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Algorithm of Calculation of Lyapounov Coefficients
for Analysis of Chemical Autooscillations, as

Applied to Calcite Crystallization Model1

N. A. Bryxina2 and V. S. Sheplev2,3

The numerical algorithm of calculation of Lyapounov coefficients (Lk) of any order is developed. The
apparatus of analytical calculations is not used in this algorithm. The proposed algorithm is of use
for usual computer languages and allows us to find the numerical value ofLk for any k and to make
complete qualitative analyses of dynamic models on the plane.
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INTRODUCTION

Oscillatory zoning in minerals, as well as many other geological processes, is
modeled quantitatively by a system of nonlinear differential equations, that takes
account of mineral growth, diffusion, and mass continuity. The problem of whether
mineral growth can oscillate autonomously with time reduces to finding the pa-
rameter values of the model under which those equations have periodic solutions.
The numerical integrating of nonlinear dynamic model usually has the problems
connected with instability or multiplicity of solutions. So, qualitative analysis of
systems of this type is very important. It involves a linear instability analyses and a
small-amplitude limit cycles bifurcation analyses. The first indicates the existence
of limit cycles and the second talks about the maximum possible number of limit
cycles and their stability. If the dynamic model has stable limit cycles, then the
geological process, described by this model, has to be periodic. So, the problem
of the number of stable limit cycles is significant in the field of oscillatory zoning
in minerals (Wang and Merino, 1995). Lyapounov coefficients (Lk) are used to
solve this problem. They are functions of parameters of dynamic system on the
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plane and too complex for calculation. There are completed formulas only forL1,
L2 in the literature (Andronov and others, 1967; Bautin and Leontovich, 1976).
However, Lyapounov coefficientsLk for k > 2 are often deficient. For example, in
analyzing agate autooscillations (Bryxina and Sheplev, 1999), it was necessary to
calculate Lyapounov coefficients fork = 1, 2, 3 and in analyzing a cubic system
(Lloyd and Pearson, 1992), it was necessary to calculate Lyapounov coefficients
for k = 1, . . . ,6.

In our investigation we used the algorithm developed by Poincare when he
solved the problem of distinctions between the center and the focus (Nemizkii
and Stepanov, 1947). In this work the numerical algorithm that is developed is
capable for the traditional programming languages and does not use the apparatus
of analytical calculations on computer.

LYAPOUNOV COEFFICIENTS

We investigate a dynamic system on the plane

dx

dt
= Q(x, y)

(1)
dy

dt
= P(x, y)

and write

Q(x, y) = Q1(x, y)+ · · · + Qn(x, y)

P(x, y) = P1(x, y)+ · · · + Pn(x, y)

whereQk and Pk are homogeneous polynomials of degreek, whose coefficients
can depend on some parameters. The steady states of system (1) are obtained by
setting the time derivatives of the left side to zero, and solving forx andy, now
designated asx0, y0:

Q(x0, y0) = P(x0, y0) = 0

We introduce small perturbationsξ andη around a steady state (x0, y0), and replace
x = x0+ ξ andy = y0+ η into (1). We obtain

dξ

dt
= aξ + bη + ϕ(ξ, η)

(2)
dη

dt
= cξ + dη + ψ(ξ, η)
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A general solution to linear part of (2) has the following form:

ξ = c1 eλ1t + c2eλ2t

η = c1 λ1eλ1t + c2 λ2 eλ2t

wherec1 and c2 are integration constants, andλ1 and λ2 are the roots of the
characteristic equationλ2− σλ+1 = 0. The behavior of system (2) near the
steady state can be characterized by determinant1 and traceσ of matrix of linear
part of (2). According to1 andσ , the steady states of the system are classified
into (Bautin and Leontovich, 1976) (1)saddle point, if 1 < 0 andσ is arbi-
trary; (2)node point, if 1 > 0 and (σ /2)2−1 > 0; (3) focus point, if 1 > 0 and
(σ /2)2−1 < 0; (4) limit cycle, if 1 > 0 andσ = 0. In cases 1–3, the steady state
is stable ifσ < 0 and unstable ifσ > 0; case 4 requires special investigation of
functionsϕ(ξ, η) andψ(ξ, η). Let us eliminatet from system (2)

dξ

dη
= aξ + bη + ϕ(x, y)

cξ + dη + ψ(x, y)
(3)

The solution to Eq. (3) is curveξ (η), which is called a phase trajectory. A peri-
odical solution of system (2) is a closed phase trajectory (limit cycle) of Eq. (3).
All phase trajectories of Eq. (3) give phase portrait of dynamic system (1). So,
the parameter values, when there are limit cycles, are interesting for us when we
qualitatively analyze the model.

