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Algorithm of Calculation of Lyapounov Coefficients
for Analysis of Chemical Autooscillations, as
Applied to Calcite Crystallization Model*

N. A. Bryxina2? and V. S. Sheple%®

The numerical algorithm of calculation of Lyapounov coefficiehtd 6f any order is developed. The
apparatus of analytical calculations is not used in this algorithm. The proposed algorithm is of use
for usual computer languages and allows us to find the numerical valug fafr any k and to make
complete qualitative analyses of dynamic models on the plane.
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INTRODUCTION

Oscillatory zoning in minerals, as well as many other geological processes, is
modeled quantitatively by a system of nonlinear differential equations, that takes
account of mineral growth, diffusion, and mass continuity. The problem of whether
mineral growth can oscillate autonomously with time reduces to finding the pa-
rameter values of the model under which those equations have periodic solutions.
The numerical integrating of nonlinear dynamic model usually has the problems
connected with instability or multiplicity of solutions. So, qualitative analysis of
systems of this type is very important. Itinvolves a linear instability analyses and a
small-amplitude limit cycles bifurcation analyses. The first indicates the existence
of limit cycles and the second talks about the maximum possible number of limit
cycles and their stability. If the dynamic model has stable limit cycles, then the
geological process, described by this model, has to be periodic. So, the problem
of the number of stable limit cycles is significant in the field of oscillatory zoning

in minerals (Wang and Merino, 1995). Lyapounov coefficietg) @re used to
solve this problem. They are functions of parameters of dynamic system on the
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plane and too complex for calculation. There are completed formulas only; for

L, in the literature (Andronov and others, 1967; Bautin and Leontovich, 1976).
However, Lyapounov coefficients, for k > 2 are often deficient. For example, in
analyzing agate autooscillations (Bryxina and Sheplev, 1999), it was necessary to
calculate Lyapounov coefficients far= 1, 2, 3 and in analyzing a cubic system
(Lloyd and Pearson, 1992), it was necessary to calculate Lyapounov coefficients
fork=1,...,6.

In our investigation we used the algorithm developed by Poincare when he
solved the problem of distinctions between the center and the focus (Nemizkii
and Stepanov, 1947). In this work the numerical algorithm that is developed is
capable for the traditional programming languages and does not use the apparatus
of analytical calculations on computer.

LYAPOUNOV COEFFICIENTS

We investigate a dynamic system on the plane

d

(1)
dy
at - P(x,y)

and write

QX, y) = QuX,y) + -+ Qn(X, y)
P(X’ y) = P]_(X, y) +--+ Pn(x’ y)

where Qx and P are homogeneous polynomials of degkeahose coefficients

can depend on some parameters. The steady states of system (1) are obtained by
setting the time derivatives of the left side to zero, and solvingcfandy, now
designated aso, Yo:

Q(xo, Yo) = P(X0. Yo) =0

We introduce small perturbatiofsandn around a steady statey( o), and replace
X = Xo + & andy = yp + 7 into (1). We obtain

dé_
a—a«§+bn+¢(é,n)

a=05+dn+w(&n)

@)
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A general solution to linear part of (2) has the following form:

£ =creM + e
n = clkle’\lt —l—Cz)nze)‘zt

wherec, andc, are integration constants, angd and A, are the roots of the
characteristic equatioh? — oA + A = 0. The behavior of system (2) near the
steady state can be characterized by determinantd tracer of matrix of linear
part of (2). According taA ando, the steady states of the system are classified
into (Bautin and Leontovich, 1976) (Baddle pointif A <0 ando is arbi-
trary; (2)node pointif A > 0 and ¢/2)> — A > 0; (3)focus pointif A > 0 and
(012 — A < 0; (4)limit cycle, if A > 0ando = 0. In cases 1-3, the steady state
is stable ife < 0 and unstable i& > 0; case 4 requires special investigation of
functionse(&, n) andy (£, ). Let us eliminatd from system (2)

dé _ ag+bn+oe(xy)
dn c&+dn+v(x,y)

®3)

The solution to Eq. (3) is curvg(n), which is called a phase trajectory. A peri-
odical solution of system (2) is a closed phase trajectory (limit cycle) of Eq. (3).
All phase trajectories of Eq. (3) give phase portrait of dynamic system (1). So,
the parameter values, when there are limit cycles, are interesting for us when we
qualitatively analyze the model.

