digital Image Analysis:Holben, B. N. (1986), Characteristics of maximum-value compos-
An Introduction, 2d ed. Springer-Verlag, Heilderberg.ite images from temporal AVHRR data. Int. J. Remote Sens.

Rossini, P., Bottai, L., Frezzotti, M., Pandiscia, G., and Taddei,7:1417–1434.
R. (1994), Nuova Telespazio contribution to Annual ProgressKerdiles, H., and Grondona, M. O. (1995), NOAA-AVHRR NDVI
Report of EFEDA-Phase II, E.C. Project EFEDA, Group V,decomposition and subpixel classification using linear mixing
Remote Sensing and Radiometric Properties of the Surface:in the Argentinean Pampa. Int. J. Remote Sens. 16:1303–1325.
Assessment of Desertification from Space, Coordinator H. J.Kimball, J. S., Thornton, P. E., White, M. A., and Running, S. W.,
Bolle, Berlin, November 1994.(1997), Simulating forest productivity and surface-atmosphere

Running, S. W., and Coughlan, J. C. (1988), A general model ofexchange in the BOREAS study region. Tree Physiol. 17:
forest ecosystem processes for regional applications. Ecologi-589–599.
cal Modelling 42:125–154.Lacaze, B., Caselles, V., Coll, C., Hill, H., Hoff, C., de Jong, S.,

Sellers, P. J., Meeson, B. W., Hall, F. G., Asrar, G., Murphy,Mehl, W., Negendank, J. F. W., Riesebos, H., Rubio, E., Som-
R. E., Schiffer, R. A., Bretherton, F. P., Dickinson, R. E.,mer, S., Teixeira Filho, J., and Valor, E. (1996), DeMon—
Ellingson, R. G., Field, C. B., Huemmrich, K. F., Justice,Integrated approaches to desertification mapping and moni-
C. O., Melack, J. M., Roulet, N. T., Schimel, D. S., and Try,toring in the Mediterranean basin, Final Report of DeMon-
P. D. (1995), Remote sensing of the land surface for studies1 Project, Joint Research Centre of European Commission,
of global change: Models—algorithms—Experiments. RemoteIspra (VA), Italy.
Sens. Environ. 51:3–26.

Los, S. O. (1998), Linkages between Global Vegetation and Cli- Settle, J. J., and Drake, N. A. (1993), Linear mixing and the
mate. An Analysis Based on NOAA Advanced Very High Reso- estimation of ground cover proportion. Int. J. Remote Sens.
lution Radiometer Data, PhD. Dissertation, Vrije Universiteit, 14:1159–1177.
Goddard Space Flight Centre, Greenbelt, MD. Shimabukuru, Y. E., and Smith, J. A. (1991), The least squares

Maselli, F., Rodolfi, A., and Conese, C. (1996), Fuzzy classifica- mixing models to generate fraction images derived from re-
tion of spatially degraded TM data for the estimation of sub- mote sensing multispectral data. IEEE Transact. Geosci. Re-
pixel components. Int. J. Remote Sens. 17:537–551. mote Sens. 29:16–20.

Maselli F., Gilabert M. A., and Conese C. (1998a), Integration Smith, M. O., Ustin, S. L., Adams, J. B., and Gillespie, A. R. (1990),
of high and low resolution NDVI data for monitoring vegeta- Vegetation in deserts: A regional measure of abundance from
tion in Mediterranean environments. Remote Sens. Environ. multispectral images. Remote Sens. Environ. 31:1–26.
63:208–218. Tompkins, T., Mustard, J. F., Pieters, C. M., and Forsyth,

Maselli, F., Petkov, L., and Maracchi, G., (1998b), Extension of D. W. (1997), Optimization of endmembers for spectral mix-
climate parameters over the land surface by the use of NOAA- ture analysis. Remote Sens. Environ. 59:472–489.
AVHRR and ancillary data. Photogramm. Eng. Remote Sens. Townshend, J. R. G. (1994), Global data sets for land applications
64:199–206. from the Advanced Very High Resolution Radiometer: an

Maselli, F. (1998), Multiclass spectral decomposition of remotely introduction. Int. J. Remote Sens. 15:3319–3332.
sensed scenes by selective pixel unmixing. IEEE Transact. Wang, F. (1990a), Fuzzy supervised classification of remote sens-
Geosci. Remote Sens. 36:1809–1820. ing images. IEEE Transact. Geosci. Remote Sens. 28:194–201.

Oleson, K. W., Sarlin, S., Garrison, J., Smith, S., Privette, J. L., Wang, F. (1990b), Improving remote sensing image analysis
and Emery, W. J. (1995), Unmixing multiple land-cover type through fuzzy information representation. Photogramm. Eng.
reflectances from coarse spatial resolution satellite data. Re- Remote Sens. 56:1163–1169.
mote Sens. Environ. 54:98–112. Woodcock, C. E., and Strahler, A. H. (1987), The factor of scale

Pannatier, Y. (1994), MS-WINDOWS Programs for Exploratory in remote sensing. Remote Sens. Environ. 21:311–332.
Variography and Variogram Modeling in 2D. In Statistics of Van der Meer, F. (1999), Iterative spectral unmixing. Int. J.
Spatial Processes: Theory and Applications (V. Capasso, G. Remote Sens. 20:3431–3436.

Zadeh, L. A. (1965), Fuzzy sets. Inf. and Cont. 8:338–353.Girone, and D. Posa, Eds.), Bari, Italy, pp. 165–170.