Let us turn to the polar coordinates (r, θ ): ξ = r cos(θ ) and η = r sin(θ )
(Andronov and others, 1967). Then Eq. (3)

dr

dθ
= R(r, θ ), (4)

whereR(r, θ ) is a periodic function with period 2π . Furthermore,R(0, 0)= 0, that
is,r = 0 is the solution to Eq. (4). Consequently, functionR(r, θ ) can be presented
as a power series

R(r, θ ) = rR1(θ )+ r 2R2(θ )+ · · · , (5)

which will converge on the solution to Eq. (4) at anyθ and reasonably smallr .
The solution to Eq. (5)r = f (θ, r0), wherer0 is the initial value ofr atθ = 0,

can be also expanded in power series:

r = f (θ, r0) = u1(θ )r0+ u2(θ )r 2
0 + · · · (6)
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Substituting expansion (6) into Eq. (5) and equating the coefficients at like power
r0 to each other, we obtain recurrent differential equations for finding the functions
ui (θ ):

du1

dθ
= R1(θ )

du2

dθ
= R1(θ )u2+ R2(θ )u2

1

(7)
du3

dθ
= R1(θ )u3+ 2R2(θ )u1u2+ R3(θ )u3

1

...................................................................

Providing thatr0 = f (θ = 0, r0), we have the following initial values for the func-
tionsui (θ ): u1(0)= 1 andui (0)= 0 for i > 1. So, all functionsui (θ ) can be found
sequentially from (7). The function

w = r − r0

r0
= α2r0+ α3r

2
0 + α4r

3
0 + α5r

4
0 + · · · ,

whereαi = ui (2π ) is called a rate of change phase trajectory of Eq. (4), and the
coefficientsαi are the focal values. It is well known (Andronov and others, 1967)
about the focal values that if1 > 0 andσ = 0, thenα2 = 0; if σ = 0 andα3 = 0,
thenα4 = 0; if σ = 0, α3 = 0, andα5 = 0, thenα6 = 0; and so on. The focal
valueα3 at σ = 0 is called the first Lyapounov coefficientL1; the focal valueα5

at σ = 0 andα3 = 0 is called the second Lyapounov coefficientL2 and so on. If
σ is sufficiently small and it is not equal to zero, the functionw can be rewritten
in the following form:

w = σ + L1r
2
0 + L2r

4
0 + L3r

6
0 + · · ·

The limit cycle stability is determined by the sign ofw, that is, by the signs
of Lyapounov coefficients, the calculation of which is difficult, but necessary at
qualitative analyses of dynamic system on the plane.

DESCRIPTION OF ALGORITHM

We consider the system of differential equations of the following form:

d X

dt
= aX+ bY+ q(X,Y)

(8)
dY

dt
= cX+ dY+ p(X,Y)
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in which q(x, y) and p(x, y) are polynomials. As it follows from the theory of
bifurcation (Nemitskii and Stepanov, 1947), system (8) has periodical solutions if
its steady state is a limit cycle, that is, if the parameter values of this system satisfy
the conditions

σ = a+ d = 0 and 1 = ad− bc> 0

Hereσ is a trace of matrix of linear part of (8) and1 is its determinant. Let us
replace variables:

x = −aX+ bY√
1

y = Y τ =
√
1t

System (8) becomes, in its canonical form,

dx

dτ
= y+

∑
i=2

qi

(9)
dy

dτ
= −x +

∑
i=2

pi

in which pi , qi are also homogenous polynomials by powers ofx andy:

pi =
i∑

j=0

pi j x
j yi− j , qi =

i∑
j=0

qi j x
j yi− j (10)

and its coefficientspi j , qi j depend on the parameter values of the model. Let us
consider thatpi j = 0 andqi j = 0, if j < 0 or j > i , then the derivatives ofpi and
qi on x andy are written in the following form:

∂pi

∂x
= pi,x =

i∑
j=0

zi j x
j−1yi− j j

∂qi

∂x
= qi,x =

i∑
j=0

zi j x
j−1yi− j j

∂pi

∂y
= pi,y =

i−1∑
j=0

zi j x
j yi− j−1(i − j )