Let us turn to the polar coordinates §): & =r cos@) and n = r sin@)
(Andronov and others, 1967). Then Eq. (3)

dr

4 = R0, (4)

whereR(r, 6) is a periodic function with period2 FurthermoreR(0, 0) = 0, that
is,r = Oisthe solution to Eq. (4). Consequently, functir, 6) can be presented
as a power series

R(r, 6) = rR1(6) + r*Re(6) + - - -, (%)

which will converge on the solution to Eqg. (4) at ahyand reasonably small
The solutionto Eq. (5) = f (9, ro), whererg is the initial value of até = 0,
can be also expanded in power series:

r = f(0,r0) = us(O)ro + uzx(O)r2 + - - - ©)
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Substituting expansion (6) into Eq. (5) and equating the coefficients at like power
ro to each other, we obtain recurrent differential equations for finding the functions
u; (9):

dU1

“1_R
1 1(0)
dUz 2
% = Rl(Q)U2 + RZ(G)U:L
(7)
du
d_; — Ry(6)Us + 2Rx(0)ulz + Re(0)u3

Providing thato = f (6 = 0, rp), we have the following initial values for the func-
tionsu; (6): u1(0) = 1 andu; (0) = Ofori > 1. So, all functions; (9) can be found
sequentially from (7). The function

r—rop
w =

. = 0ol o+ aal§ + oal§ + asfg + -+ -,
0

whereqa; = u;(2r) is called a rate of change phase trajectory of Eq. (4), and the
coefficientsy; are the focal values. It is well known (Andronov and others, 1967)
about the focal values thatA > 0 ando = 0, thenay, = 0; if o = 0 andaz = 0,
thenay = 0; if 0 =0, 3 = 0, andas = 0, thenag = 0; and so on. The focal
valuewas ato = 0 is called the first Lyapounov coefficieht; the focal valuexs

ato = 0 andasz = 0 is called the second Lyapounov coefficiéntand so on. If

o is sufficiently small and it is not equal to zero, the functiortan be rewritten

in the following form:

w=o04Lird+Larg+Lard+--
The limit cycle stability is determined by the sign of, that is, by the signs

of Lyapounov coefficients, the calculation of which is difficult, but necessary at
qualitative analyses of dynamic system on the plane.

DESCRIPTION OF ALGORITHM

We consider the system of differential equations of the following form:

X
O('j—t =aX+bY+q(X,Y)
(8)

Y
‘l—t =cX+dY+ p(X.Y)
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in which q(x, y) and p(x, y) are polynomials. As it follows from the theory of
bifurcation (Nemitskii and Stepanov, 1947), system (8) has periodical solutions if
its steady state is a limit cycle, that is, if the parameter values of this system satisfy
the conditions

c=a+d=0 and A=ad—-bc>0

Hereo is a trace of matrix of linear part of (8) aml is its determinant. Let us
replace variables:

aX+ by
= —-— =Y 'L'ZN/Zt
~ y

System (8) becomes, in its canonical form,

dx

=Yt

’ = ©)
dr —~ !