∂qi

∂y
= qi,y =

i−1∑
j=0

zi j x
j yi− j−1(i − j )

Eliminatingτ from system (9) and will give the following equation:

dy

dx
= −x +∑i=2 pi

y+∑i=2 qi
. (11)
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Search of periodic solutions of system (8) is same as the search of closed trajectories
on phase plot (x, y), which satisfy Eq. (11). Let us represent a set of closed curves
in the following form:

f (x, y) = x2+ y2+ f3+ f4+ · · · + fk + · · · = constant, (12)

where,

f3 = f33x
3+ f32x

2y+ f31xy2+ f30y3

f4 = f44x
4+ f43x

3y+ f42x
2y2+ f41xy3+ f40y4

...

fk =
k∑

j=0

fk j x
j yk− j

...

and fi j are unknown coefficients for the time being, although they can be found
from the condition that the functionf (x, y) is the solution of Eq. (11). The total
differential of Eq. (12) is equal to zero, that is,

d f (x, y) = ∂ f (x, y)

∂x
dx+ ∂ f (x, y)

∂y
dy= 0. (13)

Taking f (x, y) from the Eq. (12) we have

∂ f (x, y)

∂x
= 2x +

∑
i=3

fi,x,
∂ f (x, y)

∂y
= 2y+

∑
i=3

fi,y

where

fi,x = ∂ fi
∂x
=

i∑
j=0

fi j x
j−1yi− j j f i,y = ∂ fi

∂y
=

i−1∑
j=0

fi j x
j yi− j−1(i − j ) (14)

Equation (13) can be written in the form of

dy

dx
= −2x +∑i=3 fi,x

2y+∑i=3 fi,y
(15)

Comparing this equation with Eq. (11), we obtain

−x +∑i=2 pi

y+∑i=2 qi
= −2x +∑i=3 fi,x

2y+∑i=3 fi,y
(16)
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The terms of the second order cancel each other in Eq. (16). Canceling step-by-step
the terms of the third, fourth, etc. orders, we can have some equations to find the
coefficientsfi j . Using the following designations

a0 =
∑
i=3

(
y fi,x − x fi,y

)
a1 =

∑
i=3

(2ypi−1+ 2xqi−1)

a2 =
∑
k=2

pk

∑
m=3

fm,y a3 =
∑
k=2

qk

∑
m=3

fm,x (17)

Equation (16) becomes

a0+ a1+ a2+ a3 = 0 (18)

Substitution ofpi , qi , fi,x, and fi,y into (17) gives

a0 =
∑
i=3

(
i∑

j=0

fi, j+1( j + 1)− fi, j−1(i − j + 1)

)
x j yi− j

a1 =
∑
i=3

(
i∑

j=0

(2pi−1, j + 2qj−1, j−1)

)
xi yi− j

a2 =
∞∑

i=4

i∑
j=0

(
i−1∑
m=3

min(m−1, j )∑
n=max(0, j−i−1+m)

fmnpi+1−m, j−n(m− n)

)
x j yi− j

a3 =
∞∑

i=4

i∑
j=0

(
i−1∑
m=3

min(m, j+1)∑
n=max(1, j−i+m)

qi+1−m, j+1−n fmnn

)
x j yi− j

We substitute the resulting expressions ofa0, a1, a2, anda3 into (18) and set the
coefficient atxiyi− j equal to zero. We have fori ≥ 3, i ≥ j ≥ 0:

fi, j+1( j + 1)− fi, j−1(i − j + 1)+ ci j = 0 (19)

where

ci j = 2(pi−1, j + qi−1, j−1)+
i−1∑
m=3

(
min(m−1, j )∑

n=max(0, j−i−1+m)

fmnpi+1−m, j−n(m− n)

+
min(m, j+1)∑

n=max(1, j−i+m)

qi+1−m, j+1−n fmnn

)
(20)
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Using index agreement (10), Eq. (20) can be simplified to the following form:

ci j = 2(pi−1, j + qi−1, j−1)+
i−1∑
m=3

j+1∑
n=0

fmn[(m− n)pi+1−m, j−n + nqi+1−m, j+1−n]

(21)

The system of linear Eqs. (19) is divided into two independent subsystems with
two-diagonal matrixes. If indexi is odd, each of those subsystems is simultaneous.
If index i is even (i = 2k), the first subsystem is overdetermined and the second
one is undetermined. According to the algorithm (Nemytskii and Stepanov, 1947),
in the first subsystem we take away the last equation, and in the second subsystem
we add equationfi i = 0. The condition of the Cronekera–Couppelly theorem of
consistency of system can be expressed in the following form:

fi,i−1 = cii

The Lyapounov coefficient of indexk− 1 is

Lk−1 = − fi,i−1+ cii (22)

It is necessary to have allfl , j , 0≤ l < i , to calculateci j . Formula (22) fork =
2, 3, 4, 5, 6 can be rewritten in the following form (the coefficients are given with
a precision of positive factor):

L1 = (3 1 3)(c40 c42 c44)
T

L2 = (5 1 1 5)(c60 c62 c64 c66)
T

L3 = (35 5 3 5 35)(c80 c82 c84 c86 c88)
T

L4 = (63 7 3 3 7 63)(c10,0 c10,2 c10,4 c10,6 c10,8 c10,10)
T

L5 = (231 21 7 5 7 21 231)(c12,0 c12,2 c12,4 c12,6 c12,8 c12,10 c12,12)
T

CALCULATION OF L1, L2, L3

Now we present the algorithm of calculationL1, L2, L3 in some detail. Let
us takei = 3 and takec3 j from (21):

c30 = 2p20 c31 = 2(p21+ q20) c32 = 2(p22+ q21) c33 = 2q22

Systems (19) fall into two independent subsystems with the odd and even indicesj :(
1 0
−2 3

)(
f32

f30

)
=
(

c33

c31

) (
1 0
−2 3

)(
f31

f33

)
= −

(
c30

c32

)
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Let us solve these systems and findf3 j , j = 0, 1, 2, 3. Let us takei = 4 and take
c4 j from (21):

c40 = 3 f30p20+ f31q20+ 2p30

c41 = 3 f30p21+ 2 f31p20+ f31q21+ 2 f32q20+ 2p31+ 2q30

c42 = 3 f30p22+ 2 f31p21+ f31q22+ f32p20+ 2 f32q21+ 3 f33q20

+ 2p32+ 2q31

c43 = 2 f31p22+ f32p21+ 2 f32q22+ 3 f33q21+ 2p33+ 2q32

c44 = f32p22+ 3 f33q22+ 2q33

We can see thatc4 j depends onf3 j . For i = 4 systems (19) fall into two inde-
pendent subsystems: The first subsystem is undetermined and the second one is
overdetermined. According to the algorithm (Nemytskii and Stepanov, 1960), in
the first subsystem we add equationf44 = 0, and in the second subsystem we
take away the last equation. This condition Cronekera–Couppelly coincides with
demandL1 = 0 and we can find the first Lyapounov coefficient as

L1 = 3c40+ c42+ 3c44

So f4 j are found by solving the following systems:(
2 0
−2 4

)(
f42

f40

)
=
(

c43

c41

) (
1 0
−3 3

)(
f41

f43

)
= −

(
c40

c42

)
Let us takei = 5 and takec5 j from (21):

c50 = 3f30p30+ f31q30+ 4 f40p20+ f41q20+ 2p40

c51 = 3f30p31+ 2 f31p30+ f31q31+ 2 f32q30+ 4 f40p21

+ 3f41p20+ f41q21+ 2 f42q20+ 2p41+ 2q40

c52 = 3f30p32+ 2 f31p31+ f31q32+ f32p30+ 2 f32q31+ 3 f33q30

+ 4 f40p22+ 3 f41p21+ f41q22+ 2 f42p20+ 2 f42q21+ 3 f43q20

+ 2p42+ 2q41

c53 = 3f30p33+ 2 f31p32+ f31q33+ f32p31+ 2 f32q32+ 3 f33q31

+ 3f41p22+ 2 f42p21+ f42q22+ f43p20+ 3 f43q21+ 4 f44q20

+ 2p43+ 2q42
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c54 = 2 f31p33+ f32p32+ 2 f32q33+ 3 f33q32+ 2 f42p22+ f43p21