in which p;, g are also homogenous polynomials by powers ahdy:

i i
p= pmixly o a=) gy (10)

j=0 i=0

and its coefficients;j, g;; depend on the parameter values of the model. Let us
consider thap;; =0 andg; =0,if j <Oorj > i, then the derivatives gf and
gi onx andy are written in the following form:

op; i 1l Ble! ‘ R

8_XI = pi,X = JZZOZ”XJ 1y| ]J 8_XI — qi,X — Jgoz”xj 1yl ]J

Ip - 3G -1
B oy =Y 2y TN — ) gy, =Yy )
3y i—o By i=0

Eliminatingt from system (9) and will give the following equation:

dy _ —X+2iop

— _ 11
dx  y+3.,0 1D
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Search of periodic solutions of system (8) is same as the search of closed trajectories

on phase plot{, y), which satisfy Eq. (11). Let us represent a set of closed curves
in the following form:

f(x,y) =x2+y*+ fa+ fg+---+ fx +--- = constant (12)
where,

fg = fagx® + faox?y + farxy? + faoy°
fa = faax* + £33y + f42x?y? + fa1xy® + fa0y*

k
fx = Z fijj yk_j
j=0

and fj; are unknown coefficients for the time being, although they can be found
from the condition that the functiofi(x, y) is the solution of Eq. (11). The total
differential of Eq. (12) is equal to zero, that is,

af (x, af (x,
dix.y) = S der 250

dy=0. (13)
Taking f (x, y) from the Eq. (12) we have

af(x,y) , af(x,y) A
T —2X+i2=; f|,x1 ay —2y+i2=; f|,y

of; i i af, =3 Ciliq.
fi,X:a—)l:ZfinJ 1yI JJ fi'y:a—;:Zfin]yl I 1(| —]) (14)
i=0 j=0
Equation (13) can be written in the form of

d_y _ 2X+Zi:3 fi,X

= — 15
dx 2y+ Y 5 fiy (15)

Comparing this equation with Eq. (11), we obtain
—X+ Zi:Z pi . _2X + Zi:S fi~X (16)

Y+Zi:2Qi B ZY+Zi:3 fiy
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The terms of the second order cancel each otherin Eqg. (16). Canceling step-by-step
the terms of the third, fourth, etc. orders, we can have some equations to find the
coefficientsf;; . Using the following designations

ao=Y (Yfix—xfy) Z(Zyp 1+ 2XG-1)
i=3
g =) Py fmy qu Z fnx (17)
k=2 m=3
Equation (16) becomes

aptat+at+a=0 (18)

Substitution ofpy, ¢, fi x, and f; y into (17) gives

=) (Z fi,j+2(] +1) = fij—a(i — | +1)) xly'~]

i=s \j=0
i
= Z (Z(Zpi—l,j + 20]]—1,,’—1)) X'y
i=3 \j=0

oo i - min(m—1,j) S
Z Z (Z Z mnpi+1fm,j—n(m - n)) x! yl_]
=4

i j=0 \m=3 n=max(Q j—i—1+m)

00 i—1 min(m, j+1) o
Z (Z Z Oi+1-m,j+1-n fmn”) x! ylil

i=4 j= m=3 n=max(1l j—i+m)

We substitute the resulting expressionsgfay, a;, andag into (18) and set the
coefficient atx'y'~! equal to zero. We have for> 3,i > j > O:

fijer(j+21)— fija(i—j+1)+c; =0 (19)

where

i—1 min(m—1,j)
Gj =2(Pi-1j +G-1j-1)+ Y ( > fmnPi+1-m j—n(M —n)

m=3 \n=max(Qj—i—1+m)

min(m, j+1)

+ Z Oi+1-m,j+1-n fmnn) (20)

n=max(1 j—i+m)
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Using index agreement (10), Eq. (20) can be simplified to the following form:

i-1]j
Gj =2(pi-1j +Gi-1j-1) + Z fmnl(M — N)Pit1-m j—n + NG 11-m j+1-n]

m=3 n=0
(21)

[y

The system of linear Egs. (19) is divided into two independent subsystems with
two-diagonal matrixes. If indeixis odd, each of those subsystems is simultaneous.