+ 3 f43q22+ 4 f44q21+ 2p44+ 2q43

c55 = f32p33+ 3 f33q33+ f43p22+ 4 f44q22+ 2q44

Systems (19) fall into two independent subsystems with the odd and even indicesj : 1 0 0
−4 3 0
0 −2 5

 f54

f52

f50

 =
c55

c53

c51

  1 0 0
−4 3 0
0 −2 5

 f51

f53

f55

 = −
 50

c52

c54


Let us solve these systems and findf5 j , j = 0, 1, 2, 3, 4, 5. Let us takei = 6 and
takec6 j from (21):

c60 = 3 f30p40+ f31q40+ 4 f40p30+ f41q30+ 5 f50p20+ f51q20+ 2p50

c61 = 3 f30p41+ 2 f31p40+ f31q41+ 2 f32q40+ 4 f40p31+ 3 f41p30

+ f41q31+ 2 f42q30+ 5 f50p21+ 4 f51p20+ f51q21+ 2 f52q20

+ 2p51+ 2q50

c62 = 3 f30p42+ 2 f31p41+ f31q42+ f32p40+ 2 f32q41+ 3 f33q40

+ 4 f40p32+ 3 f41p31+ f41q32+ 2 f42p30+ 2 f42q31+ 3 f43q30

+ 5 f50p22+ 4 f51p21+ f51q22+ 3 f52p20+ 2 f52q21+ 3 f53q20

+ 2p52+ 2q51

c63 = 3 f30p43+ 2 f31p42+ f31q43+ f32p41+ 2 f32q42+ 3 f33q41

+ 4 f40p33+ 3 f41p32+ f41q33+ 2 f42p31+ 2 f42q32+ f43p30

+ 3 f43q31+ 4 f44q30+ 4 f51p22+ 3 f52p21+ 2 f52q22+ 2 f53p20

+ 3 f53q21+ 4 f54q20+ 2p53+ 2q52

c64 = 3 f30p44+ 2 f31p43+ f31q44+ f32p42+ 2 f32q43+ 3 f33q42

+ 3 f41p33+ 2 f42p32+ 2 f42q33+ f43p31+ 3 f43q32+ 4 f44q31

+ 3 f52p22+ 2 f53p21+ 3 f53q22+ f54p20+ 4 f54q21+ 5 f55q20

+ 2p54+ 2q53

c65 = 2 f31p44+ f32p43+ 2 f32q44+ 3 f33q43+ 2 f42p33+ f43p32

+ 3 f43q33+ 4 f44q32+ 2 f53p22+ f54p21+ 4 f54q22+ 5 f55q21

+ 2p55+ 2q54

c66 = f32p44+ 3 f33q44+ f43p33+ 4 f44q33+ f54p22+ 5 f55q22+ 2q55
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For i = 6, systems (19) fall into two independent subsystems too, but the first
subsystem is undetermined and the second one is overdetermined. According to the
algorithm (Nemytskii and Stepanov, 1960), in the first subsystem we add equation
f66 = 0. In the second subsystem we take away the last equation. This condition
Cronekera–Couppelly coincides with demandL2 = 0 (at condition:L1 = 0) and
we can find the second Lyapounov coefficient as

L2 = 5c60+ c62+ c64+ 5c66

So f6 j are found by sloving the following systems: 2 0 0
−4 4 0
0 −2 6

 f64

f62

f60

 =
 c65

c63

c61

  1 0 0
−5 3 0
0 −3 5

 f61

f63

f65

 = −
c60

c62

c64


Let us takei = 7 and takec7 j from (21):

c70 = 3 f30p50+ f31q50+ 4 f40p40+ f41q40+ 5 f50p30+ f51q30

+ 6 f60p20+ f61q20+ 2p60

c71 = 3 f30p51+ 2 f31p50+ f31q51+ 2 f32q50+ 4 f40p41+ 3 f41p40

+ f41q41+ 2 f42q40+ 5 f50p31+ 4 f51p30+ f51q31+ 2 f52q30

+ 6 f60p21+ 5 f61p20+ f61q21+ 2 f62q20+ 2p61+ 2q60

c72 = 3 f30p52+ 2 f31p51+ f31q52+ f32p50+ 2 f32q51+ 3 f33q50

+ 4 f40p42+ 3 f41p41+ f41q42+ 2 f42p40+ 2 f42q41+ 3 f43q40

+ 5 f50p32+ 4 f51p31+ f51q32+ 3 f52p30+ 2 f52q31+ 3 f53q30

+ 6 f60p22+ 5 f61p21+ f61q22+ 4 f62p20+ 2 f62q21+ 3 f63q20

+ 2p62+ 2q61

c73 = 3 f30p53+ 2 f31p52+ f31q53+ f32p51+ 2 f32q52+ 3 f33q51

+ 4 f40p43+ 3 f41p42+ f41q43+ 2 f42p41+ 2 f42q42+ f43p40

+ 3 f43q41+ 4 f44q40+ 5 f50p33+ 4 f51p32+ f51q33+ 3 f52p31

+ 2 f52q32+ 2 f53p30+ 3 f53q31+ 4 f54q30+ 5 f61p22+ 4 f62p21

+ 2 f62q22+ 3 f63p20+ 3 f63q21+ 4 f64q20+ 2p63+ 2q62

c74 = 3 f30p54+ 2 f31p53+ f31q54+ f32p52+ 2 f32q53+ 3 f33q52

+ 4 f40p44+ 3 f41p43+ f41q44+ 2 f42p42+ 2 f42q43+ f43p41

+ 3 f43q42+ 4 f44q41+ 4 f51p33+ 3 f52p32+ 2 f52q33+ 2 f53p31
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+ 3 f53q32+ f54p30+ 4 f54q31+ 5 f55q30+ 4 f62p22+ 3 f63p21

+ 3 f63q22+ 2 f64p20+ 4 f64q21+ 5 f65q20+ 2p64+ 2q63

c75 = 3 f30p55+ 2 f31p54+ f31q55+ f32p53+ 2 f32q54+ 3 f33q53

+ 3 f41p44+ 2 f42p43+ 2 f42q44+ f43p42+ 3 f43q43+ 4 f44q42

+ 3 f52p33+ 2 f53p32+ 3 f53q33+ f54p31+ 4 f54q32+ 5 f55q31

+ 3 f63p22+ 2 f64p21+ 4 f64q22+ f65p20+ 5 f65q21+ 6 f66q20

+ 2p65+ 2q64

c76 = 2 f31p55+ f32p54+ 2 f32q55+ 3 f33q54+ 2 f42p44+ f43p43

+ 3 f43q44+ 4 f44q43+ 2 f53p33+ f54p32+ 4 f54q33+ 5 f55q32

+ 2 f64p22+ f65p21+ 5 f65q22+ 6 f66q21+ 2p66+ 2q65

c77 = f32p55+ 3 f33q55+ f43p44+ 4 f44q44+ f54p33+ 5 f55q33

+ f65p22+ 6 f66q22+ 2q66

Systems (19) fall into two independent subsystems with the odd and even indicesj : 1 0 0
−4 3 0
0 −2 5

 f54

f52

f50

 =
c55

c53

c51

  1 0 0
−4 3 0
0 −2 5

 f51

f53

f55

 = −
c50

c52

c54


Let us slove these systems and findf5 j , j = 0, 1, 2, 3, 4, 5. Let us takei = 8 and
takec8 j from (21) only for evenj , since only they are needed forL3:

c80 = 3 f30p60+ f31q60+ 4 f40p50+ f41q50+ 5 f50p40+ f51q40

+ 6 f60p30+ f61q30+ 7 f70p20+ f71q20+ 2p70

c82 = 3 f30p62+ 2 f31p61+ f31q62+ f32p60+ 2 f32q61+ 3 f33q60

+ 4 f40p52+ 3 f41p51+ f41q52+ 2 f42p50+ 2 f42q51+ 3 f43q50

+ 5 f50p42+ 4 f51p41+ f51q42+ 3 f52p40+ 2 f52q41+ 3 f53q40

+ 6 f60p32+ 5 f61p31+ f61q32+ 4 f62p30+ 2 f62q31+ 3 f63q30

+ 7 f70p22+ 6 f71p21+ f71q22+ 5 f72p20+ 2 f72q21+ 3 f73q20

+ 2p72+ 2q71

c84 = 3 f30p64+ 2 f31p63+ f31q64+ f32p62+ 2 f32q63+ 3 f33q62

+ 4 f40p54+ 3 f41p53+ f41q54+ 2 f42p52+ 2 f42q53+ f43p51

+ 3 f43q52+ 4 f44q51+ 5 f50p44+ 4 f51p43+ f51q44+ 3 f52p42



P1: GVG/GVM/GOQ/GEE P2: GCR/GDX/GVM

Mathematical Geology [mg] pp273-matg-346302 October 18, 2001 16:27 Style file version June 30, 1999