If index i is even ( = 2k), the first subsystem is overdetermined and the second
one is undetermined. According to the algorithm (Nemytskii and Stepanov, 1947),
in the first subsystem we take away the last equation, and in the second subsystem
we add equatiorfi;; = 0. The condition of the Cronekera—Couppelly theorem of
consistency of system can be expressed in the following form:

fiic1 =G
The Lyapounov coefficient of inddx— 1 is
Lk-1=—fii—1+Gi (22)

It is necessary to have afl j, 0<| <1, to calculatec;;. Formula (22) fork =
2,3, 4,5, 6 can be rewritten in the following form (the coefficients are given with
a precision of positive factor):

Li=(3 1 3)Ca0 Ca2 Caa)"

Lo=(5 1 1 5)€s0 Co2 Cos Cos)'

L3 =(35 5 3 535)(Cso Cs2 Cas Ces Coa)'

Ls=(63 7 3 3 763)(C100 C102 C104 Cio6 C108 C1010)

Ls =(231 2L 7 5 7 21231)C120 Ci22 Ci24 Ci26 Ci2s Ci210 C1212)"

CALCULATIONOF Lg,Lo,L3

Now we present the algorithm of calculatidns, Lo, L3 in some detail. Let
us take = 3 and takecs; from (21):

C30 = 2P20 C31 = 2(P21 + G20) C32 = 2(P22 + 021) C33 = 2022

Systems (19) fall into two independent subsystems with the odd and even indices

(% 9)(2)=(2) (% )(2)=A2)
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Let us solve these systems and fifagl, ] =0, 1, 2, 3. Let us take = 4 and take
C4j from (21):

Cs0 = 3f3oPp20 + f31000 + 2P30

Ca1 = 3f30P21 + 2f31P20 + f31021 + 232020 + 231 + 20030

Caz = 3f30P22 + 23121 + f31022 + f32020 + 2 f32021 + 333020

+2ps2 + 2031

C43 = 2f31P22 + f3221 + 2F32002 + 3 f33021 + 233 + 2032

Cas = fT32P22 + 333022 + 2033
We can see thats; depends onfs;. Fori = 4 systems (19) fall into two inde-
pendent subsystems: The first subsystem is undetermined and the second one is
overdetermined. According to the algorithm (Nemytskii and Stepanov, 1960), in
the first subsystem we add equatidsy = 0, and in the second subsystem we

take away the last equation. This condition Cronekera—Couppelly coincides with
demandL; = 0 and we can find the first Lyapounov coefficient as

L1 = 3Ca0 + Ca2 + 3Caa

So f4; are found by solving the following systems:

2 0\ [ fa\ (cCs 1 0\ (fa)_ [Ca
-2 4)\ fao) \cm -3 3)\faz) ™ \ca
Let us take = 5 and takees; from (21):

Cso = 3f30Ps0 + f31030 + 4 faoP20 + 21020 + 2pao

Cs1 = 3fa0P31 + 231 P30 + f31031 + 232030 + 4 fa0p21
+ 3fa1P20 + fa1021 + 242020 + 2paz + 2040

Cs2 = 3fs0Ps2 + 2f31Ps1 + fa10s2 + fa2Ps0 + 232031 + 3fs3030
+4f40P22 + 3fa1P21 + fa1002 + 2F42P20 + 2 f42021 + 3 f43020
+ 2Pa2 + 2041

Cs3 = 3f30Ps3 + 2f31Ps2 + f310s3 + fa2Ps1 + 232032 + 3f330s1
+3f41P22 + 2f42P21 + 42022 + fa3pP2o + 3f43021 + 4 f44020
+ 2P43 + 2042
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Csa = 2f31P33+ faops2 + 232033 + 333032 + 2fa2P20 + fazpor
+ 343022 + 444001 + 2Pa4a + 20u3
Cs5 = fapPaz + 333033 + fazPoz + 4faalor + 2Gaa

Systems (19) fall into two independent subsystems with the odd and even ipdices

1 0 0 f54 Css 1 0 0 f51 50
—4 3 0 f52 = Cs3 —4 3 0 f53 = —| Cs2
0 -2 5 fso0 Cs1 0 -2 5 fsg Csa

Let us solve these systems and fifigl, j =0, 1, 2, 3, 4, 5. Let us také = 6 and
takecs; from (21):