Algorithm of Calculation of Lyapounov Coefficients 1005

+ 2 f52q43+ 2 f53p41+ 3 f53q42+ f54p40+ 4 f54q41+ 5 f55q40

+ 5 f61p33+ 4 f62p32+ 2 f62q33+ 3 f63p31+ 3 f63q32+ 2 f64p30

+ 4 f64q31+ 5 f65q30+ 5 f72p22+ 4 f73p21+ 3 f73q22+ 3 f74p20

+ 4 f74q21+ 5 f75q20+ 2p74+ 2q73

c86 = 3 f30p66+ 2 f31p65+ f31q66+ f32p64+ 2 f32q65+ 3 f33q64

+ 3 f41p55+ 2 f42p54+ 2 f42q55+ f43p53+ 3 f43q54+ 4 f44q53

+ 3 f52p44+ 2 f53p43+ 3 f53q44+ f54p42+ 4 f54q43+ 5 f55q42

+ 3 f63p33+ 2 f64p32+ 4 f64q33+ f65p31+ 5 f65q32+ 6 f66q31

+ 3 f74p22+ 2 f75p21+ 5 f75q22+ f76p20+ 6 f76q21+ 7 f77q20

+ 2p76+ 2q75

c88 = f32p66+ 3 f33q66+ f43p55+ 4 f44q55+ f54p44+ 5 f55q44

+ f65p33+ 6 f66q33+ f76p22+ 7 f77q22+ 2q77

For i = 8, systems (19) fall into two independent subsystems too, but the first
subsystem is undertermined and the second one is overdetermined. According
to the algorithm (Nemytskii and Stepanov, 1960), in the first subsystem we add
equation f88 = 0. In the second subsystem, we take away the last equation. This
condition of Cronekera–Couppelly coincides with demand ofL3 = 0 (at condition:
L1 = 0 andL2 = 0) and we can determine the third Lyapounov coefficient as

L3 = 35c80+ 5c82+ 3c84+ 5c86+ 35c88

EXAMPLE

The growth of calcite from an aqueous solution containing trace elements has
been modeled by Wang and Merino (1992). The linear stability analyses of steady
states of dynamic model is made in their paper, and the periodical solutions have
been found for specific parameter values. To complete qualitative analyses of this
model we have to take into account its nonlinear terms. This has been done in
another paper by Bryxina and Sheplev (1997), where they lead the model of Wang
and Merino to the system:

d X

dτ
= −X − Y − F(X,Y)

(23)
dY

dτ
= apX+ p

(
1− ρ

ρ1b

)
Y + pF(X,Y)′
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where,

F(X,Y) = sY2+ aXY+ asXY2

ρ = 1+ b+ βb2 ρ1 = 1+ 2βb p= ρ

ρ1
Ba(1− a)

ω2 = ap− 1 s= βρ

ρ2
1

Here X andY are small perturbations of the concentrations of aqueous species
around steady-state values, anda, b, β, andB are the parameters of the model de-
pending on diffusion coefficients of species in the solution, on kinetic parameters,
and on reaction rate; all of them are dimensionless. By substituting

X = − r

p

(
u+ π

ω
v
)

Y = r
(
u+ α

ω
v
)

τ = ωt

where

r = 1√
as

π = p− 1 α = 1− a µ =
√

a

s

We bring Eqs. (23) to their canonical form:

dv

dt
= u

du

dt
= −v + P(u, v) P(u, v) =

3∑
i=2

(
i∑

j=0

pi j u
i vi− j

)
, (24)

where

p20 =
(

p

µ
− µ

)/
ω p21 =

(
2αp

µ
− (α + π )µ

)/
ω2

p22 =
(
α2 p

µ
− απµ

)/
ω3

p30 = −1/ω p31 = −(2α + π )/ω2 p32 = −α(α + 2π )/ω3

p33 = −α2π/ω4 (25)

The determinant and trace of matrix of the linear part of (23) are given as

1 = ω2− σ, σ = −1+ p

(
1− ρ

ρ1b

)



P1: GVG/GVM/GOQ/GEE P2: GCR/GDX/GVM

Mathematical Geology [mg] pp273-matg-346302 October 18, 2001 16:27 Style file version June 30, 1999

Algorithm of Calculation of Lyapounov Coefficients 1007

If 1 > 0 andσ = 0, and using the above described algorithm for system (23), we
shall obtain the analytical expressions forL1 and L2 in terms of parameters of
the model:

L1 = a2− a(−2s2 p2− sp2+ s+ p)− 2s(sp2− p+ 1)