Coo = 3f30Pa0 + 31040 + 4 fa0P30 + fa1030 + Sfs0P20 + f51020 + 2Ps0

Co1 = 3fs0Par + 2f31Pa0 + fa10a1 + 2F32040 + 4 faoPa1 + 3fa1Ps0
+ fa1031 + 242030 + 5 fsoP21 + 4 fs1P20 + f51021 + 2 f52020
+2ps1 + 2050

Co2 = 3fa0Paz + 2f31Pa1 + f31042 + f32Pa0 + 2 f32041 + 3 330040
+4f40P32 + 3fa1P31 + far0s2 + 2f42P30 + 242031 + 3 f43030
+5fs0p22 + 4 f51P21 + f51022 + 3 fs52P20 + 252021 + 353020
+2ps2 + 2051

Coz = 3f30Paz + 2f31Paz + f31043 + f32Par + 2f52042 + 3F33041
+4f40P33 + 3fa1Ps2 + far0ss + 2fa2p31 + 242032 + fazpso
+ 343031 + 4 f44030 + 4 51 P22 + 35221 + 2 F52002 + 2 53 P20
+ 3 f53021 + 4 54020 + 2Ps3 + 2052

Cos = 3f30Paa + 2f31Pa3 + f31044 + f32Paz + 2f52043 + 333042
+3fa1p33 + 2f42P32 + 242033 + fazPas + 34302 + 4 fas0a1
+3fs2P22 + 2 f53P21 + 3fsalzz + fsaPoo + 454021 + 5fs5020
+ 2Psa + 20s3

Cos = 2f31Paa + f32Pa3 + 230040 + 3f33043 + 24233 + fazpaz
+ 343033 + 4 f44032 + 2Fs3P22 + f5aP21 + 454022 + 555021
+2Ps5 + 2054

Cos = f32Pas + 3f3304a + fa3Paz + 444033 + fs4P22 + 5F55022 + 2055
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Fori = 6, systems (19) fall into two independent subsystems too, but the first
subsystem is undetermined and the second one is overdetermined. According to the
algorithm (Nemytskii and Stepanov, 1960), in the first subsystem we add equation
fes = 0. In the second subsystem we take away the last equation. This condition
Cronekera—Couppelly coincides with demdngd= 0 (at condition:L; = 0) and

we can find the second Lyapounov coefficient as

L2 = 5Cgp + Cs2 + Ca4 + SCep

So fg; are found by sloving the following systems:

2 0 0 fea Ce5 1 0 0 fo1 Cs0
-4 4 0 feo | = | Ce3 -5 3 0 fes | = —| Co2
0 -2 6 feo Co1 0 -3 5 f65 Cos4

Let us také = 7 and takecr; from (21):

70 = 3fs0Ps0 + f31050 + 4 fa0Pao + fa1040 + Sfs0P30 + fs10s0
+6fe0P20 + fe1020 + 2Peo

c71 = 3fs0Ps1 + 2f31Ps0 + f31051 + 232050 + 4 faoPas + 3fa1Pa0
+ fa1041 + 2F42040 + 5Fs0Ps1 + 4 fs1p30 + fs51031 + 2 F52030
+6fe0P21 + Sfe1P20 + fe1021 + 2 fe2020 + 2Ps1 + 2060

C72 = 3fs0Ps2 + 2f31Ps1 + fa1052 + fa2Pso + 232051 + 3 fa30s0
+ 4f40Pa2 + 3Ta1Pa1 + 41042 + 2Fa2Pao + 2 Fa20a1 + 3 4300
+5fs50P32 + 4 f51 P31 + fsa0s2 + 3 fs2P30 + 252031 + 3 f53030
+6feop22 + Sfe1P21 + fea0az + 4 fe2P20 + 2 fe2021 + 3 feato
+2pe2 + 2061

C73 = 3f30Ps3 + 2fa1Ps2 + f310s3 + fa2Ps1 + 2f52052 + 3 f33051
+ 4f40Pa3 + 3Ta1Paz + 41043 + 2fa2Pa1 + 242042 + fazpao
+ 343041 + 4144040 + SFs0P33 + 4 fs1p32 + fs1033 + 35231
+ 2fs52032 + 2 f53P30 + 353031 + 4 fsallzo + 5 fe1 P2z + 4 fe2 P21
+2f62022 + 3fe3P20 + 3 fe3021 + 4 fealoo + 2P6s + 2062

C74 = 3fs0Psa + 2f31Ps3 + f31054 + fa2Ps2 + 232053 + 3 f330s2
+4f40P44 + 3T41Pa3 + Fa104a + 2F42Pa2 + 242043 + fazpar
+ 3143042 + 4144041 + 4 51 P33 + 3f52P32 + 2 f52033 + 2 f53p31
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+ 353032 + fsaPso + 4 fsa031 + 5 fss030 + 4 fe2 P22 + 3fe3pP2s
+ 3fe3022 + 2 feaP20 + 4 fealo1 + 5fe5020 + 2Pea + 2063

C75 = 3f30Ps5 + 2f31Ps54 + f31055 + fa2Ps3 + 232054 + 3 f33053
+ 3fa1Pas + 2F42pa3 + 2F420a4 + fazpaz + 3fa3043 + 4 f2402
+3f52P33 + 2fs3P32 + 353033 + f5aPa1 + 4 f54032 + Sfss031
+3fe3P22 + 2 feaPa1 + 4 fealzz + fesPzo + 5fe5021 + 6 feelao
+2pPss5 + 2064

Cr6 = 2f31Ps5 + f32Psa + 232055 + 3f33054 + 2fa2Pas + fazpas
+ 343044 + 4 f44043 + 25333 + f54P32 + 4 f540033 + 5 f55032
+2f6aP22 + fesP21 + 5festoz + 6 feela1 + 2Pss + 2065

C77 = fa2Pss + 3f330s5 + fazPas + 4f440ua + fsaPss + 5fs5033
+ fesP22 + 6 fee022 + 2066

Systems (19) fall into two independent subsystems with the odd and even indices

1 0 O fs54 Css 1 0 O f51 Cso
-4 3 0 f52 = Cs3 -4 3 0 f53 = —| Cs2
0 -2 5 f50 Cs1 0 -2 5 f55 Cs4

Let us slove these systems and fifigl, j = 0, 1, 2, 3,4, 5. Let us take = 8 and
takecg;j from (21) only for evenj, since only they are needed fbg:

Cgo = 3f30Pe0 + 31060 + 4 faoPso + fa10s50 + Sfs0Pao + fs10a0
+6fe0P30 + fe10z0 + 7 f70P20 + f71020 + 270

Ca2 = 3fs0Pe2 + 2f31P61 + fa1062 + fa2Pe0 + 232061 + 3 f33060
+4f40Ps2 + 3fa1Ps1 + fa10s2 + 2F42Ps0 + 2 f42051 + 3 f430s50
+5f50Pa2 + 4 f51pa1 + fs51042 + 3 fs52Pa0 + 252041 + 3 fs3ta0
+6feops2 + Sfe1Pa1 + fe10s2 + 4 fe2 P30 + 2620031 + 3 feabso
+7f70P22 + 671 P21 + f72002 + 57220 + 272021 + 373020
+2p72+ 2071

Cas = 3fs0Pes + 2f31P63 + fa1064 + f32P62 + 232063 + 3 f33062
+4f40P54 + 3f41Ps53 + fa1054 + 2F42P52 + 242053 + fazpsy
+ 3f43052 + 4124051 + 5fs0Pa4 + 4 f51Pa3 + f51044 + 3 f52Pa2
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+ 252043 + 2 f53Pa1 + 3f53042 + fsaPao + 4 fsa0a1 + 555040
+ 5f61P33 + 4 fe2P32 + 2 fe2033 + 3 feapsr + 3 fe30s2 + 2 fea P30
+ 464031 + 5fe5030 + 5f72P22 + 4 f73P21 + 373022 + 37420
+ 4174021 + 575020 + 2P74 + 2073