L2 = a(a(a(a(p(−a+ s(p(5s− 4)− 3)+ 5)− 3)+ p(p(p(s(p(10s2− 1)

+ s(−8s− 9)+ 4)+ 1)+ s(6s+ 7)− 5)+ s(−11s− 8)+ 3)+ 12s)

+ p(p(p(2ps2(2s(3s+ 1)+ 3)+ s(s(10s(−2s− 3)− 17)− 6))

+ 2s(2s(3s+ 4)+ 11))+ s(s(10s+ 17)− 29))+ 3s(−3s+ 2))

+ p(p(p(4ps3(−5s− 3)+ 12s2(s(3s+ 4)+ 1))+ 2s2(−23s− 22))

+ 2s2(6s+ 23))− 18s2)+ p(p(8ps3(s(p− 2)− 1)+ 24s3)− 16s3)

and forL3 in terms ofpi j from (25):

L3 = 174p5
20p21+ 2p4

20(349p21p22+ 261p30)+ 2p3
20

(
p21
(
472p2

22− 85p31

− 164p33
)+ 1047p22p30

)+ p2
20

(
200p2

21p30+ p21p22
(
490p2

22− 337p31

− 818p33
)+ 3p30

(
944p2

22+ 4p31+ 33p33
))+ 2p20

(
150p2

21p22p30

+ p21
(
35p4

22− p2
22(101p31+ 280p33)+ 3

(
14p2

33+ 2p31(p31+ 3p33)

+ 39p2
30

))+ 21p22p30
(
35p2

22− 6p33
))+ 2p2

21p30
(
50p2

22− 3p31

− 12p33
)+ p21p22

(
35p2

22(−p31− 2p33)+ 3
(
35p2

33

+ 9p33p31+ 2
(
42p2

30+ p2
31

)))+ 3p30
(
70p4

22

+ p2
22(8p31− 105p33)+ 3

(
p31(p31+ 5p33)− 6p2

30

))
We have four quantities:σ , L1, L2, andL3. The first depends on the linear

terms of (23), and the others depend on the nonlinear terms of (23). All of them
are connected with four parameters of the model. When we take into consideration
only the linear terms of the model, we have one limitation on the parameters, when
there are periodical solutions, that isσ = 0. When we take into consideration the
nonlinear terms too, we have more limitations on the parameters of the model,
that isLk = 0. So, there are more stringent restrictions on the parameter values
of the model, when periodic solution exists accounting for the nonlinear terms of
the model.

System (23) has four parameters:a, b, β, andB. The calculations ofσ , L1,
L2, andL3 have shown that there are parameter values at whichσ = 0, L1 = 0,
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Figure 1. Behavior diagrama–bfor β = 8/90. CurveU is the boundary of the region in unique
steady state of system (23); curveF is the line of the two-fold steady states; curveT is the line
of triple steady states; curveS is the lineσ = 0 at B = 200; curveL is the lineL1 = 0.

andL2 = 0, but there are no parameter values at whichL3 = 0. The value ofL3 is
smaller than zero at any parameter value of the model. So, Lyapounov coefficients
Lk for k > 3 are not necessary for this model.

Several important curves for parameterβ = 8/90 andB = 200 are indicated
in coordinates (a, b) in Figure 1 (at otherβ, the qualitative picture is the same):U is
a line of unique steady states,F is a line of multiple steady states,T is a line of triple
steady states,Sis a line whereσ = 0, andL is a line where the first Lyapounov coef-
ficient is equal to zero, that is,L1 = 0. The division of area of parametersβ–b into
subareas of constant sign of the factorL2 is indicated in Figure 2. Using the possible
sign changing ofσ, L1,andL2, all phase portraits are found in Bryxina and Sheplev
(1997) for this model. If there are parameter values whenσ, L1, L2, andL3 are
small, but not equal to zero, and ifσ > 0, L1 < 0, L2 > 0, andL3 < 0, then there
will be a phase portrait with three limit cycles (stable, unstable, and stable) around
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Figure 2. Behavior diagramβ–b. Curves 1, 2, 3, 4 are the linesL2 = 0; the
region has sign (+) if L2 > 0 and the region has sign (−) if L2 < 0; the area
of saddles separates the area (1ss) of unique steady states from the multiplicity
area (3ss).

the unstable steady state. The existence of stable limit cycles of the dynamic model
means that this model has periodic solutions, and, consequently, it can describe
oscillatory zoning of trace elements in calcite growing from an aqueous solution.
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