Css = 3fa0Pes + 2fa1Pes + f31066 + f32P6a + 232065 + 3 fa3064
+ 3fa1Ps5 + 2fa2Ps4 + 2f42055 + fa3Pss + 343054 + 4 f440s3
+ 3fs2Paa + 2f53Paz + 3fs30a + fsaPaz + 45403 + 5 fss0a2
+ 3f63P33 + 2 feaP3z + 4 featlzs + fesPa1 + 5festsz + 6 feedan
+3f74P22 + 2f75 P21 + 575022 + fr6P20 + 6 f76021 + 7 f77020
+2p76 + 2075

Ceg = f32Pe6 + 3f33066 + fa3Pss + 4 fa40s5 + fsaPas + 5fss50as
+ fesPs3 + 6 feelss + fre P2z + 7 77022 + 2077

Fori = 8, systems (19) fall into two independent subsystems too, but the first
subsystem is undertermined and the second one is overdetermined. According
to the algorithm (Nemytskii and Stepanov, 1960), in the first subsystem we add
equationfgg = 0. In the second subsystem, we take away the last equation. This
condition of Cronekera—Couppelly coincides with demanidp£ 0 (at condition:

L1 = 0 andL, = 0) and we can determine the third Lyapounov coefficient as

L3 = 35¢cgp + 5Cg2 + 3Cgq + 5Cg + 35Css

EXAMPLE

The growth of calcite from an aqueous solution containing trace elements has
been modeled by Wang and Merino (1992). The linear stability analyses of steady
states of dynamic model is made in their paper, and the periodical solutions have
been found for specific parameter values. To complete qualitative analyses of this
model we have to take into account its nonlinear terms. This has been done in
another paper by Bryxina and Sheplev (1997), where they lead the model of Wang
and Merino to the system:

‘:'j_xz_x_v— F(X,Y)
§ (23)

4 apx+p(1- L)Y+ pF(X.YY

dr ,Olb
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where,
F(X,Y)=sY?4+aXY+asX¥

p=1+b+pb? p=1+28b p=-LBal-a)
P1

Here X andY are small perturbations of the concentrations of agqueous species
around steady-state values, and, 8, andB are the parameters of the model de-
pending on diffusion coefficients of species in the solution, on kinetic parameters,
and on reaction rate; all of them are dimensionless. By substituting

X=—%<u+gv> Y=r<u+%v> T = ot

where

We bring Egs. (23) to their canonical form:

dv du 3 (< il
=Y g = "'tPuv P(u,v)_g(j;op.,uU ., (24

where

p20=(E—M>/w p21=<@—(a+n)u)/a)2
w 2
P22 = (a—Zp —anu) /a)3

uw

po=-lo  pu=—-Qa+n)/o®  pp=—ala+21)/o®
ps3 = —a’m /o’ (25)

The determinant and trace of matrix of the linear part of (23) are given as

A:wz—a, o=-1+ p(l—i>
pib
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If A > 0ando = 0, and using the above described algorithm for system (23), we
shall obtain the analytical expressions for and L, in terms of parameters of
the model:

L; =a?—a(-2s°p?> —sp’+s+p) —25(spf — p+ 1)

L, = a(a(a@(p(—a+ s(p(5s — 4) — 3) + 5) — 3) + p(p(p(s(p(10s” — 1)
+ 5(—8s — 9) + 4) + 1) + S(6s + 7) — 5) + S(—11s — 8) + 3) + 129)
+ p(P(P(2pS?(2s(3s + 1) + 3) + S(S(10s(—2s — 3) — 17) — 6))
+ 25(25(3s + 4) + 11)) + s(s(10s + 17) — 29)) + 35(—3s + 2))
+ p(p(p(4ps*(—5s — 3) + 125%(s(3s + 4) + 1)) 4 25%(—23s — 22))
+ 25%(6s + 23)) — 185%) + p(p(8ps*(s(p — 2) — 1) + 24s°) — 165%)

and forL 3 in terms ofp;; from (25):

L3 = 174p50P21 + 2P30(349p21 P22 + 2610s0) + 230( P21(472p3, — 85pan
— 164p33) + 1047p22P30) + P5o(2003; P3o + Pa1P22(490p3, — 337ps;
— 818p33) + 3pso(944p3, + 4Ps1 + 33Psz)) + 2p20(150P5, P22 P30
+ P21(35p3, — P3,(101ps; + 280pzz) + 3(14p3; + 2ps1(Pa1 + 3pPsa)
+ 39p%y)) + 21p22Pso(35p3, — 6Paz)) + 2p3; Pso(50p3, — 3pPat
— 12p33) + P21P22(35P5,(— P31 — 2pa3) + 3(35p3;
+ 9psspar + 2(42p% + P31))) + 3Pso(70p3,
+ P32(8Ps1 — 105ps3) + 3(Psa(Ps1 + 5Pss) — 6p5))

We have four quantitiest, Ly, Lo, andLs. The first depends on the linear
terms of (23), and the others depend on the nonlinear terms of (23). All of them
are connected with four parameters of the model. When we take into consideration
only the linear terms of the model, we have one limitation on the parameters, when
there are periodical solutions, thabis= 0. When we take into consideration the
nonlinear terms too, we have more limitations on the parameters of the model,
thatisLx = 0. So, there are more stringent restrictions on the parameter values
of the model, when periodic solution exists accounting for the nonlinear terms of
the model.

System (23) has four parameteash, 8, andB. The calculations of, L,

L,, andL3 have shown that there are parameter values at whieh0O, L; = 0,
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B=8/90
. B=200

0.0
' [ [ [ ' [ ' | b
0 10 20 30 40 50

Figure 1. Behavior diagrana—bfor g = 8/90. Curvel is the boundary of the region in unique
steady state of system (23); curives the line of the two-fold steady states; cuiivs the line
of triple steady states; cun&is the linec = 0 at B = 200; curvel is the lineL; = 0.

andL, = 0, but there are no parameter values at whigh= 0. The value of_3 is
smaller than zero at any parameter value of the model. So, Lyapounov coefficients
Lk for k > 3 are not necessary for this model.

Several important curves for parameges= 8/90 andB = 200 are indicated
in coordinatesd, b) in Figure 1 (at otheg, the qualitative picture is the samé&)is
aline of unique steady statdsis a line of multiple steady stateBis a line of triple
steady stateS§is aline wherer = 0, andL is aline where the first Lyapounov coef-
ficientis equal to zero, thatit,; = 0. The division of area of parametedsb into
subareas of constant sign of the fadteis indicated in Figure 2. Using the possible
sign changing of, L1, andL , all phase portraits are found in Bryxinaand Sheplev
(1997) for this model. If there are parameter values wign;, L,, andLj are
small, but not equal to zero, anthif> 0,L1 < 0,L, > 0, andL3 < O, then there
will be a phase portrait with three limit cycles (stable, unstable, and stable) around
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O

T

04 \ SSs \ 3ss
\ \
| Sl 4
saddles ~ .y
02 ~—3 e
N —— T
i 1ss \ 1ss ~_ —
\\
S~ 7 -
0.0 — T T T T T | —1 b
0 2 4 6 8 10 12

Figure 2. Behavior diagrang—b. Curves 1, 2, 3, 4 are the linés = 0; the

region has sign«) if L» > 0 and the region has sigr-{ if Lo < 0; the area

of saddles separates the area (1ss) of unique steady states from the multiplicity
area (3ss).

the unstable steady state. The existence of stable limit cycles of the dynamic model
means that this model has periodic solutions, and, consequently, it can describe
oscillatory zoning of trace elements in calcite growing from an aqueous solution.
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